Электронный ключ морзе схема. Автоматический телеграфный ключ. Схема, описание. Устройство для изменения скорости движения стеклоочистителя

Вашему вниманию предлагается несложный электронный телеграфный ключ с применением современной элементной базы - PIC-контроллера. Это позволило минимизировать размеры устройства и встроить его непосредственно в трансивер.

Телеграфный ключ разрабатывался для встраивания в трансивер, однако может применяться и в виде отдельного блока. Схема устройства показана на рис. 1.

Ключ предназначен для формирования знаков телеграфной азбуки. Принцип работы очень прост. В исходном состоянии манипулятор SB3 находится в среднем положении.

На выводах 17 (RAO) и 18 (RA1) микроконтроллера DD1 присутствует высокий уровень. При переводе манипулятора в нижнее по схеме положение на выводе 6 (RBO) возникает серия импульсов, соответствующая “точкам". “Точки" будут генерироваться, пока манипулятор нажат. Длительность каждой “точки"

определяется установленной скоростью. Аналогично при переводе манипулятора в верхнее по схеме положение формируются “тире".

Кнопки SB1 и SB2 предназначены для изменения скорости передачи сигнала. Установленная скорость записывается в первую ячейку EEPROM. При следующем включении устройства программа считывает значение этой ячейки и устанавливает скорость.

Такое решение, а также применение кварцевого резонатора позволяет всегда и с высокой точностью устанавливать скорость передачи, которая мало зависит от температуры и питающего напряжения. Манипуляция осуществляется активным низким сигналом с коллектора транзистора VT1.

При разработке устройства основной целью ставилась простота и минимум деталей. Возможность записи в память не разрабатывалась ввиду того, что сейчас на любительской радиостанции в основном применяются компьютеры.

А в компьютерных программах работа с так называемыми “макросами" реализована на таком уровне, что в “железе" это воплотить практически нереально. Поэтому ключ применяется, как правило, при повседневных радиосвязях или в полевых условиях.

Ключ имеет память на один знак - так называемый “ямбический" режим. То есть, если в момент воспроизведения, например, тире, будет нажата точка, то по окончании воспроизведения тире эта точка также прозвучит. И наоборот. Скорость можно регулировать от самой низкой до примерно 120 часов в минуту.

В связи с тем что ключ предназначен для встраивания в трансивер, в нем не предусмотрен тональный выход. Контроль осуществляется по цепи QSK трансивера.

При применении ключа в виде отдельного устройства можно для самоконтроля добавить звуковой генератор и управлять им с вывода 6 микроконтроллера DD1. Другой вариант - использовать так называемый “зуммер" от компьютера. Это небольшого размера капсюль, который при подаче на него напряжения излучает тональный сигнал в диапазоне 0,8...2 кГц.

На рис. 2 показана печатная плата для устройства, собранного из обычных деталей, а на рис. 3 - для деталей поверхностного монтажа (типоразмер 0805). Расположение деталей показано в масштабе 2:1.

При программировании микроконтроллера необходимо установить флаги FOSCO и WDTE. Данные для программирования приведены в таблице 1. При первом включении микроконтроллер считывает значение скорости из первой ячейки EEPROM. Если микроконтроллер раньше не программировался, то в этой ячейке, скорее всего, будет записано шестнадцатеричное число FF. Это соответствует самой маленькой скорости. При желании на этапе программирования в эту ячейку можно занести другое шестнадцатеричное число, например, 2А, что будет соответствовать средней скорости.

Таблица 1.

Электронный стабилизатор 78L05 можно заменить на КР142ЕН5А в обычном исполнении, при этом, возможно, придется увеличить размеры печатной платы. Если предполагается работа от батареи гальванических элементов, можно вообще не устанавливать стабилизатор. Разумеется, напряжение батареи не должно превышать 5,5 В. Питающее напряжение для микроконтроллера PIC16F84, поданным производителя, может лежать в пределах 4,5...5,5 В при использовании в качестве задающего генератора кварцевого резонатора с высокой частотой (HS).

Частота кварцевого резонатора ZQ1 может отличаться от указанной на схеме. От номинала частоты зависят верхнее и нижнее значения скорости. В качестве транзистора VT1 подойдет любой кремниевый n-p-п проводимости, например, из серий КТ3102, КТ645 и т. п. Необходимо только убедиться, что максимальный ток и напряжение коллектора не меньше, чем требуется для коммутации нагрузки.

Если манипулятор SB3 будет расположен на некотором отдалении от устройства, нужно установить блокировочные керамические конденсаторы емкостью 1000 пФ, подключенные к выводам 17 и 18 DD1, а также применить резисторы R5 и R6 меньшего сопротивления (1...2 кОм). Аналогичные рекомендации касаются и кнопок регулировки скорости.

Скачать прошивку Р1С-контроллера.

Данный электронный телеграфный ключ изготовлен с использованием всего двух простых микросхем К155ЛА3 и К155ТМ2. Принципиальная схема очень проста.

На элементах DD1.4 и DD1.1 собран тактовый генератор, частоту которого можно регулировать переменным резистором R1. На элементе DD1.3 выполнен узел запуска генератора. Триггер DD2.1 формирует «точки», DD2.2 - «двойные точки».

Когда манипулятор из среднего положения переводят в положение «Точки», на вывод 9 элемента DD1.3 поступает логический «0». При этом на входы элемента DD1.4 приходит логическая «1», и тактовый генератор начинает формировать прямоугольный импульс.

На инверсном выходе триггера DD2.1 сразу появляется низкий логический уровень, который через диод VD1 подается на узел запуска генератора. Это позволяет формировать «точки» одинаковой длительности независимо от того, когда манипулятор был возвращен в исходное состояние. Импульсы с прямого выхода триггера DD2.1 через диод VD5 поступают на работающий в ключевом режиме транзистор VT1. В его коллекторную цепь включено реле К1, которое коммутирует соответствующие цепи передатчика.

При переводе манипулятора в положение «Тире» на вывод 9 элемента DD1.3 и вывод 5 элемента DD1 2 подается низкий логический уровень. При этом начинает работать тактовый генератор. С инверсного выхода триггера DD2.1. а также с DD2.2 через диоды VD1, VD3, VU4 на элементы DD1.3 и DD1.2 поступает логический «0», обеспечивающий работу тактового генератора на время формирования «тире» нормальной длительности. «Тире» получается путем суммирования на резисторе R3 «точек» и «двойных точек», поступающих с прямых выходов триггеров DD2.1 и DD2.2 через диоды VD5 и VD6.

Детали электронного ключа размещают на печатной плате размерами 65х45 мм.

В ключе можно использовать микросхемы серий К133, К158, К130. Диоды VD1-VD6 — любые импульсные, транзистор VT1 - любой маломощный структуры n-p-n. Реле К1 — РЭС-15 (паспорт РС4.591.002). Вместо него можно применить РЭС-43 (паспорт РС4.569.201) или другие, у которых напряжение срабатывания не превышает 5 В.

Другие схемы и решения телеграфных ключей вы можете скачать

Немного порывшись в интернете в поисках схем электронных телеграфных ключей, мне почти так и не удалось найти то, что нужно. Некоторые ключи, состоящие из микросхем серии К 155, были довольно сложны и имели в себе не менее двух микросхем со сложной разводкой, другие состоящие из микроконтроллеров тоже неоправданно были усложнены. В голову так и просилась очень простая схема на микроконтроллере с минимальными допайками и довесами. Пришлось разработать свою схему телеграфного ключа, тем более на таком известном и широко распространенным контроллере Attiny 2313.

Работает схема следующим образом: после подачи питания, контроллер постоянно опрашивает со скоростью 500 000 раз в секунду все контакты по очереди. Кроме клавиши «Reset», естественно. При замыкании ключа на точки или тире он начинает выдавать соответствующие пачки импульсов. Начальная скорость передачи знаков, при загрузке контроллера составляет около 30 знаков минуту. Регулировка скорости передачи осуществляется клавишами S3-S4. Для этого надо нажать и удерживать соответствующую клавишу. Скорость начнет плавно регулироваться. Диапазон настройки скорости составляет от 30 до 240 знаков в минуту. На практике скорость регулируется до бесконечности. Например, на минимальной скорости, длина точки составляет 13 секунд. На максимальной, скорость передачи составляет 900 точек в секунду. Понятно, что это и не нужно, но на максимальном режиме данный ключ можно использовать в качестве генератора 1 кГц.
Для удобства оператора, клавишей S5 включается автоматическая передача CQ. Вид текста: «CQ CQ CQ DE», далее оператор подставляет свой позывной. Для того, чтобы сохранить текущую скорость в энергонезависимую память, нужно нажать клавишу S6. Для того, чтобы извлечь, например, при новом включении контроллера, кнопку «Read»

Данная схема работает на частоте 4 МГц, от внутреннего генератора. В качестве контроля применяется бипер с уже готовой заданной частотой. Транзистор КТ815 с любой буквой. Следует учесть, что если будет применяться реле, то нужно включить защитный диод на обмотку реле. Питание 5 вольт, желательно через микросхему серией 7805. Для себя я сделал сенсорный телеграфный манипулятор.

Многим это покажется неудобным, но на самом деле вполне приемлемо на скоростях передачи до 200 знаков в минуту. В качестве манипулятора тогда используется двухсторонний фольгированный текстолит.

Fuse биты надо поставить следующим образом:
CKSEL3 - Есть галочка
CKSEL2 – Есть галочка
CKSEL1 - Нет галочки
CKSEL0 – Есть галочка.
Остальные без изменения.

Для удобства программирования, нужно взять папку «Исходники» и скопировать в корневой каталог AVR – Studio.

Программа приведена ниже. Она как и в hex расширении так и в aps. Жалобы принимаются по электронному адресу

Как уже отмечалось ранее, существуют десятки и сотни самых разнообразных цифровых микросхем. Живописному описанию каждой их них можно было бы посвятить немало страниц.

Однако в целях экономии бумаги и для демонстрации неограниченных возможностей применения всего одной микросхемы из множества других ниже будут рассмотрены простейшие устройства, использующие только одну микросхему — К561ЛЕ5.

Сенсорный пульт управления

Сенсорный пульт управления, позволяющий включать/выключать нагрузку, разработан И.А. Нечаевым (рис. 1) [Р 1/85-49]. Устройство содержит генератор, вырабатывающий импульсы частотой 300...500 Гц.

Их скважность (отношение длительности импульса к паузе) составляет 1:40 и определяется отношением сопротивлений R1 и R2. Если к сенсорной пластинке Е1 приложить палец, начнет заряжаться конденсатор С2.

Скорость и время заряда этого конденсатора зависит от сопротивления между контактами. В соответствии с заряд-но-разрядными процессами будет изменяться величина управляющего сигнала, проходящего через схему управления.

Рис. 1. Схема сенсорного пульта управления.

Изменяя силу и время прижатия пальцев к сенсорным площадкам Е1 и Е2, можно управлять уровнем выходных сигналов, интенсивностью свечения светодиодов HL1 и HL2.

Для настройки схемы при использовании сенсорных площадок различной конфигурации и площади, возможно, придется подобрать емкости конденсаторов С2 и СЗ.

Цветорегулятор

Несложный цветорегулятор можно собрать используя генератор импульсов управляемой скважности (рис. 2). Изменяя соотношение пауза/импульс с помощью потенциометра R2 можно управлять средней силой тока, протекающего через светодиоды HL1 и HL2.

Рис. 2. Схема цветорегулятора.

Если эти светодиоды отличаются по цвету свечения, объединив их под общим светособирающим экраном, можно добиться плавного изменения цвета суммарного свечения. В качестве нагрузки можно включить лампы накаливания, получив таким образом регулятор света. Для этого придется выполнить выходные каскады на более мощных транзисторах.

На рис. 3 показана схема сенсорного выключателя конструкции И.А. Нечаева [Р 4/89-62]. Прикосновение к площадкам Е1 и Е2 позволяет включать или выключать ток в нагрузке (светодиоды HL1 и HL2).

Рис. 3. Схема сенсорного выключателя.

Работает сенсорный выключатель следующим образом: в момент включения питания конденсаторы С1 и С2 разряжены, на входах соответствующих логических элементов устанавливаются логический нуль (выводы 1, 2 микросхемы DD1) и логическая единица (выводы 3, 5, 6 микросхемы DD1).

Соответственно, на выходе второго логического элемента установится логический нуль, а на выходе третьего — логическая единица, четвертого — снова нуль. Следовательно, один из элементов нагрузки — светодиод — будет включен, другой — выключен.

Резистор R3 создает цепь положительной обратной связи, обеспечивающей устойчивое состояние сенсорного выключателя. Для того чтобы переключить нагрузку, достаточно коснуться пальцем до сенсорных площадок Е1 и Е2.

С конденсатора С2 уровень логической единицы окажется поданным через сопротивление пальца и резистор R1 на вход первого логического элемента.

Поскольку на входе первого элемента устанавливается значение логической единицы, все остальные логические элементы одновременно изменят свое состояние. Выходные каскады переключатся.

На конденсаторе С1 установится значение логической единицы, на конденсаторе С2 — логического нуля. Для повторного переключения элементов схемы необходимо снова прикоснуться к сенсорным площадкам.

Это прикосновение приведет к очередной перезарядке конденсаторов С1 и С2 и переключению схемы в другое устойчивое состояние.

Сенсорный выключатель устойчиво работает в диапазоне питающих напряжений от 6 до 12 6. Взамен светодиодных индикаторов или параллельно им может быть включена и иная нагрузка, например, обмотка реле, управляющего работой бытовой техники, генератор звуковых или световых сигналов и т.п.

Модель электронного светофора

Модель электронного светофора (рис. 4) позволяет поочередно переключать разноцветные светодиоды, имитируя работу настоящего светофора [Рл 10/98-15].

Времязадающая цепь генератора (R2, С2) определяет частоту переключения зеленого и красного светодиодов, а цепь R1, С1 определяет время свечения желтого светодиода. Продолжительность свечения зеленого и красного светодиодов составляет около 10 сек и определяется постоянной времени R2C2, где сопротивление выражено в МОм, а емкость — в мкФ.

Рис. 4. Схема электронного «светофора».

Светофон

Светофон (рис. 5) представляет собой электронную игрушку — звуковой генератор [Р 1/90-60]. Частота генерации определяется уровнем освещенности чувствительного к свету (hv) элемента R1 (фотосопротивления, фотодиода) при приближении к нему руки. Для того чтобы звучание происходило по желанию «музыканта», включение звука происходит при отпускании пальца от сенсорных площадок Е1 и Е2.

Рис. 5. Схема светофона.

При использовании фоточувствительных приборов различного типа вероятно потребуется подбор емкости конденсатора С1, а также включение параллельно (или последовательно) фоточувствительному элементу (фотосопротивлению, фотодиоду) резисторов, задающих диапазон изменения генерируемой звуковой частоты.

Отметим попутно, что при самостоятельной доработке устройства в качестве управляющего элемента (рис. 5) можно использовать термосопротивление, имеющее малую тепловую инерцию, например, бусинкового типа.

Устройство, полученное при этом, можно наименовать термофоном или эолофоном (от греческого aiolos — ветер и phone — голос, звук) — оно будет изменять частоту звука при обдувании терморезистора.

Электромузыкальный прибор, управляемый наэлектризованным предметом (электронофон), можно получить, включив полевой транзистор вместо резистора R1.

Терменвокс

Идея терменвокса была предложена в эпоху раннего «средневековья» радиоэлектроники — на рубеже 20-30-х годов XX века изобретателем и музыкантом Львом Терменом.

В основу действия этого электромузыкального инструмента заложен принцип сопоставления (вычитания) частот двух генераторов.

Один из генераторов является эталонным, второй — управляется приближением (удалением) ладони руки. Чем ближе ладонь, тем заметнее уход частоты второго генератора, тем выше звук на выходе устройства.

Рис. 6. Схема простого самодельного терменвокса.

Модель терменвокса, одного из самых первых электромузыкальных инструментов, может быть собрана по схеме на рис. 6. Это устройство является упрощенной модификацией схемы Э. Апрелева [М 6/92-28].

Сигналы двух генераторов вычитаются в специальном смесителе сигналов. Разностная частота поступает на звукоизлучатель или усилитель низкой частоты.

Исходная частота работы генераторов близка к 90 кГц. Антенной устройства является медный или алюминиевый прут диаметром 2...4 мм длиной 25...40 мм.

Разумеется, представленная на рис. 6 схема формирования звука заметно упрощена. В частности, для «реального» инструмента обязательно необходима регулировка громкости звучания инструмента. Для этого обычно используют аналогичный второй канал.

Изображенная на рис. 6 наиболее упрощенная модель терменвокса построена на основе двух генераторов, выполненных на микросхеме.

Начальная частота генерации обоих генераторов одинакова и устанавливается конденсатором СЗ и потенциометром R1. Выходные сигналы с генераторов через диоды VD1 и VD2 поступают на вход усилителя низкой частоты (транзистор VT1).

При приближении руки к антенне WA1 изменяется частота работы верхнего по схеме генератора, что вызывает появление звука изменяющейся тональности в телефонном капсюле.

Оригинальный металлоискатель, реагирующий на появление металлического (токопроводящего) предмета в поле антенны устройства также может быть собран по схеме на рис. 6.

В сочетании с обычным металлоискателем это позволит более уверенно распознавать различные предметы (магнитные, диамагнитные, токопроводящие и токонепроводящие), попадающие в поле действия поисковой катушки или электрода.

Электромузыкальный инструмент

На микросхеме DD1 К561ЛЕ5 (рис. 7) может быть собран электромузыкальный инструмент [Рл 9/97-28]. Генератор импульсов на трех инверторах микросхемы DD1 управляется ключами S1 — Sn.

Генератор прямоугольных импульсов будет работать на частоте, определяемой подключаемыми к общей шине резисторами R1 — Rn (десятки, сотни кОм).

Рис. 7. Схема электромузыкального инструмента на микросхеме.

Ключи-клавиши S1 — Sn и ключ S2 должны замыкаться единовременно (зависимо). Как упростить коммутацию, исключив ключ SA2, следует подумать самостоятельно. Сигнал звуковой частоты через усилительный каскад (транзистор VT1) поступает на телефонный капсюль BF1 или внешний усилитель.

Индикатор электрического поля

Индикатор электрического поля или искатель электропроводки простейшего типа может быть собран по схемам, представленным на рис. 8 и 11 [Рл 9/98-16].

Входы неиспользуемых инверторов /ШОГ7-микросхем необходимо соединить с общим проводом или шиной питания (рис. 8). При приближении индикатора к сетевому проводу в первой схеме вырабатываются звуковые сигналы, воспроизводимые пьезокерамическим излучателем, во второй схеме устройство реагирует на переменное электрическое поле звуковыми сигналами.

Рис. 8. Схема искателя электропроводки.

Рис. 11. Схема индикатора электрического поля.

Фотореле, термореле

Фото- или термореле может быть выполнено по схеме, приведенной в книге Л.Д. Пономарева и А.Н. Евсеева (рис. 9). Устройство содержит регулируемый резистивный делитель напряжения, состоящий из резистора-датчика R1 и потенциометра R2.

К средней точке этого делителя подключен вход триггера Шмитта, составленный из двух логических элементов КМОП-млк-росхемы. К выходу триггера подсоединены эмиттерный повторитель и тиристорный коммутатор постоянного тока. Вместо тиристора может быть использован его транзисторный аналог.

Рис. 9. Схема фотореле, термореле.

При изменении сопротивления датчика триггер Шмитта переключается из одного устойчивого состояния в другое.

Соответственно, выходной сигнал через согласующий эмиттер-ный повторитель подается на управляющий электрод тиристора VS1. Происходит включение тиристора, срабатывает реле К1 или иная нагрузка. Для отключения нагрузки необходимо «сбросить» состояние тиристора, т.е. кратковременно отключить питание.

Такая схема может быть использована для контроля технологических и иных процессов, предупреждения критических и аварийных ситуаций, оповещения персонала о нештатном режиме работы оборудования и т.д.

Для того чтобы устройство самостоятельно включалось и отключалось, вместо тиристора следует установить кремниевый транзистор, рассчитанный на ток нагрузки.

Индикатор перегорания предохранителя

Индикатор перегорания предохранителя Л. Тесленко (рис. 10) содержит генератор импульсов на микросхеме и светодиодный индикатор [Р 11/85-44].

Рис. 10. Схема индикатора перегорания предохранителя.

Когда предохранитель цел, на вход инвертора (вывод 8 микросхемы DD1) подается напряжение высокого уровня, запрещающее работу генератора.

Стоит перегореть предохранителю, вывод 8 через сопротивление нагрузки оказывается присоединенным к общей шине. Генератор начнет работать, при этом светодиод мигает с частотой около 5 Гц.

Для индикации перегорания предохранителя при «оборванной» нагрузке параллельно сопротивлению нагрузки желательно включить резистор величиной около 1 МОм.

Простой металлоискатель

Металлоискатель на микросхеме DD1 K561ЛE5, выполненный по традиционной схеме сравнения частот опорного и поискового генераторов [Р 8/89-65], показан на рис. 12.

Рис. 12. Схема металлоискателя.

Частота опорного генератора определяется емкостью конденсатора С1 и суммарным сопротивлением резисторов R1 и R2.

Частота поискового генератора зависит от параметров LC-контура поисковой катушки (L1, С2). При приближении поисковой катушки к металлическому предмету ее индуктивность меняется, изменяя частоту генерации поискового генератора.

Сигналы с обоих генераторов через развязывающие конденсаторы С4 и С5 поступают на диодный детектор, выполненный по схеме удвоения напряжения.

Нагрузкой детектора является высокоомный телефонный капсюль BF1, и в нем выделяется сигнал разностной частоты. При использовании низкоомного телефонного капсюля может потребоваться дополнительный каскад усиления. Конденсатор С6 шунтирует на общий провод высокочастотные составляющие смешиваемых сигналов.

Поисковая катушка размещена внутри алюминиевого или медного незамкнутого кольца диаметром 200 мм. Диаметр трубки — 8 мм. Для намотки использован провод, например, ПЭЛШО диаметром 0,5 мм.

Количество витков определяется по принципу «сколько войдет». Выводы катушки присоединяют к схеме, а саму трубку соединяют с общей шиной.

Налаживание металлоискателя заключается в установке частоты опорного генератора до появления в телефонном капсюле звуковых сигналов низкой частоты. При этим, возможно, придется подобрать емкость конденсатора С1 или С2.

Устройство для рефлексотерапии

Схема прибора — электронного устройства для рефлексотерапии, разработанного И. Скулкиным — показана на рис. 13 [Рл 2/97-26]. Узел поиска биологически активных точек (БАТ) содержит усилитель на составном транзисторе VT1 — VT3 и генератор импульсов на микросхеме DD1.

Рис. 13. Схема прибора для рефлексотерапии.

Поисковый (активный) электрод (А) представляет собой закругленную иглу диаметром 1 мм. Пассивный электрод (П) состоит из отрезка телескопической антенны.

При поиске БАТ на теле человека этот электрод зажимают в руке. Когда поисковый электрод попадает на БАТ, сопротивление участка кожи резко уменьшается, а устройство реагирует на это включением светодиода.

Полярность напряжения, прикладываемого к биологически активной точке, можно изменять переключателем SA1, а переключатель SA2 переводит устройство из режима поиска БАТ в режим воздействия на них. Частоту и ток воздействия задают потенциометры R2 и R4, соответственно.

Для проверки готовности прибора к работе следует в режиме «Поиск» (SA2) установить максимальный ток воздействия и замкнуть электроды. При этом должен загореться светодиод HL1.

Электронный телеграфный ключ

Электронный телеграфный ключ на одной микросхеме K561J1E5 (рис. 14) выполнен по традиционной для таких ключей схеме [Рл KB и УКВ 1/96-23]. Релаксационный генератор собран на логических элементах с разными RC-цепями, ответственными за формирование посылок тире и точек.

Рис. 14. Схема электронного телеграфного ключа.

При нажатии на телеграфный ключ (замыкании зарядной цепи) заряжается группа конденсаторов С1 — СЗ (тире) или С2, СЗ (точка). Когда напряжение на входе логического элемента DD1.1 превысит определенный пороговый уровень, произойдет его переключение, и на выходе установится значение логического нуля.

Процесс заряда конденсаторов прервется, и они начнут разряжаться через сопротивления R2 и R3. При снижении напряжения на конденсаторах ниже определенного значения первый логический элемент вновь переключится, и процесс зарядки/разрядки конденсаторов повторится.

Этот процесс будет продолжаться до тех пор, пока замкнута контактная группа телеграфного манипулятора. Длительность точек и тире определяется постоянными времени зарядных и разрядных цепей (RC). Конденсаторы С1 — СЗ должны иметь малые токи утечки.

Для звуковой индикации генерируемых телеграфных сигналов предназначен генератор, выполненный на третьем и четвертом элементах микросхемы.

Генератор нагружен на пье-зокерамический излучатель типа ЗП-19. При использовании индуктивного излучателя (телефонного капсюля) последовательно с ним необходимо включить разделительный конденсатор емкостью более 0,1 мкФ.

Одновременно со звуковой, в схему введена световая индикация на светодиоде НИ (АЛ307), что позволяет визуально контролировать наличие телеграфных посылок. Для коммутации цепей передающего устройства использован буферный каскад на транзисторе VT1 (КТ315), нагруженный на реле.

Как и для других простейших телеграфных ключей, использующих подобный способ формирования точек и тире, данной конструкции присущи те же недостатки: необходимость подстройки соотношения продолжительности точек/тире сопротивлением R1 при изменении скорости передачи.

Механическая часть манипулятора может быть изготовлена из отрезка ножовочного полотна с примыкающими к нему контактными группами. В качестве таких контактов можно воспользоваться контактами разобранного крупногабаритного реле.

Многоголосый имитатор звуков

«Многоголосый» имитатор звуков, описанный М. Холодовым (рис. 15), содержит два последовательно включенных и управляемых генератора [Р 7/87-34]. Один из них работает на частоте 1...3 Гц, второй вырабатывает колебания частотой 0,2...2 кГц.

Если в цепь управления (клеммы XS1 и XS2) подключить рези-стивно-емкостной датчик, то на выходе устройства можно получить различные звуковые эффекты, разнообразие проявления которых ограничено только фантазией экспериментатора.

Если ко входу имитатора подключить переменное сопротивление 100 кОм и вращать его ручку, на выходе устройства звук будет напоминать трели соловья, затем щебетание воробья, кряканье утки, кваканье лягушки...

Устройство собрано на микросхеме К561ЛА7 (элементы И-НЕ). Имитатор при желании можно выполнить и на элементах ИЛИ-НЕ (К561ЛЕ5). Для этого потребуется самостоятельная переработка схемы.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год.

Телеграфный ключ в эпоху сотовой связи, спутникового телевидения, Интернета и цифровых видов связи?! А почему бы и нет. Давайте не будем думать о чрезвычайных ситуациях, когда все это перестанет функционировать. Очень хочется верить, что человечество сможет избежать глобальных катаклизмов, когда телеграф может оказаться единственным доступным средством дальней связи.

Возьмем другой пример. Что лучше - речной круиз на комфортабельном лайнере или рыбалка с резиновой лодки, уха у костра и ночевка в палатке. Во всем есть свои прелести и одно отнюдь не исключает другого. Также, имея возможность с комфортом передвигаться в автомобиле, мы иногда предпочитаем спокойную прогулку пешком.

Гонки на автомобилях не заменили соревнований по бегу. Человеку важно знать, что его возможности безграничны, что он может очень многое благодаря своему опыту, умению, тренировке. А умение передавать и принимать на слух азбуку Морзе можно, наверное, сравнить с игрой на гитаре или бальными танцами. Не каждый может, но хотелось бы...

Это небольшое вступление, теперь ближе к делу. Решил я вспомнить телеграфную азбуку, которую изучал много лет назад. С тренировкой в приеме сейчас нет вопросов - для этой цели есть компьютерные программы, а вот для передачи нужен реальный телеграфный ключ. Быстрее и проще освоить работу на автоматическом ключе, освоение классического ключа требует длительных тренировок под руководством опытного наставника.

Собственно манипулятор автоматического телеграфного ключа, если позволяют средства и (или) нет навыков точных слесарных работ, лучше приобрести готовый. Можно без проблем заказать прямо из Америки на фирме Виброплекс Даже с учетом стоимости пересылки обойдется дешевле, чем покупать в Москве.

А вот электронику можно сделать своими руками. Есть множество конструкций автоматических телеграфных ключей, начиная от простых на микросхемах 155 серии, популярных в 70-80 годы прошлого века до «супернавороченных» телеграфных процессоров на микроконтроллерах. Изобретать тут уже нечего, вопрос в том, что выбрать. В результате длительных поисков в Интернет и печатных изданиях, я пришел к выводу, что наиболее подходящим, как для обучения, так и для работы в эфире является «Ямбический ключ с памятью», разработанный Александром Клюихиным RU3GA . Адрес странички с авторским описанием ключа http://ra3ggi.qrz.ru/UZLY/key.shtml .

Сразу чувствуется, что программист, схемотехник и пользователь – одно лицо. Только нужные функции, никаких рекламных «наворотов», все удобно и ничего лишнего. Регулировка скорости осуществляется переменным резистором, питание от батареи 3...5 В, причем выключатель не требуется, а работоспособность сохраняется до 1,5...2 В. Это очень удобно, меньше лишних проводов на столе и ключ постоянно готов к работе. В процессе работы он потребляет около 1 МА, а в ждущем режиме потребляемый ток практически равен нулю, так что батареи хватит надолго. Кроме того – отключаемый самоконтроль, память элемента знака, четыре ячейки памяти по 30 букв и некоторые другие, очень полезные функции.

Исходный текст программы автор не выложил в свободном доступе, но он и не нужен. Все равно лучше не сделать! Я только добавил в схему “на всякий случай” несколько блокировочных конденсаторов и разработал свой вариант печатной платы. На плате размером 52x54 мм размещены все элементы, кроме батареи питания. Для питания я использовал два широко распространенных элемента типоразмера AA. Контроллер PIC16F628A в DIP корпусе, все резисторы и конденсаторы в корпусах для поверхностного монтажа 1206 или 0805. Переменный резистор R8 регулятора скорости передачи от аудио плеера, разъемы для кабеля подключения к трансиверу и к манипуляторам 3,5 мм аудио. Громкость сигнала самоконтроля можно регулировать подбором номинала R10.

Переключатель SA1, которым можно изменять соотношение длительности точек, тире и пауз работает в двоичном коде (его марка неизвестна). Вместо него с небольшой коррекцией платы можно использовать DIP переключатели или не ставить его вообще. В этом случае соотношение длительности точка-пауза-тире будет стандартное 1-1-3. При коде «1» (соединен с землей вывод RA2 контроллера) это соотношение будет 1-1-3,5; при «2» – 1-1-4; при «3» (соединены с землей RA2 и RA3) – 1-1-4,5; при «4» – 0,75-1,25-3. Другие кодовые комбинации не используются. Резисторы R2…R4 должны быть установлены даже при отсутствии SA1.

Кнопки SB1…SB4 выведены на лицевую панель, они необходимы для оперативного доступа к ячейкам памяти. SB5 – это кнопка сброса, выводить ее на лицевую панель не нужно, просто в корпусе сверлится отверстие, через которое ее можно нажать, например, спичкой. Автор ввел эту кнопку на случай зависания контроллера для возможности его перезапуска без отключения батареи питания. За несколько месяцев эксплуатации телеграфный ключ у меня ни разу не зависал, но потенциально такую возможность исключить нельзя.

Разъем X1 – выход для подключения к трансиверу, к X2 подключается манипулятор, а к X3, при необходимости, можно подключить классический телеграфный ключ. Разводка платы сделана с учетом того, что манипулятор можно подключить как к этому ключу, так и непосредственно к моему трансиверу FT-817ND.

Прежде, чем изготавливать плату, убедитесь, что разъемы, кнопки, пьезоизлучатель и другие элементы вписываются в нее, ведь гораздо проще скорректировать конфигурацию дорожек, чем «курочить» уже вытравленную плату. Плата и батареи питания помещаются в корпус, спаянный из фольгированного гетинакса. Фольга выполняет роль экрана – надо учитывать, что ключ может эксплуатироваться в условиях сильных электромагнитных полей от передатчика.

Описание работы с ключом я дословно цитирую с сайта RU3GA.

Работа с ключом

Запись в ячейку памяти.
Нажимаем на нужную кнопку памяти и удерживаем её в течение 2 сек. Устройство передаст «WR» и перейдет в режим ожидания ввода буквы. При записи паузы между буквами распознаются автоматически. Для установки паузы между словами нужно сделать паузу в передаче на 2 сек, при этом ключ передаст «R» – это значит, что он понял раздел между словами и переходит в режим ожидания дальнейшего ввода. Он ждет, пока вы не начнете вводить следующее слово. Так что в паузах между словами можно сходить выпить кофе и потом с новыми силами продолжить запись. За три буквы до окончания памяти ячейки тон передачи меняется – это сигнал к тому, что пора заканчивать запись. Окончание записи – нажатие на любую кнопку.

Исправление ошибок при записи.
Если был введен ошибочный символ, даем серию точек больше шести. Ключ передаст «R», это означает, что он перешел в режим коррекции, далее он передает «LAST», затем последнюю правильно введенную букву и переходит в режим ожидания ввода текста. Если ошибка была на первой букве, то ключ передаст «LAST NO».
Пример: надо ввести в память «CQ DE RU3GA». При вводе получилось «CQ DI»… Даем серию точек и ждем, ключ передает «R», затем «LAST D» и переходит в режим ожидания – вводим дальше «E RU3GA» и нажимаем на любую кнопку для выхода из режима записи. Можно править не только последнюю букву, но и все предыдущие.
Пример: надо ввести в память «CQ DE RU3GA». При вводе получилось «CQ NI»… Даем серию точек и ждем, ключ передает «R», затем «LAST N» и переходит в режим ожидания. Даем еще серию точек – ключ передает «R», затем «LAST Q» и переходит в режим ожидания. Вводим «DE RU3GA» и нажимаем на любую кнопку для выхода из режима записи.

Воспроизведение из ячейки памяти – короткое нажатие на соответствующую кнопку ячейки.

Остановка воспроизведения из памяти – нажатие на любой контакт манипулятора или «клоподав».

Отключение/включение самопрослушивания – нажимаем кнопку SB1, затем, не отпуская ее, нажимаем кнопку SB2 и удерживаем их около 4 сек. Ключ передаст «OFF» и отключит самопрослушивание. Для включения повторяем те же действия – ключ передаст «ON» и включит звук. Эта опция «запоминается» – при повторном включении останется нужный режим.

Включение режима «настройки РА» – нажимаем SB1, затем SB3 и удерживаем их в течение 4 сек. Отключение – нажатие на манипулятор, «клоподав» или любую кнопку.

Реверс манипулятора – нажатие SB1, затем SB4 и удержание их в течение 4 сек. Ключ передаст «REV» и сменит раскладку манипулятора на противоположную. Эта опция запоминается и при повторном включении будет нужная вам раскладка точек-тире в манипуляторе.