Что понимают под средней скоростью. Формула средней скорости движения. Находим среднюю скорость: задача

Рассмотрим одну из самых простейших задач, которые можно встретить в школьной программе. Итак немного теории

Средняя скорость движения - это отношение полного пути пройденного объектом на общее время затраченное на это путешествие

Естественно предположить, что если объект часть общего пути прошел за одно время, другую часть за другое время, а третью за третье время, то средняя скорость будет являтся отношением всех частей пути на все затраченное время.

А если известно например части пути и скорость объекта на каждом пути? Не среднее арифметическое же брать от всех скоростей... хотя очень часто именно так и поступают впервые большинство учеников, да и взрослых тоже

На самом деле, при известных частях пути и скоростей на участке формула будет следующая

Наверняка догадались как она получилась из предыдущей формулы.

Если в задании пути буду обозначаться как часть от общего (например, первая половина пути, 2/3 пути и т.п.) то, учитывая что сумма таких частей будет равна всему пути (равной единице), то средняя скорость будет определятся как

Пример:

Автомобиль проехал первую треть дороги со скоростью 60 км/ч, вторую треть дороги со скоростью 120 км/ч, третью треть дороги со скоростью 40 км/ч. найдите среднюю скорость.

Решение:

Ответ: 60 км/час

И последний вариант формулы на среднюю скорость это когда известно время и скорость на каждом из участков.

Правда есть еще четвертый вариант, но он практически никогда не встречается в задачах. Это когда встречаются комбинированные данные, например: Пешеход, преодолевает путь из точки А в точку Б. Первую половину пути пешеход прошел со скоростью 5 км/час а вторую половину пути за 1 час. Какое расстояние между А и Б, если средняя скорость пешехода, со всеми остановками и перекурами, была 3 км/час

Смотрим вот на эту формулу и думаем

Части пути нам известны, то есть общее расстояние нам известно и принимается за единицу (половина пути+половина пути равна единице пути)

Теперь со временем

На первом участке время легко вычислить (половину пути разделить на 5 км/ч). Получаем одну десятую пути. Не пугайтесь что получилось "время равно одной десятой пути". Оно потом понадобится..

Время на втором участке известно и равно 1 час

Напишем нашу формулу по полученным данным

Выразим расстояние от точки А до точки Б через среднюю скорость и получим

Поставим значение средней скорости получим что общее расстояние которое преодолел пешеход равно 4 километра и почти 286 метров

Сложновато? Зато интересно и увлекательно.

Из последней формулы вытекает "парадоксальный" вывод: При средней скорости приближающейся к 10 км/час расстояние между точками А и Б становится неприлично большим и уходит в бесконечность, а при 11 км/час расстояние вообще становится отрицательным.

Что хотелось бы по этому поводу сказать. не всегда надо бездумно подвергать анализу последнюю формулу, особенно когда знаменатель обращается в ноль.

Взяв предыдущую формулу - мы бы увидели что при средней скорости в 10 км/ч, расстояние просто будет неопределено. То есть при заданных условиях средняя скорость никак не может быть больше 10 км/час.

Запомните!

Чтобы найти среднее арифметическое , нужно сложить все числа и поделить их сумму на их количество.


Найти среднее арифметическое 2, 3 и 4 .

Обозначим среднее арифметическое буквой «m ». По определению выше найдем сумму всех чисел.


Разделим полученную сумму на количество взятых чисел. У нас по условию три числа.

В итоге мы получаем формулу среднего арифметического :


Для чего нужно среднее арифметическое?

Кроме того, что его постоянно предлагают найти на уроках, нахождение среднего арифметического весьма полезно и в жизни.

Например, вы решили продавать футбольные мячи. Но так как вы новичок в этом деле, совершенно непонятно по какой цене вам продавать мячи.

Тогда вы решаете узнать, по какой цене в вашем районе уже продают футбольные мячи конкуренты. Узнаем цены в магазинах и составим таблицу.

Цены на мячи в магазинах оказались совсем разные. Какую цену для продажи футбольного мяча нам лучше выбрать?

Если выбрать самую низкую (290 руб.), то мы будем продавать товар себе в убыток. Если выбрать самую высокую (360 руб.), то покупатели не будут приобретать футбольные мячи у нас.

Нам нужна средняя цена. Здесь на помощь приходит среднее арифметическое .

Вычислим среднее арифметическое цен на футбольные мячи:

Средняя цена =

290 + 360 + 310
3
=
960
3
= 320 руб.

Таким образом, мы получили среднюю цену (320 руб.), по которой мы можем продавать футбольный мяч не слишком дёшево и не слишком дорого.

Средняя скорость движения

Со средним арифметическим тесно связано понятие средней скорости движения .

Наблюдая за движением транспорта в городе, можно заметить, что машины, то разгоняются и едут с большой скоростью, то замедляются и едут с маленькой скоростью.

Таких участков на пути следования автотранспорта бывает много. Поэтому для удобства расчётов, используют понятие средней скорости движения.

Запомните!

Средняя скорость движения — это весь пройденный путь разделить на всё время движения.

Рассмотрим задачу на среднюю скорость.

Задача № 1503 из учебника «Виленкин 5 класс»

Автомобиль двигался 3,2 ч по шоссе со скоростью 90 км/ч, затем 1,5 ч по грунтовой дороге со скоростью 45 км/ч, наконец 0,3 ч по просёлочной дороге со скоростью 30 км/ч. Найдите среднюю скорость движения автомобиля на всём пути.

Для расчёта средней скорости движения нужно знать весь путь, пройденный автомобилем, и всё время, которое автомобиль двигался.

S 1 = V 1 t 1

S 1 = 90 · 3,2 = 288 (км)

— шоссе.

S 2 = V 2 t 2

S 2 = 45 · 1,5 = 67,5 (км) — грунтовая дорога.

S 3 = V 3 t 3

S 3 = 30 · 0,3 = 9 (км) — просёлочная дорога.

S = S 1 + S 2 + S 3

S = 288 + 67,5 + 9 = 364,5 (км) — весь путь, пройденный автомобилем.

T = t 1 + t 2 + t 3

T = 3,2 + 1,5 + 0,3 = 5 (ч) — всё время.

V ср = S: t

V ср = 364,5: 5 = 72,9 (км/ч) — средняя скорость движения автомобиля.

Ответ: V ср = 72,9 (км/ч) — средняя скорость движения автомобиля.

Движущегося тела (или материальной точки). Различают два основных определения средней скорости, соответствующие рассмотрению скорости как скалярной либо векторной величины: средняя путевая скорость (скалярная величина) и средняя скорость по перемещению (векторная величина). При отсутствии дополнительных уточнений, под средней скоростью обычно понимают среднюю путевую скорость.

Энциклопедичный YouTube

    1 / 3

    ✪ Урок 17. Средняя скорость. Средняя путевая скорость.

    ✪ Задача на среднюю скорость

    ✪ GetAClass - Задачи на движение 3. Средняя скорость

    Субтитры

Средняя путевая скорость

Средняя (путевая) скорость - это отношение длины пути , пройденного телом, ко времени , за которое этот путь был пройден:

V c p = Σ s Σ t . {\displaystyle v_{cp}={\frac {\Sigma s}{\Sigma t}}.}

Средняя путевая скорость, в отличие от мгновенной скорости , не является векторной величиной.

Средняя скорость равна среднему арифметическому от скоростей тела во время движения только в том случае, когда тело двигалось с этими скоростями одинаковые промежутки времени. (В случае, если тело двигалось с разными скоростями неодинаковые промежутки времени, среднюю скорость можно вычислить как взвешенное среднее арифметическое этих скоростей с весами, равными соответствующим промежуткам времени.)

В то же время если, например, половину пути автомобиль двигался со скоростью 180 км/ч, а вторую половину со скоростью 20 км/ч, то средняя скорость будет 36 км/ч. В примерах, подобных этому, средняя скорость равна среднему гармоническому всех скоростей на отдельных, равных между собой, участках пути. Если участки пути, по которому двигалось тело с разными скоростями, не равны между собой, то средняя скорость будет равна взвешенному среднему гармоническому всех скоростей с весами - длинами соответствующих этим скоростям участков пути.

Средняя скорость по перемещению

Можно также ввести среднюю скорость по перемещению , которая будет вектором , равным отношению перемещения ко времени, за которое оно совершено:

v → c p = s → Δ t . {\displaystyle {\vec {v}}_{cp}={\frac {\vec {s}}{\Delta t}}.}

Средняя скорость, определённая таким образом, может равняться нулю даже в том случае, если точка (тело) реально двигалась (но в конце промежутка времени вернулась в исходное положение).

Есть средние величины, неправильное определение которых вошло в анекдот или в притчу. Любые неверно произведённые расчёты комментируются расхожей общепонятной ссылкой на такой заведомо абсурдный результат. У каждого, к примеру, вызовет улыбку саркастического понимания фраза "средняя температура по больнице". Однако те же знатоки нередко, не задумываясь, складывают скорости на отдельных отрезках пути и делят подсчитанную сумму на число этих участков, чтобы получить столь же бессмысленный ответ. Напомним из курса механики средней школы, как найти среднюю скорость правильным, а не абсурдным способом.

Аналог "средней температуры" в механике

В каких случаях каверзно сформулированные условия задачи подталкивают нас к поспешному необдуманному ответу? Если говорится о "частях" пути, но не указывается их протяжённость, это настораживает даже мало искушённого в решении подобных примеров человека. А вот если в задаче прямо указывается на равные промежутки, например, "первую половину пути поезд следовал со скоростью...", или "первую треть пути пешеход прошагал соскоростью...", и далее подробно расписывается, как объёкт передвигался на оставшихся равных участках, то есть известно соотношение S 1 = S 2 = ... = S n и точные значения скоростей v 1, v 2, ... v n , наше мышление нередко даёт непростительную осечку. Считается среднее арифметическое скоростей, то есть все известные значения v складываются и делятся на n . В итоге ответ получается неверный.

Простые "формулы" расчёта величин при равномерном движении

И для всего пройденного пути, и для отдельных его участков в случае усреднения скорости справедливы соотношения, написанные для равномерного движения :

  • S = vt (1), "формула" пути;
  • t=S/v (2), "формула" расчёта времени движения;
  • v=S/t (3), "формула" определения средней скорости на участке пути S , пройденном за время t .

То есть для нахождения искомой величины v с использованием соотношения (3) нам нужно точно знать две другие. Именно решая вопрос, как найти среднюю скорость движения, мы прежде всего должны определить, каков весь пройденный путь S и каково всё время движения t .

Математическое обнаружение скрытой ошибки

В решаемом нами примере пройденный телом (поездом или пешеходом) путь будет равен произведению nS n (так как мы n раз складываем равные участки пути, в приведённых примерах - половинки, n = 2 , или трети, n = 3 ). О полном же времени движения нам ничего не известно. Как определить среднюю скорость, если знаменатель дроби (3) явно не задан? Воспользуемся соотношением (2), для каждого участка пути определим t n = S n: v n . Сумму рассчитанных таким образом промежутков времени запишем под чертой дроби (3). Ясно, что, для того чтобы избавиться от знаков "+", нужно приводить все S n: v n к общему знаменателю. В результате получается "двухэтажная дробь". Далее пользуемся правилом: знаменатель знаменателя идёт в числитель. В итоге, для задачи с поездом после сокращения на S n имеем v ср = nv 1 v 2: v 1 + v 2 , n = 2 (4) . Для случая с пешеходом вопрос -, как найти среднюю скорость, решается ещё сложнее: v ср = nv 1 v 2 v 3: v 1v2 + v 2 v 3 + v 3 v 1 , n = 3 (5).

Явное подтверждение ошибки "в числах"

Для того чтобы "на пальцах" подтвердить, что определение среднего арифметического - ошибочный путь при расчёте v ср , конкретизируем пример, заменив абстрактные буквы числами. Для поезда возьмём скорости 40 км/ч и 60 км/ч (ошибочный ответ - 50 км/ч ). Для пешехода - 5 , 6 и 4 км/ч (среднее арифметическое - 5 км/ч ). Нетрудно убедиться, подставив значения в соотношения (4) и (5), что верными ответами будут для локомотива 48 км/ч и для человека - 4,(864) км/ч (периодическая десятичная дробь, результат математически не слишком красивый).

Когда среднее арифметическое "не подводит"

Если задача формулируется так: "За равные промежутки времени тело двигалось сначала со скоростью v 1 , затем v 2 , v 3 и так далее", быстрый ответ на вопрос, как найти среднюю скорость, может быть найден неправильным способом. Предоставим читателю самостоятельно в этом убедиться, просуммировав в знаменателе равные промежутки времени и воспользовавшись в числителе v ср соотношением (1). Это, пожалуй, единственный случай, когда ошибочный метод приводит к получению корректного результата. Но для гарантированно точных расчётов нужно пользоваться единственно правильным алгоритмом, неизменно обращаясь к дроби v ср = S: t .

Алгоритм на все случаи жизни

Для того чтобы наверняка избежать ошибки, при решении вопроса, как найти среднюю скорость, достаточно запомнить и выполнить простую последовательность действий:

  • определить весь путь, просуммировав длины отдельных его участков;
  • установить всё время пути;
  • поделить первый результат на второй, неизвестные, не заданные в задаче величины при этом (при условии корректной формулировки условий) сокращаются.

В статье рассмотрены простейшие случаи, когда исходные данные приводятся для равных долей времени или равных участков пути. В общем случае соотношение хронологических промежутков либо пройденных телом расстояний может быть самым произвольным (но при этом математически определённым, выраженным конкретным целым числом или дробью). Правило обращения к соотношению v ср = S: t абсолютно универсально и никогда не подводит, сколь бы сложные на первый взгляд алгебраические преобразования ни приходилось выполнять.

Напоследок отметим: для наблюдательных читателей не осталась незамеченной практическая значимость использования верного алгоритма. Правильно рассчитанная средняя скорость в приведённых примерах оказалась несколько ниже "средней температуры" на трассе. Поэтому ложный алгоритм для систем, фиксирующих превышения скорости, означал бы большее число ошибочных постановлений ГИБДД, высылаемых в "письмах счастья" водителям.

В данной статье рассказано о том, как найти среднюю скорость. Дано определение этого понятия, а также рассмотрено два важных частных случая нахождения средней скорости. Представлен подробный разбор задач на нахождение средней скорости тела от репетитора по математике и физике.

Определение средней скорости

Средней скоростью движения тела называется отношение пути , пройденного телом, ко времени , в течение которого двигалось тело:

Научимся ее находить на примере следующей задачи:

Обратите внимание, что в данном случае это значение не совпало со средним арифметическим скоростей и , которое равно:
м/с.

Частные случаи нахождения средней скорости

1. Два одинаковых участка пути. Пусть первую половину пути тело двигалось со скоростью , а вторую половину пути — со скоростью . Требуется найти среднюю скорость движения тела.

2. Два одинаковых интервала движения. Пусть тело двигалось со скоростью в течение некоторого промежутка времени, а затем стало двигаться со скоростью в течение такого же промежутка времени. Требуется найти среднюю скорость движения тела.

Здесь мы получили единственный случай, когда средняя скорость движения совпала со средним арифметическим скоростей и на двух участках пути.

Решим напоследок задачу из Всероссийской олимпиады школьников по физике, прошедшей в прошлом году, которая связана с темой нашего сегодняшнего занятия.

Тело двигалось с, и средняя скорость движения составила 4 м/с. Известно, что за последние с движения средняя скорость этого же тела составила 10 м/с. Определите среднюю скорость тела за первые с движения.

Пройденный телом путь составляет: м. Можно найти также путь, который прошло тело за последние с своего движения: м. Тогда за первые с своего движения тело преодолело путь в м. Следовательно, средняя скорость на этом участке пути составила:
м/с.

Задачи на нахождение средней скорости движения очень любят предлагать на ЕГЭ и ОГЭ по физике, вступительных экзаменах, а также олимпиадах. Научиться решать эти задачи должен каждый школьник, если он планирует продолжить свое обучение в вузе. Помочь справиться с этой задачей может знающий товарищ, школьный учитель или репетитор по математике и физике. Удачи вам в изучении физики!


Сергей Валерьевич