Часто возникающие проблемы CDI двигателя. Дизельный двигатель CDI: основные характеристики немецкого мотора Что такое зажигание cdi

Практически все карбюраторные двигатели квадроциклов и мотоциклов традиционно оснащаются системой зажигания CDI (Capacitor Discharge Ignition). В этой системе энергия накапливается в конденсаторе и в нужный момент он разряжается через первичную обмотку катушки зажигания, которая является повышающим трансформатором. Во вторичной обмотке наводится высокое напряжение, которое пробивает зазор между электродами свечи образуя электрическую дугу, которая воспламеняет смесь бензина и воздуха.


Для синхронизации работы зажигания используется индукционный датчик положения коленвала – ДПК, представляющий из себя катушку, намотанную на сердечнике из постоянного магнита:



Меткой служит прилив на железном корпусе ротора генератора (в народе его называют маховиком):



Когда прилив проносится мимо сердечника датчика, он изменяет магнитный поток через катушку, тем самым индуцируя напряжение на выводах этой катушки. Форма сигнала получается такая:



Т.е. два импульса разной полярности. Практически на всех двигателях полярность включения датчика такова, что первым следует положительный импульс, соответствующий началу прилива, а вторым отрицательный - конец прилива. Для нормальной работы двигателя воспламенение должно происходить немного раньше верхней мертвой точки - ВМТ, чтобы максимум давления продуктов горения достигал как раз в ВМТ. Это «немного раньше» принято называть Углом Опережения Зажигания – УОЗ и измерять в градусах, которые осталось докрутить коленвалу до ВМТ. При старте двигателя УОЗ должен быть минимальным, а с повышением оборотов он должен увеличиваться. Как было сказано выше, ДПК выдает два импульса синхронизации – начало прилива и конец прилива. В простых (не микропроцессорных) системах CDI конец прилива соответствует предустановленному УОЗ – по этому сигналу происходит воспламенение при старте двигателя и на холостых оборотах. Начало прилива соответствует УОЗ на высоких оборотах. Чаще всего в таких системах конец прилива выставлен на 10-15 градусов опережения, а «длинна» прилива от 20 до 30 градусов. При этом продвинутые блоки CDI плавно меняют момент искрообразования от «конца прилива» до «начала прилива» в промежутке от 2000 rpm до 4000 rpm , а дешевые с повышением оборотов просто перескакивают на начало прилива. В микропроцессорных системах CDI длинна прилива намного больше – от 40 до 70 градусов, при этом конец его как и прежде соответствует предустановленному УОЗ, а начало является точкой отсчета для микропроцессора, который в зависимости от оборотов выставляет нужный УОЗ.
В разных двигателях «длинна» прилива разная, поэтому блоки CDI даже с одинаковыми разъемами чаще всего не взаимозаменяемы!
Стоить еще добавить, что для питание блоков CDI необходимо высокое напряжение, т.к. время накопления энергии в конденсаторе ограничено емкость его берется маленькой а заряжается он высоким напряжением – несколько сотен вольт. Для этого в простых системах в генераторе имеется дополнительная высоковольтная обмотка. Мощность этой обмотки небольшая, поэтому искра в таких системах при старте двигателя слабая, что затрудняет зимнюю эксплуатацию. Чтобы избежать этой проблемы используют так называемые DC-CDI , в них конденсатор заряжается от повышающего преобразователя напряжения питающегося от аккумулятора. В таких системах мощность искры не зависит от оборотов и пуск двигателя в холодное время намного легче.

Теперь о недостатках зажигания CDI . Самым главным недостатком, который невозможно устранить за небольшие деньги, является очень «слабая» «короткая» искра. Невозможно построить мощную систему CDI без значительных материальных затрат.
Например CDI для автомобильных двигателей отечественной разработки стоят больше тысячи долларов, а импорные, которые устанавливаются на гоночные автомобили с высокооборотистыми моторами могут стоить не одну тысячу.
Чем больше объем цилиндра в двигателе, тем сильнее сказывается недостаток энергии искры. Выражается это в неполном сгорании топлива, потери мощности, очень большом расходе топлива. Когда CDI только появилось его ставили на мопеды, мотоциклы, чаще всего объем двигателя которых был 50 кубиков. Такой маленький объем топливовоздушной смеси легко успевал сгореть от слабенькой искры CDI . С повышением кубатуры стало ясно, что надо что-то менять и появились DC-CDI . Но кубатура продолжала расти а вместе с ней росло и кол-во бензина, вылетающего в буквальном смысле в трубу. Придумали даже системы, дожигающие бензин в выхлопной трубе! :о) Я не понимаю, чем думали все это время производители мототехники, ведь в то-же время на автомобилях уже давно использовалась другая система зажигания, с накоплением энергии в катушке индуктивности, которая позволяла за те же деньги получить мощность искры в сотни раз больше и решить все проблемы с зажиганием. Конечно, сейчас на инжекторные двигатели современной мототехники уже не ставят CDI . Но это капля в море! На сегодняшний день картина такова, что 90 процентов мотоциклов и квадроциклов продолжает жрать бензин и выплевывать его в атмосферу.
Казалось бы все очень просто – надо поменять на всех зажигание на более совершенное, но есть несколько НО! Если это CDI то получается очень дорого. Если же это IDI как в инжекторных системах, то для его работы необходимо менять ротор генератора, что получается еще дороже. (для корректного управления режимами работы катушки в системе IDI не достаточно одной метки на маховике, используется несколько десятков коротких меток – по сути зубчатое колесо с синхронизацией по пропущенному зубу) Все это так, если решать задачу в лоб. Но если немножко подумать, применить мощный микропроцессор и проявить изобретательность, то окажется, что не все так уж плохо!

ОТ ВОЛЬТ ДО КИЛОВОЛЬТ
И «чайник» знает: топливо в цилиндре поджигается электрической дугой в 20-40 кВ, пробегающей между электродами свечи. Но откуда берется высоковольтный разряд? В первую голову, за него отвечает знакомое всем, хотя бы по названию, устройство -катушка зажигания. Конечно, в составе системы зажигания она не одинока, но, познав принцип ее работы, без труда разберетесь в назначении и действии остальных элементов. Вспомните, как на уроке школьной физики изучали эффект электромагнитной индукции. В проволочной катушке перемещали магнит, и присоединенная к ее выводам лампочка начинала светиться. Сменив лампу на батарейку, обычный стальной стержень, помещенный внутрь катушки, превращали в магнит. Так вот, оба эти процесса используются для получения искры на свече зажигания. Если через первичную обмотку катушки зажигания пропустить ток, сердечник, на котором она намотана, намагнитится. Стоит отключить питание - и исчезающее магнитное поле сердечника индуцирует напряжение во вторичной обмотке катушки. Витков провода в ней в сотни раз больше, чем в первичной, значит, и на «выходе» уже не десятки, а тысячи вольт.
Откуда «берет» напряжение генератор? Уверен, теперь поймете с ходу: на роторе (маховике) укреплены постоянные магниты, сам маховик установлен на цапфу ко-ленвала и вращается вместе с ней. Под ротором на неподвижном основании (статоре) на стальных сердечниках смонтированы катушки систем освещения и зажигания. Достаточно топнуть по кику - магниты двинутся относительно катушек, периодически намагничивая сердечники и... да будет свет и искра! По сути, это простейший из возможных способов получения электричества, он удобен еще и тем, что не требует аккумуляторной батареи (АКБ).

НЕ БЕЗ ИЗЬЯНА
Система зажигания без дополнительного источника тока называется Capacitor Discharge Ignition (CDI). В переводе: зажигание, использующее разряд конденсатора. Как он формируется? На статоре генератора имеются две катушки (помимо питающих осветительную сеть). Одна, когда мимо нее пробегает магнит ротора, вырабатывает электрический ток (около 160 В), заряжающий конденсатор. Вторая - управляющая, она играет роль датчика, запускающего искрообразование. Стоит магниту пройти мимо ее сердечника, в обмотке появляется электрический импульс, «отпира ющий» тиристор блока управления. Он сродни обычному выключателю, только без контактов - на их месте управляемый электрическим током полупроводник. Накопившийся в емкости заряд «выстреливается» в первичную обмотку катушки зажигания. Та, благодаря эффекту электромагнитной индукции, возбуждает ток во вторичной обмотке, и свеча получает положенные ей 20-40 кВ.
Надо отметить, что по пути от заряжающей катушки к конденсатору ток выпрямляется диодом. Маховичный генератор вырабатывает переменное напряжение: раз мимо катушки поочередно проходят то «север», то «юг» магнита, то и ток синхронно им меняет свою полярность. Конденсатор же накапливает заряд только при подаче постоянного напряжения.
Описанная система гениально проста и достаточно надежна. Минуло четверть века со времени ее возникновения, а она и поныне используется в технике, кроссовых мотоциклах, гидроциклах, снегоходах, ATV, мопедах и легких скутерах.
Однако «гений» не без изъяна. Напряжение на конденсаторе (значит, и «вторичный» разряд) заметно падает при низкой скорости прохождения магнита мимо заряжающей катушки. При малых оборотах ко-ленвала появляется нестабильность искро-образования и, как следствие, «сбивчивость» в работе мотора.

ЛОМАННЫЙ УГОЛ
Чтобы от нее избавиться, на многих современных машинах используется модифицированная система CDI. Она называется DC-CDI, что означает: зажигание, использующее разряд конденсатора и работающее от постоянного тока (Direct Current). В этой системе емкость заряжается током, поступающим не от собственной катушки генератора, а от АКБ. Это позволяет стабилизировать напряжение питания и при любых оборотах коленвала поддерживать искру одинаково мощной.
Такие системы сложнее CDI и, соответственно, подороже. Дело в том, что напряжение, которое выдает бортовая сеть машины (12-14 В), слабо для полноценного заряда конденсатора. Поэтому напряжение поднимает особый электронный модуль - инвертор.
В двух словах о принципе его действия. Постоянный ток преобразуется в переменный, затем трансформируется (увеличивается до 300 В), опять выпрямляется и только тогда поступает к конденсатору. Более высокое «первичное» напряжение позволило уменьшить в размерах катушку зажигания. Поясню: чем выше напряжение в первичной обмотке, тем меньшим сердечником (в сечении) можно оснащать катушку. Она умещается даже в свечном колпачке, что, кстати сказать, позволяет исключить из цепи зажигания весьма проблемный элемент - высоковольтный провод.

Еще более совершенна система DC-CDI с электронной регулировкой опережения зажигания относительно оборотов коленвала - она обеспечивает прирост мощности двигателя процентов на десять. Вот почему. Есть постулат: мотор выдает максимум «лошадок», если пик давления продуктов горения совпадет с положением поршня, едва-едва миновавшего ВМТ. Но по мере роста оборотов коленвала время, за которое должна сгореть смесь, становится все короче и короче. Сама же смесь не взрывается моментально, а горит со стабильной скоростью - 30-40 м/с. Поэтому при высоких оборотах коленвала воспламенение должно происходить не в одной

фиксированной точке (заданной начальным углом опережения зажигания), а несколько раньше. Для моторов с «чистым» CDI или DC-CDI разработчики опытным путем находят тот угол, при котором двигатель достаточно устойчиво работает во всем диапазоне оборотов. В давние времена характеристику опережения зажигания подгоняли к оптимуму механическим способом - центробежным регулятором. Но он ненадежен: то грузики заклинит, то пружины растянутся... Электроника несравнимо совершеннее (разбалтываться нечему), а процесс регулировки протекает так. В составе блока управления есть микросхема, распознающая обороты ко-ленвала по форме сигнала, поступающего с управляющего датчика (форма зависит от скорости перемещения магнита относительно катушки). Далее микросхема выбирает оптимальный угол опережения зажигания, соответствующий данным оборотам, и в нужный момент открывает тиристор. Вы уже знаете, это соответствует моменту образования искры на электродах свечи.
Во второй половине прошлого века описанные системы зажигания почти монопольно «захватили» моторы. Но совершенствование процессоров (иначе говоря, микрокомпьютеров) ознаменовано внедрением в машины еще более «разумных» зажиганий цифрового типа. О них постараюсь рассказать уже вскоре, сейчас же остановлю ваше внимание на диагностике отказов элементов «конденсаторных» схем.

ЧАЩЕ - ПОЛЬЗА, ПОРОЮ - ВРЕД
Сперва о системе блокировки зажигания. Ее задача - «запретить» пуск мотора в ситуации, когда движение грозит травмой пилоту. К примеру: мотоцикл стоит на боковой подставке с включенной передачей. Забыв об этом, водитель нажимает на кнопку стартера. Следует неожиданный бросок экипажа вперед и... результат ясен. Другой случай: едете, а боковая подставка теряет возвратную пружину и открывается. От последствий таких ситуаций пилота обычно «страхуют» датчики положения


подставки и нейтрали. Если техника «к полету» не готова, они не дадут сработать ни стартеру, ни зажиганию. Как правило, еще один датчик внедрен под рычаг сцепления - он разрешает завести мотор при включенной передаче, но только тогда, когда рычаг выжат, а подставка поднята. Эти устройства неоспоримо повышают безопасность пилота, но вместе с тем снижают общую надежность электрических цепей зажигания. Проявились сбои в работе мотора? Обязательно проверьте состояние АКБ (12-13 В) и обратите внимание на состояние описанных датчиков. Судите сами: сгоряча вынесли ошибочный приговор блоку управления зажиганием и купили новый (а стоит он от $300 до 800!), а затем выяснится, что отказ сидел в копеечном концевом выключателе или разъеме проводки. Элементы зажигания проверяйте так, как показано на фото.





Впервые конструкция двигателя, функционирующего на основании принципа самовоспламенения топлива под действием разогретого при сжатии воздуха, была запатентована Рудольфом Дизелем в 1892 году. Дебютные двигатели были приспособлены для работы на растительных маслах и легких продуктах нефти, а в 1898 году они уже могли работать на сырой нефти. Производители пассажирских автомобилей обратили внимание на дизельные двигатели только в 70-е годы 20 века, когда значительно выросли цены на топливо.

Преимущества дизельного двигателя

С тех времен дизельные двигатели значительно усовершенствовались и удачно используются в различных комплектациях автомобилей. Многие автолюбители предпочитают «дизели» обычным бензиновым двигателям, поскольку первые более экономичны (расходуют до 30 % меньше топлива, которое в разы дешевле различных видов бензинов) и обладают более высоким крутящим моментом. И это даже при том, что автомобили, оснащаемые «дизелями» имеют гораздо большую стоимость. Да и сами двигатели обладают увеличенным весом и размером за счет того, что призваны выдерживать колоссальные нагрузки.

Характеристики дизельных двигателей TDI и CDI

На сегодняшний момент известна масса видов дизельных двигателей. Однако если вы намерены сделать выбор между такими агрегатами, как TDI и CDI, заранее следует сравнить их характеристики, чтобы принять правильное решение и получить в итоге именно то, что нужно.

Двигатель TDI (Turbocharged Direct Injection) был разработан немецкой компанией Volkswagen. Его основной отличительной чертой, помимо непосредственного впрыска, является наличие турбонагнетателя с изменяемой геометрией турбин. Система в целом гарантирует оптимизированное наполнение цилиндров, высокоэффективное сжигание топлива, экономичность и экологическую безопасность. Турбонаддув TDI-мотора координирует энергию потока отработавших газов и тем самым обеспечивает необходимое давление воздуха в обширном диапазоне частоты вращения двигателя.

Такие моторы считаются в достаточной мере надежными и непритязательными в использовании. При этом они обладают одной неприятной особенностью. Дело в том, что турбина TDI при высокой температуре эксплуатации (а она у потока отработавших газов составляет до 1000°C) и внушительной частоте вращения (примерно 200 тыс. оборотов в минуту) имеет небольшой ресурс, всего около 150 тыс. км пробега автомобиля. А вот сам двигатель может выдержать и до 1 млн. км.

«Дизель» CDI (Common Rail Diesel Injection) – результат работы концерна Mercedes-Benz. В нем впервые была применена инновационная система впрыска Common Rail. Она позволила значительно уменьшить расход топлива, а мощность была увеличена практически на 40 %. Стоит отметить, что CDI-моторы требуют значительных затрат в сервисном обслуживании, однако при достигнутом низком уровне износа деталей ремонт необходим гораздо реже. Казалось бы, система совершенна, но этот двигатель может быть чувствителен к некачественному топливу.

Впрочем, современные дизельные двигатели на самом деле мало чем отличаются, за исключением некоторых незначительных моментов. Так что однозначно ответить на вопрос, какой же в действительности двигатель лучше, нельзя. Необходимо руководствоваться собственными потребностями, вкусами и предпочтениями. Но сам по себе выбор дизельного двигателя – это уже однозначно правильное решение.

Система электронного зажигания CDI не так сложна и легко диагностируема, если понимать, как она работает. Зажигание CDI (Capacitor Discharge Ignition) состоит из нескольких основных компонентов (на схеме):

C - заряжаемый конденсатор;
D - выпрямительный диод;
SCR - коммутирующий тиристор;
T - катушка зажигания.

Вариаций этой схемы много, давайте рассмотрим принцип работы. Конденсатор C заряжается черед выпрямительный диод D, а потом разряжается через тиристор SCR на повышающий трансформатор T. На выходе транформатора мы получаем напряжение в несколько килоВольт, благодаря которым происходит пробой воздушного пространства между электродами в свече зажигания. Это всё! Вот так просто!

Но заставить работать весь механизм на двигателе гораздо сложнее. Классической схемой зажигания CDI является двухкатушечная конструкция, впервые примененная на мопедах "Бабетта" . Одна катушка является заряжающей (высоковольтная), вторая (низковольтная) - датчик управления тиристором. Обе катушки одним проводом подключаются на массу. Выход заряжающей катушки мы подключаем на вход 1, а датчик на вход 2. К выходу 3 подключается свеча зажигания.

Собранная на современных компонентах схема начинает выдавать искру при достижении на входе 1 примерно 80 Вольт, оптимальным напряжением считается около 250 Вольт.

Вариации схемы CDI

Начнем с датчика. В качестве датчика может использоваться катушка, датчик Холла, и даже оптрон. В схеме CDI скутеров Сузуки тиристор открывается второй полуволной напряжения, снимаемой с заряжающей катушки - первой полуволной через диод заряжается конденсатор, второй полуволной открывается тиристор. Замечательная схема с минимумом компонентов.

Если двигатель имел зажигание с прерывателем, то у него нет катушки, которую можно было бы использовать, как заряжающую. Очень часто используют повышающий трансформатор, который позволяет поднять напряжение низковольтной катушки до необходимого.

На авиамодельных двигателях экономится каждый грамм веса и каждый миллиметр габарита, поэтому у них нет магнита-ротора. Иногда прямо на вал двигателся клеится маленький магнитик, рядом с которым стоит датчик Холла. Конденсатор заряжается через преобразователь напряжения, который из 3-9В от батарейки делает 250В. Схему преобразователя напряжения в этой статье подробно рассматривать не будем, скажу только, что самое большое распространение получили схемы на основе автогенераторов, ШИМ-контроллеров и инверторного типа.

Если вместо диода D использовать диодный мост, то мы сможем снимать обе полуволны напряжения с катушки. Следовательно можно повысить емкость конденсатора С, что усилит искру.

Настройка УОЗ

Смысл настройки зажигания - получить искру в нужный момент. Если катушки на статоре сделаны неподвижными, то единственный путь - повернуть магнит-ротор относительно цапфы коленвала в нужное положение. Если ротор посажен на шпонку, то придется перепиливать шпоночный паз.

Если у вас используется датчик, то необходимо подобрать его оптимальное положение.

Угол опережения зажигания (УОЗ) выставляется согласно справочным данным по двигателю. Есть несколько способов, которые позволяют отпределить момент искрообразования, но я их сознательно рассматривать не буду. Пользуясь "колхозными" методами я не раз допускал ошибку. Самый правильный, точный и надежный в этом деле инструмент - автомобильный стробоскоп. Поворачиваем ротор в положение, в котором должно происходить искрообразование, ставим метки на роторе и статоре. Включаем стробоскоп, у него есть провод с зажимом, который мы вешаем на высоковольтный провод катушки зажигания. Запускаем двигатель, подсвечиваем метки стробоскопом. Меняя положение датчика добиваемся совпадения меток.

Первый дизель Mercedes с системой впрыска типа Common Rail был представлен в конце 1997 года. Это был мотор 2.1 CDI с обозначением ОМ 611 мощностью от 82 до 204 л.с. Он дал начало новому семейству двигателей, применявшемуся, в том числе в коммерческих автомобилях и легких грузовиках (ОМ 646 и ОМ 651).

В зависимости от назначения, дизель получал различное коммерческое обозначение. Например, 180 CDI, 200 CDI, 220 CDI и 250 CDI. Существуют так же модификации BlueTEC и BlueEFFICIENCY.

Изначально этот двигатель имел рабочий объем 2151 куб. см и мощность 102 или 125 л.с. В конструкции агрегата использовалась система впрыска Bosch с электромагнитными форсунками Common Rail первого поколения, система рециркуляции отработавших газов и турбонаддув. Привод ГРМ цепного типа, что снижает затраты на техническое обслуживание.

В 1999 году появились версии мощностью 115 и 143 л.с, а три года спустя - новое поколение 2.1 CDI с обозначением ОМ 646 и отдачей 122 и 150 л.с. Позже были представлены и остальные модификации. Двигатель получил систему Common Rail нового поколения, электрический клапан EGR и генератор с жидкостным охлаждением. ОМ 646 дополнительно оснастили балансирными валами и электрическим ТНВД (вместо механического).

Последнее поколение моторов 2.1 CDI было названо ОМ 651 и дебютировало в 2008 году. Это практически другой двигатель, в котором изменен диаметр цилиндра (уменьшен до 83 мм) и ход поршня (увеличен до 99 мм). Рабочий объем новой версии агрегата сократился до 2143 см3. Степень сжатия была снижена до 16,2:1. Блок двигателя, как и прежде, изготовлен из чугуна, а головка – из легких сплавов.

Новый турбодизель очень продвинутый, а значит и более дорогой в обслуживании и ремонте. Он имеет два турбонагнетателя (в версиях более 143 л.с.), которые создают давление наддува 2 бар. Однорядная цепь ГРМ находится сзади двигателя – со стороны коробки. Балансировочный вал приводится в движение зубчатыми шестернями.

В более мощных модификациях применены пьезоэлектрические форсунки фирмы Delphi. Давление впрыска достигает 2000 бар. Для сравнения, давление впрыска ОМ 611 – 1350 бар. Система впрыска Common Rail обеспечивает мягкую работу двигателя и низкий расход топлива. Экономичность, конечно же, зависит от степени форсировки и веса автомобиля. В случае с Mercedes C-Class средний расход 143-сильной версии составляет около 7 л/100 км. Вопреки общепринятому мнению, система впрыска не является проблемной и слишком дорогой в ремонте.

Механики подчеркивают, что на вторичном рынке большинство дизельных Mercedes имеют гораздо больший пробег, чем показывают счетчики. Отсюда и неприятности, с которыми сталкиваются вторые и последующие владельцы. Турбонагнетатель и двухмассовый маховик редко подводят ранее 150 000 км.

Проблемы появились в последних двигателях ОМ 651. Они связаны с топливными форсунками Delphi (дефектные уже заменены) и утечками охлаждающей жидкости. Затраты на замену форсунок частично компенсировались изготовителем форсунок.

Общие неисправности двигателей 2.1 CDI

Чаще всего владельцы Мерседес с большим пробегом и двигателем 2.1 CDI имеют проблемы с утренним запуском и падением мощности. В обоих случаях причин несколько. Проблемы с запуском, как правило, связаны с падением давления в системе впрыска из-за неисправности насоса, форсунок или клапана высокого давления. Падение мощности может быть вызвано неисправностью системы заслонок во впускном коллекторе.

В автомобилях, оборудованных фильтром твердых частиц (первоначально вообще не использовался, в 2003 году появился в некоторых моделях, а позже стал применяться массово) и передвигающихся только по городу, возникают проблемы с саморегенерацией, а так же происходит разжижение масла топливом.

Проблемы усугубились после появления двигателя серии ОМ 651. Форсунки выходили из строя примерно к 50 000 км. Некоторые источники сообщают, что дефект затронул около 300 000 автомобилей.

Шкив генератора


Шкив генератора имеет муфту свободного хода, которая часто выходит из строя. Неисправность сопровождается шумом, а промедление с заменой может ускорить износ натяжителя ремня. Устранение проблемы не сложное и не слишком дорогое. Шкив стоит менее 60 долларов.

Электромагнитные клапана

Электромагнитные клапаны используются для управления производительностью турбокомпрессора и EGR (старые двигатели 2.1). Когда они отказывают, наблюдается падение мощности. Ремонт быстр и недорог – около 50 долларов.


Форсунки

Симптомы: проблемы с запуском двигателя, неравномерная работа, чрезмерно большой расход топлива. Форсунки можно отремонтировать. Стоимость услуги – около 70 долларов за штуку.


Более серьезные неприятности возникают, когда теряют герметичность уплотнительные шайбы под форсунками. Извлечение форсунок – сложная задача. Они могут прикипеть - понадобится фрезеровка.

Термостат

Симптомы: слишком медленный прогрев двигателя. Термостат может открыться уже при температуре 45 градусов. Внимание! Приобретая данную деталь, всегда используйте каталожный номер – термостат неоднократно модернизировался. Стоимость нового – около 60-70 долларов.


Неисправности двигателей ОМ 651

Форсунки

Вскоре после начала производства нового 2,1-литрового турбодизеля выяснилось, что пьезоэлектрические форсунки Delphi изготовлены с дефектом. Необходима замена.

Утечки охлаждающей жидкости

Бесконтрольные утечки антифриза вскоре могут привести к перегреву двигателя. Виноват в этом насос системы охлаждения. Потекшую помпу необходимо заменить.

Заслонки во впускном коллекторе


Заслонки со временем изнашиваются и разрушаются. Это приводит к заметному падению мощности, а в случае обрыва – к повреждению двигателя. Из-за отсутствия деталей приходится менять весь коллектор, что увеличивает стоимость ремонта до 600 долларов.

В Российских условиях эксплуатации («солярка» плохого качества) топливный фильтр рекомендуется менять через каждые 40 000 км (согласно предписаниям производителя – 60-80 тыс. км). Это позволит продлить срок службы системы впрыска.

Выжигание сажевого фильтра

Процесс саморегенерации не возможен при эксплуатации автомобиля преимущественно на коротких дистанциях. Необходимо периодическое создание благоприятных условий – продолжительные поездки по скоростным шоссе.

Привод ГРМ

В двигателях используется цепной привод ГРМ, не требующий технического обслуживания. Цепь, как правило, не требует замены. Тем не менее, при больших пробегах рекомендуется проверить ее состояние.

Обслуживание

Интервал

каждые 10 000 км

каждые 40 000 км

каждые 60 000 км

каждые 80 000 км

Замена масла *

Замена DPF **

Замена воздушного фильтра

Замена топливного фильтра

Замена приводного ремня

Замена антифриза ***

* Все автомобили с CDI имеют бортовой компьютер, определяющий срок замены масла;

** Производитель не требует периодической замены DPF;

*** Не реже, чем каждые 250 тысяч. км или каждые 15 лет.

Заключение

Двигатель 2.1 CDI не так надежен, как старые моторы, но взамен он дает более высокую отдачу, низкий расход топлива и мягкую работу. Как правило, выходят из строя только навесное и вспомогательное оборудование. Срок службы кривошипно-шатунного механизма весьма значительный.

Технические данные Mercedes 2.1 CDI - часть 1

Модификация

200 CDI

200 CDI

180 CDI

200 CDI

220 CDI

200 CDI

Годы выпуска

1998-2007

1999-2003

с 2010 года

2002-10

1997-2000

2007-09

турбодизель

R4 / 16

турбодизель

R4 / 16

турбодизель

R4 / 16

турбодизель

R4 / 16

турбодизель

R4 / 16

турбодизель

R4 / 16

Рабочий объем

2151/2148

2148

2143

2148

2151

2148

Степень сжатия

19: 1

18: 1

16.2: 1

18: 1

19: 1

17.5 1

Тип ГРМ

DOHC

DOHC

DOHC

DOHC

DOHC

DOHC

Макс. мощность

(кВт / л.с / об. / мин)

75/102/4200

85/115/4200

88/120/2800

90/122/4200

92/125/4200

100/136/3800

Макс. крутящий момент

(Нм / об. / мин)

235/1500

250/1400

300/1400

270/1600

300/1800

270/1600

Тип впрыска

Common Rail

Common Rail

Common Rail

Common Rail

Common Rail

Common Rail

Технические данные Mercedes 2.1 CDI – часть 2

Модификация

200 CDI

220 CDI

200 CDI

220 CDI

220 CDI

250 CDI

Годы выпуска

с 2009 года

1999-2004

с 2010 года

2002-10

2006-09

с 2008 года

Двигатель - тип, количество клапанов

турбодизель

R4 / 16

турбодизель

R4 / 16

турбодизель

R4 / 16

турбодизель

R4 / 16

турбодизель

R4 / 16

турбодизель

R4 / 16

Рабочий объем

2143

2148

2143

2148

2148

2143

Степень сжатия

16.2: 1

18: 1

16.2: 1

18: 1

17.5 1

16.2: 1

Тип ГРМ

DOHC

DOHC

DOHC

DOHC

DOHC

DOHC

Макс. мощность

(кВт / л.с / об. / мин)

100/136/2800

105/143/4200

105/143/3200

110/150/4200

125/170/3800

150/204/4200

Макс. крутящий момент

(Нм / об. / мин)

360/1600

315/1800

350/1200

340/2000

400/2000

500/1600

Тип впрыска

Common Rail

Common Rail

Common Rail

Common Rail

Common Rail

Common Rail

Применение

Mercedes C-Class

Mercedes E

Mercedes S

Mercedes SLK

Mercedes ML

Mercedes Vito, Viano, Sprinter

Mercedes GLK