Где взять достойные двигатели для малой авиации. Энергия будущего: персональная электростанция Микро газотурбинный двигатель

На Российском рынке энергетического оборудования достаточно широко представлены газотурбинные установки малой мощности, выпускаемые на базе авиационных двигателей такими предприятиями, как «Пермский моторостроительный завод», НПО «Сатурн», «Завод им. В.Я. Климова» и др. Топливом в таких установках является керосин, дизельное топливо, природный газ и попутный газ нефтяных месторождений.

Необходимое оборудование размещается в транспортабельных контейнерах, оборудованных всеми необходимыми системами для их нормальной эксплуатации.

На рис.5.4 представлена типовая модульная газотурбинная установка (газотурбинная ТЭЦ), предназначенная для производства электрической и тепловой энергии.

Модульное исполнение газотурбинных ТЭЦ повышает надежность источника электро - и теплоснабжения и сокращает сроки монтажа от нескольких дней до нескольких недель, в зависимости от комплектации и местных условий.

В табл. 5.1 приводится перечень отечественных и зарубежных предприятий и основные технические характеристики, выпускаемых ими газотурбинных установок для выработки электрической и тепловой энергии.

Особое место в ряду выпускаемых ГТУ зарубежными фирмами занимает микротурбинные установки (МТУ) компании Calnetix Power Solutions. В настоящее время компания выпускает установку мощностью 100 кВт модели ТА-100.

Микротурбинная установка изготовлена по блочно-модульному принципу, позволяющему заменять в случае необходимости отдельный узел, а не изделие в целом, и поставляется в полной заводской готовности. Общий вид микротурбинной установки представлен на рис.5.5.

Рис.5.4. Типовая модульная газотурбинная ТЭЦ


Рис.5.5. Общий вид микротурбинной установки ТА-100 RCHP:

1 - дожимной газовый компрессор; 2 - котел утилизатор; 3 - рекуператор; 4 - воздухозаборник турбогенератора; 5 - воздухозаборник системы охлаждения подкапотного пространства; 6 - шкаф силовой электроники; 7 - масляная система; 8 - турбогенератор; 9 - выход силовых кабелей; 10 - топливная система; 11 - подвод газа; 12 - слив теплоносителя из поддона; 13 - выход горячей воды; 14 - вход холодной воды

В состав установки входят: турбогенератор, камера сгорания, рекуператор, система утилизации тепла с котлом-утилизатором (КУ), маслосистема, топливная система, дожимной газовый компрессор, силовая электроника, цифровая система автоматического управления, воздушная система охлаждения подкапотного пространства и силовой электроники, аккумуляторные батареи.

Принцип работы установки следующий. Очищенный атмосферный воздух попадает в воздухозаборник 4, откуда он поступает на вход в компрессор. В компрессоре воздух сжимается и за счёт этого нагревается до температуры 250 °С. После компрессора воздух поступает в специальный газовоздушный теплообменник (рекуператор) 3, где он дополнительно подогревается до температуры 500 °С. Дополнительный подогрев позволяет примерно в 2 раза повысить электрическую эффективность установки. Далее нагретый сжатый воздух перед камерой сгорания смешивается с газообразным топливом высокого давления, и гомогенная газовоздушная смесь поступает в камеру сгорания для горения. Для повышения давления газа используется штатный дожимной компрессор.

Покидая камеру сгорания, нагретые до температуры 926 °С выхлопные газы поступают в турбину 8, где, расширяясь, совершают работу, вращая её, а также расположенные на этом же валу колесо компрессора и высокоскоростной синхронный генератор.

После расширения в турбине выхлопные газы с температурой 648 °С по газоходу попадают в рекуператор 3, где отдают своё тепло сжатому воздуху после компрессора. Температура выхлопных газов после рекуператора снижается до 310 °С.

На выходе из рекуператора стоит байпасная заслонка, которая направляет выхлопные газы либо по байпасному газоходу, либо напрямую в котёл-утилизатор 2. В котле-утилизаторе (газоводяном теплообменнике) выхлопные газы отдают своё тепло сетевой воде, которая нагревается там до требуемой температуры.

В отличие от других производителей, частота вращения ротора практически не зависит от нагрузки и поддерживается на уровне 68000 об/мин. Это позволяет без дополнительных аккумуляторных батарей в один приём принимать до 100 % нагрузки.

Турбогенератор

Турбогенератор является основной и наиболее наукоёмкой и трудоёмкой частью установки. Общий вид турбогенератора в разрезе показан на рис.5.6.

Таблица 5.1

Технические характеристики газотурбинных двигателей

Модель Мощность номинальная, МВт Расход газа на 100%-й нагрузке, кг/ч КПД, % Степень повышения давления Расход рабочего тела через двигатель, кг/с Частота вращения выходного вала генератора, об/мин Температура газов на выходе из двигателя, С° Давление топливного газа, МПа
Аэросила, НПП, ОАО
1А16-100 0,333 94,6
Зоря-Машпроект, НПКГ, ГП
UGT2500(ДО49) 2,85 28,5 16,5 14000/3000 2,5
Ивченко-Прогресс, ГП
ГТП АИ-2500 2,5 769,5 24,2 7,5 20,5 12350/1000 1,08
Д-336-1-4 4,2 26,5 27,5 8200/3000 2,35
Д-336-2-4 4,2 26,5 27,5 8200/3000 2,35
Калужский двигатель (КАДВИ), ОАО
9И56 0,11 3,3 1,45 38000/8000 0,55
9И56М 0,155 4,2 1,48 40000/8000 0,78
ОКА-1 0,155 4,7 1,70 41200/6000 0,85
ОКА-2 0,2 5,0 1,76 43400/6000 1,0
ОКА-3 0,265 5,7 1,93 46000/6000 1,1
Климов, ОАО
ТВ3-117 1,1 25,4 7,88 -/1500 1,2
Мотор Сич, ОАО
ТВ3-137 1,07 5,5 7,63 15000/1000 1,0-1,3
АИ-20 ДМН 2,5 7,48 20,8 12350/1000 1,08
АИ-20-ДМЭ 2,5 7,48 20,8 12350/1000 1,08
ГТЭ-МС-2.5Д 2,5 7,48 20,8 12350/1000 1,08
Пермский моторный завод (ПМЗ), ОАО (УК ПМК)
ГТУ-2.5П 2,7 21,9 5,9 25,6 5500/3000 1,0-1,2
ГТУ-4П 4,3 24,7 7,3 29,8 5500/3000 1,2-1,6
Пролетарский завод, ОАО
ГТГ-1500-2Г 1,5 6,1 11,2 12500/1500 1,2
Самарский научно-технический комплекс им. Н.Д. Кузнецова (СНКТ), ОАО
НК-127 13,6 13000/3000 3,0
Сатурн, НПО, ОАО
ДО49Р 2,85 28,5 2,1-2,5
Окончание таблицы 5.1
Capstone Turbine Corporation
C30 0,01 0,31 0,03-0,35
C65 0,065 16,4 0,49 0,52-0,56
C200 0,19 6,7 0,02-0,52
C200 0,2 6,7 0,52-0,56
Daihatsu Diesel Mfg. Co. Ltd.
DT-4 0,44 2,97 -/1500 1,2-1,6
DT-6 0,66 4,72 -/1500 1,2-1,6
DT-4W 0,88 41.5 5,94 -/1500 1,2-1,6
DT-10 1,1 8,23 -/1500 1,2-1,6
DT-10A 1,3 41,5 8,23 -/1500 1,2-1,6
DT-14 1,5 40,7 10,2 -/1500 1,2-1,6
DT-20 2,2 41,9 14,8 -/1500 1,2-1,6
DT-10W 2,25 40,7 16,47 -/1500 1,2-1,6
DT-10AW 2,6 41,5 16,47 -/1500 1,2-1,6
DT-14W 40,7 20,43 -/1500 1,2-1,6
DT-20W 4,4 41,9 29,79 -/1500 1,2-1,6
Distributed Energy Systems Corp.
MT-100 0,1 4,5 0,79 0,6-0,95
Mitsui Engineering & Shipbuilding Co. Ltd.
SB5 1,1 25,5 25600/3000 1,8-2,3
SB15 2,7 25,6 13070/3000 1,8-2,3
MSC4Q 3,5 27,9 9,7 18,6 -/1500 1,8-2,3
MSC5Q 4,3 29,3 10,3 19,1 -/1500 1,8-2,3
OPRA Tecnologies ASA
OP 16-2GL 27.8 6.7 8.8 26000/1500 1,6-2,0
PBS Velka Bites, a. s.
TE 100G 0,1 71,3 3,9 56000/52400 1,2-1,5
Pratt & Whitney Canada
ST5 0,457 139,6 23,5 7,3 2,4 30000/3000
ST6L-721 0,508 156,2 23,4 7,3 33000/3000
ST6L-795 0,678 197,7 24,7 7,3 3,3 33000/3000
ST6L-813 0,848 7,3 30000/3000
ST6L-90 1,18 7,3 5,3 30000/3000
ST18A (DLE) 1,96 30,2 13,7 8,4 20000/3000
ST18A (WLE) 2,02 28,3 13,7 9,2 20000/3000
ST30 3,3 16,6 14,4 14875/3000
ST40 16,6 15,1 14875/3000
Rolls –Royce Power Engeneering Plc (Power Generation)
501-KC5 4,1 15,5 13600/3000 1,6-2,0
501-KB5 4,8 9,4 15,4 14600/3000 1,8-2,2

Рис.5.6. Турбогенератор в разрезе:

1 - корпус; 2 - корпус статорной части; 3 - маслопровод (подвод масла); 4 - воздухопровод для поддува лабиринта; 5 - диффузор; 6 - сопловый аппарат; 7 - жаровая труба; 8 - свеча зажигания; 9 - топливный коллектор; 10 - колесо турбины; 11 - колесо компрессора; 12 - лабиринтное уплотнение; 13 - гидродина-

мический подшипник; 14 - статорные обмотки; 15,17 - горловина слива масла; 16 - постоянные магниты; 18 - ротор; 19 - керамический подшипник качения

Это высокооборотный одновальный агрегат с частотой вращения ротора 68000 об/мин. Конструктивно он выполнен в едином корпусе, в котором устанавливается ротор. К корпусу со стороны турбины пристыковывается камера сгорания, представляющая собой отдельный самостоятельный узел.

Ротор, изображенный на рис.5.7, является наиболее ответственной частью турбогенератора.

На одном валу, который изготовлен из высокопрочной стали, последовательно размещены:

Втулка (ротор) высокоскоростного синхронного генератора с двумя запрессованными постоянными магнитами;

Колесо одноступенчатого центробежного компрессора;

Колесо одноступенчатой центростремительной турбины.

Ротор турбогенератора устанавливается на двух опорах: первая опора перед передним торцом втулки генератора, а вторая - между втулкой генератора и колесом компрессора.

Первой опорой является упорный подшипник качения с керамическими шариками, второй – гидродинамический подшипник. Оба подшипника охлаждаются и смазываются высококачественным синтетическим маслом.

Рис.5.7. Общий вид ротора

Отличительной особенностью конструкции ротора является консольная схема размещения колёс компрессора и турбины. Такое конструкторское решение позволило вынести все подшипники из горячей зоны, что значительно уменьшило безвозвратные потери масла, уменьшило производительность насоса маслосистемы, позволило увеличить сроки замены масла и масляного фильтра.

Использование высокоскоростного синхронного генератора и полупроводникового преобразователя напряжения позволило избавиться от «ахиллесовой пяты» большинства газовых турбин малой мощности – редуктора.

Камера сгорания

Камера сгорания, изображенная на рис.5.8, обеспечивает преобразование химической энергии газообразного топлива в тепловую энергию рабочего тела.

Конструкция камеры противоточная, кольцевая, с многоточечной подачей газообразного топлива через отдельные инжекторы. Камера выполнена из расчета длительной работы как при частичных, так и полных нагрузках установки.

Камера сгорания состоит из следующих основных элементов: корпуса; топливного коллектора, топливных инжекторов, жаровой трубы, свечи зажигания, проставки.

Газообразное топливо подаётся через 12 инжекторов на вход в камеру под давлением 0,5-0,6 МПа.



Рис.5.8. Конструкция камеры сгорания:

1 - жаровая труба; 2 - инжекторы; 3 - топливный коллектор; 4 - корпус камеры сгорания; 5 - элементы для крепления жаровой трубы к корпусу; 6 - свеча зажигания; 7 - проставка

Рекуператор

Газовоздушный рекуператор предназначен для повышения электрического КПД установки за счёт дополнительного подогрева воздуха после компрессора. Нагрев воздуха происходит за счёт теплоты выхлопных газов турбины (рис.5.5).

Рекуператор представляет собой газовоздушный пластинчатый теплообменный аппарат, внешний вид которого представлен на рис.5.9. Экономия топлива в установке происходит за счёт увеличения температуры воздуха, который поступает в камеру сгорания из воздушного компрессора.

Система утилизации тепла с котлом-утилизатором

Система утилизации тепла предназначена для подогрева сетевой воды до заданного значения за счет использования теплоты выхлопных газов.

Регулирование параметров воды на выходе из котла-утилизатора осуществляется за счёт перепуска выхлопных газов через байпасную магистраль.

Рис.5.9. Общий вид рекуператора

В состав системы входят: котел-утилизатор с байпасной заслонкой, байпасная магистраль, расходомер для измерения потока теплоносителя, приборы для измерения температуры теплоносителя на входе и на выходе из котла-утилизатора, приборы для измерения температуры выхлопных газов на входе и на выходе из котла-утилизатора, реле максимального давления на выходе из котла-утилизатора.

Система воздушного охлаждения

Система воздушного охлаждения предназначена для надёжного отвода тепла от тепловыделяющих элементов (турбогенератора, рекуператора, силовой электроники, котла-утилизатора, маслорадиа-

тора дожимного компрессора, маслорадиатора маслосистемы), находящихся внутри микротурбинной установки.

Внутри установки находятся вентиляторы, которые обеспечивают принудительное движение воздуха. Места забора и выброса воздуха показаны на рис.5.10.

Воздух, направляемый для охлаждения узлов и агрегатов, находящихся в подкапотном пространстве, разделяется на две части. Первая часть идёт на охлаждение маслорадиатора, турбогенератора, рекуператора и котла-утилизатора. Движение воздуха обеспечивает вентилятор маслорадиатора. Вторая часть идёт на охлаждение силовой электроники и радиатора дожимного компрессора. Движение воздуха обеспечивает вентилятор, расположенный в нижней части микротурбинной установки.

Выход воздуха из установки происходит в задней части установки через два прямоугольных отверстия.


Рис.5.10. Места забора и отвода воздуха из подкапотного пространства:

1 - воздух для охлаждения подкапотного пространства; 2 - воздух в газотурбинный генератор; 3 - выход выхлопных газов; 4 - воздух для охлаждения силовой электроники; 5 - выход охлаждающего воздуха (верхнее отверстие); 6 - выход охлаждающего воздуха (нижнее отверстие)

Технические характеристики микротурбинной установки TA-100 RCHP (по данным завода изготовителя) приведены в табл. 5.2.

Таблица 5.2

Технические характеристики установки TA-100 RCHP

Холодний Максим Віталійович

Національний аерокосмічний університет імені М. Є.Жуковського "Харківський авіаційний інститут"

Микро-ГТД

7.1. Авиация та космонавтика

Рисунки зменшені адміністрацією конкурсу, можуть бути надані в оригінальному розмірі на вимогу експерта.

Введение

Актуальность темы исследований. Миниатюризация бортовой аппаратуры, создание систем управления и целевой нагрузки с массой в сотни граммов, позволяет создавать беспилотные летательные аппараты (БЛА) со взлетным весом в единицы килограммов, оснащенного системами спутниковой навигации и радиосвязи, с возможностью действовать практически в любом районе земного шара в составе комплекса дистанционно-управляемой авиационной системы (ДУАС).

Одной из важнейших проблем при создании всепогодных БЛА является создание двигательной установки (ДУ), обеспечивающей, с одной стороны, высокую крейсерскую скорость полета БЛА, а с другой – достаточную продолжительность полета. Требования преодоления ветрового сноса, полета в условиях приземной турбулентности, оперативности получения информации выдвигают необходимость обеспечения крейсерской скорости полета на уровне М=0,5 и продолжительности полета не менее 30 мин.

Учитывая падение чисел Рейнольдса, а также рост площади, омываемой потоком, по отношению к объему и массе по мере уменьшения физических размеров ЛА, задача достижения высоких скоростей полета осложняется непропорциональным ростом потребной тяги при уменьшении размерности БЛА. Применение в качестве двигательной установки воздушно-реактивного двигателя (ВРД) открывает возможность обеспечения высоких скоростных характеристик, однако создание микро-ВРД традиционных схем с тягой до 50-200 H, пригодного для установки на сверхлегкий БЛА, наталкивается на значительные трудности, связанные прежде всего с масштабным вырождением рабочего процесса.

Таким образом, задача создания ВРД малых тяг (ВРД МТ) представляется актуальной.

Проблематикой создания воздушно-реактивных двигателей малых тяг на основе ТРД занимаются частные фирмы: Франции - Vibraye (JPX-t240…), Японии - Sophia-Precision (J-450…), Германии - JetCat (P-80…),Австрии - Schneidtr-Sanchez (FD-3). Перечисленные выше двигатели фирм предназначены для авиамоделей, но, по-видимому, за неимением лучшего, они применяются в гражданской и военной беспилотной авиации.

Несмотря на кажущуюся простоту конструкций микро-ГТД по сравнению с полноразмерными, их изготовление так же сопряжено с производсьвенными трудностями в связи с тем, что они содержат те же основные конструктивные элементы, что и полномасштабные аналоги: компрессор, сопловой аппарат, турбину (работающую при температуре свыше 700 градусов по шкале Цельсия и периферийных окружных скоростях 500 м/с).

При таких высоких значениях температур и окружных скоростей, в корневой части лопатки напряжения разрыва могут достигать 700 МПа и выше. Из чего можно сделать простой вывод: для изготовления турбин этих образцов ВРД использовались жаропрочные стали или сплавы - аналоги отечественных сталей: ХН62БМКТЮ с временным сопротивлением 520-550 МПа при рабочей температуре 700 градусов по Цельсию, ХН50ВМКТСР -540 МПа при 900 градусах, что и определяет высокую конечную стоимость ДУ.

В нашей стране ГТД малых тяг, пригодные для установки на БЛА с взлётной массой до 100кг, не производят.

Задачей исследования явилась разработка ДУ для БЛА на основе микро-ТРД.

При разработке в качестве аналога был выбран серийный двигатель фирмы АМТ-Olimpus с тягой 230Н и диаметром 130мм.

Таблица. Характеристики двигателя авторской разработки и серийного аналога

Показатели Размерность Величина
Электрическая мощность кВт
Тепловая мощность (ГВС/отопление) (49/60) (70/95) кВт 172 / 160
КПД электрический %
КПД полный % > 75 (%)
Величина тока при нагрузке 100 % А
Максимальное значение тока (перегрузка) в течение 5 секунд А
Расход газа в режиме номинальной мощности нм 3 /ч 39/34
Длина (в помещении /нар. исп) мм 3111,5 / 3316,5
Ширина (в помещении /нар. исп) мм 917 / 917
Окончание табл. 5.2
Высота (в помещении /нар. исп) мм 2123 / 2250
Масса (в помещении /нар. исп) кг 1814 / 2040
Тип электрического генератора высокооборотный, с двумя постоянными магнитами
Частота вращения ротора об/мин
Расход воздухагазотурбинного агрегата кг/с
Максимальное аэродинамическое сопротивле- ние выхлопного тракта Па
Расход воздуха на охлаждение силовой электроники нм 3 /с 0,38
Расход воздуха на охлаждение масляной системы, котла-утилизатора и дожимного компрессора нм 3 /с 0,755
Максимальное аэродинамическое сопротив- ление присоединяемого газохода выхлопных газов Па
Максимальное аэродинамическое сопротив- ление присоединяемого воздуховода для отвода охлаждающего воздуха от масляно-воздушного радиатора и котла-утилизатора Па
Максимальное аэродинамическое сопротив- ление присоединяемого воздуховода для отвода охлаждающего воздуха от силовой электроники и дожимного компрессора Па
Избыточное давление газа на входе в дожимной компрессор кПа от 0,5 до 35
Объём масляного бака л
Температура выхлопных газов на входе в котел-утилизатор °С
Температура выхлопных газов на выходе из котла-утилизатора °С
Температура воды на входе в котел-утилизатор °С
Температура воды на выходе из котла-утилизатора °С

Характеристики

AMT Olympus

ТРД с ЦБК

Диаметр ДУ (мм)

Длина ДУ (мм)

Диаметр компрессора (мм)

Диаметр турбины (мм)

Частота вращения (об/мин)

Степень сжатия

Расход топлива (мл/мин)

Массовый расход воздуха (кг/с)

По причине дороговизны и дефицитности выше перечисленных сталей было принято решение использовать доступные материалы и снизить максимальные окружные скорости с 475м/с (аналога) до 300м/с, что неминуемо при том же миделевом сечении ДУ, влекло за собой снижение расхода воздуха и, как следствие, при той же скорости истечения из сопла - снижение лобовой тяги.

В стремлении разработать двигатель с той же лобовой тягой, но с меньшими окружными скоростями на периферии лопаток турбины и на основании опыта создания полномасштабных ГТД с центробежным компрессором выбор был остановлен на двухстороннем центробежном компрессоре (ЦБК), что является новшеством в классе микро-ГТД. Это конструктивное решение позволяет удвоить расход воздуха без увеличения диаметра диффузора.

Новизна - состоит в новом конструктивно-технологическом решении, позволяющем максимально отехнологичить самый сложный узел ТРД с ЦБК - диффузор, и полностью отказаться от болтовых и сварных соединений (рис.3, 6).

Методами исследования являлись численное моделирование рабочих процессов в авиационных воздушно-реактивных двигателях на основе комплексных моделей рабочего процесса и проведение натурных испытаний работоспособного образца ГТД.

Сборка ротора: кок, двухсторонний центробежный турбо-компрессор, вал, турбина.

Турбина –активно-реактивная осевая одноступенчатая со степенью реактивности 0,5.

Представлен один из вариантов диска, расчёт на прочность выполнялся с помощью пакета CosmosWorks – рис. 9.

3D модель турбины в сборе представлена на рис 10. Видны отдельные сегменты лопаточного венца. Один из трёх сегментов выделен тёмным тоном. Данная конструкция лопаточного венца позволяет, в отличие от цельнолитого, применить в различных зонах нагружения необходимые стали, что позволяет экономить материал. В зонах стыка сегментированного венца имеются деформационные швы, снижающие предварительные напряжения в диске. При отливке сегмента наблюдается практически полное отсутствие усадочных раковин, по сравнению с цельнолитым диском, в связи с меньшими относительными толщинами. Подобная конструкция турбины в микро-ГТД малых тяг разработана впервые.

Технологическая оснастка, использовавшаяся при изготовлении двигателя представлена на рис. 10-11. Отдельные стадии технологических процессов приведены на рис. 13.

Компрессор – одноступенчатый центробежный двухсторонний с колесом полуоткрытого типа.

Некоторые элементы технологического процесса изготовления турбокомпрессора рис. 15-18.

Камера сгорания – кольцевого типа, прямоточная. На рис.19,20.

https://pandia.ru/text/79/124/images/image007_8.jpg" width="624" height="162 src=">

Шестерённый насос с плавающими втулками сам по себе стоит отдельного описания, не уступает промышленным образцам, используемым в автомобильной промышленности, обеспечивает перепад давлений до 1 МПа при расходе всего 20 мл/с, частота вращения 12000 об/мин.

Огневые испытания.

Реализация проектных решений. Общий вид спроектированного микро-ГТД и отдельных его узлов представленных на рисунках. Все элементы конструкции выполнены лично автором статьи.

Выводы. На сегодняшний день применение микро-ГТД на аппаратах с взлетным весом порядка 100 кг и выше представляется наиболее разумной перспективой. С уровнем тяг 200-300 Н микро-ГТД могут обеспечить высокие дозвуковые скорости полета БЛА легкого класса. С точки зрения массового совершенства двигательная установка с малоразмерным ГТД привлекательна. Низкий удельный вес микро-ГТД особенно ярко проявляется при небольшой продолжительности полета (до 30 мин.). При ограничении продолжительности полета до 15-20 мин. на основе микро-ГТД может быть создан высокоманевренный БЛА с тяговооруженностью более 0.5.

Список использованных источников

1. . Теория авиационных двигателей. – Оборонгиз. –1958г.

2. . Численное моделирование теплофизических процессов в двигателестроению. –Харьков, ХАИ. –2005г.

3. , . Радиально-осевые турбины малой мощности. –Москва, Машгиз. –1963г.

4. . Воздушные микротурбины. – Москва, Машиностроение. –1970г.

5. , Боровский и расчёт агрегатов питания жидкостных ракетных двигателей. –Москва, Машиностроение. –1986г.

6. , . Испытания авиационных воздушно – реактивных двигателей. –Москва, Машиностроение. –1967г.

7. Артёменко Н. П., и др. Гидростатические опоры роторов быстроходных машин. –Харьков, Основа. –1992г.

8. . Теория, расчёт и проектирование авиационных двигателей и энергетических установок. –Москва, Машиностроение. –2003г.

9. , . Расчёт турбин авиационных двигателей. –Москва, Машиностроение. –1974г.

10. Силовые установки вертолётов// под ред. . –Оборонгиз, Москва. –1959г.

11. Заготовительно – обрабатывающие технологии в производстве аэрокосмических летательных аппаратов// Учебное пособие, и др. –Харьков, ХАИ. –1999г.

12. Конструкция авиационных газотурбинных двигателей// под ред. . –Москва, Воениздат. –1961г.

Экспериментальные образцы газотурбинных двигателей (ГТД) впервые появились в преддверии Второй мировой войны. Разработки воплотились в жизнь в начале пятидесятых годов: газотурбинные двигатели активно использовались в военном и гражданском самолетостроении. На третьем этапе внедрения в промышленность малые газотурбинные двигатели, представленные микротурбинными электростанциями, начали широко применяться во всех сферах промышленности.

Общие сведения о ГТД

Принцип функционирования общий для всех ГТД и заключается в трансформации энергии сжатого нагретого воздуха в механическую работу вала газовой турбины. Воздух, попадая в направляющий аппарат и компрессор, сжимается и в таком виде попадает в камеру сгорания, где производится впрыскивание топлива и поджег рабочей смеси. Газы, образовавшиеся в результате сгорания, под высоким давлением проходят сквозь турбину и вращают ее лопатки. Часть энергии вращения расходуется на вращение вала компрессора, но большая часть энергии сжатого газа преобразуется в полезную механическую работу вращения вала турбины. Среди всех двигателей внутреннего сгорания (ДВС), газотурбинные установки обладают наибольшей мощностью: до 6 кВт/кг.

Работают ГТД на большинстве видов диспергированного топлива, чем выгодно отличаются от прочих ДВС.

Проблемы разработки малых ТГД

При уменьшении размера ГТД происходит уменьшение КПД и удельной мощности по сравнению с обычными турбореактивными двигателями. При этом удельная величина расхода топлива так же возрастает; ухудшаются аэродинамические характеристики проточных участков турбины и компрессора, снижается КПД этих элементов. В камере сгорания, в результате уменьшения расхода воздуха, снижается коэффициент полноты сгорания ТВС.

Снижение КПД узлов ГТД при уменьшении его габаритов приводит к уменьшению КПД всего агрегата. Поэтому, при модернизации модели, конструкторы уделяют особое внимание увеличению КПД отдельно взятых элементов, вплоть до 1%.

Для сравнения: при увеличении КПД компрессора с 85% до 86%, КПД турбины возрастает с 80% до 81%, а общий КПД двигателя увеличивается сразу на 1,7%. Это говорит о том, что при фиксированном расходе топлива, удельная мощность увеличится на ту же величину.

Авиационный ГТД «Климов ГТД-350» для вертолета Ми-2

Впервые разработка ГТД-350 началась еще в 1959 году в ОКБ-117 под начальством конструктора С.П. Изотова. Изначально задача состояла в разработке малого двигателя для вертолета МИ-2.

На этапе проектирования были применены экспериментальные установки, использован метод поузловой доводки. В процессе исследования созданы методики расчета малогабаритных лопаточных аппаратов, проводились конструктивные мероприятия по демпфированию высокооборотных роторов. Первые образцы рабочей модели двигателя появились в 1961 году. Воздушные испытания вертолета Ми-2 с ГТД-350 впервые были проведены 22 сентября 1961 года. По результатам испытаний, два вертолетных двигателя разнесли в стороны, переоснастив трансмиссию.

Государственную сертификацию двигатель прошел в 1963 году. Серийное производство открылось в польском городе Жешув в 1964 году под руководством советских специалистов и продолжалось до 1990 года.

Ма лый газотурбинный двигатель отечественного производства ГТД-350 имеет следующие ТТХ:

— вес: 139 кг;
— габариты: 1385 х 626 х 760 мм;
— номинальная мощность на валу свободной турбины: 400 л.с.(295 кВт);
— частота вращения свободной турбины: 24000;
— диапазон рабочих температур -60…+60 ºC;
— удельный расход топлива 0,5 кг/кВт час;
— топливо — керосин;
— мощность крейсерская: 265 л.с;
— мощность взлётная: 400 л.с.

В целях безопасности полетов на вертолет Ми-2 устанавливают 2 двигателя. Спаренная установка позволяет воздушному судну благополучно завершить полет в случае отказа одной из силовых установок.

ГТД — 350 на данный момент морально устарел, в современной малой авиации нужны более можные, надежные и дешевые газотурбинные двигатели. На современный момент новый и перспективным отечественным двигателем является МД-120, корпорации «Салют». Масса двигателя — 35кг, тяга двигателя 120кгс.

Общая схема

Конструктивная схема ГТД-350 несколько необычна за счет расположения камеры сгорания не сразу за компрессором, как в стандартных образцах, а за турбиной. При этом турбина приложена к компрессору. Такая необычная компоновка узлов сокращает длину силовых валов двигателя, следовательно, снижает вес агрегата и позволяет достичь высоких оборотов ротора и экономичности.

В процессе работы двигателя, воздух поступает через ВНА, проходит ступени осевого компрессора, центробежную ступень и достигает воздухосборной улитки. Оттуда, по двум трубам воздух подается в заднюю часть двигателя к камере сгорания, где меняет направление потока на противоположное и поступает на турбинные колеса. Основные узлы ГТД-350: компрессор, камера сгорания, турбина, газосборник и редуктор. Системы двигателя представлены: смазочной, регулировочной и противообледенительной.

Агрегат расчленен на самостоятельные узлы, что позволяет производить отдельные запчасти и обеспечивать их быстрый ремонт. Двигатель постоянно дорабатывается и на сегодняшний день его модификацией и производством занимается ОАО «Климов». Первоначальный ресурс ГТД-350 составлял всего 200 часов, но в процессе модификации был постепенно доведен до 1000 часов. На картинке представлена общая смеха механической связи всех узлов и агрегатов.

Малые ГТД: области применения

Микротурбины применяют в промышленности и быту в качестве автономных источников электроэнергии.
— Мощность микротурбин составляет 30-1000 кВт;
— объем не превышает 4 кубических метра.

Среди преимуществ малых ГТД можно выделить:
— широкий диапазон нагрузок;
— низкая вибрация и уровень шума;
— работа на различных видах топлива;
— небольшие габариты;
— низкий уровень эмиссии выхлопов.

Отрицательные моменты:
— сложность электронной схемы (в стандартном варианте силовая схема выполняется с двойным энергопреобразованием);
— силовая турбина с механизмом поддержания оборотов значительно повышает стоимость и усложняет производство всего агрегата.

На сегодняшний день турбогенераторы не получили такого широкого распространения в России и на постсоветском пространстве, как в странах США и Европы в виду высокой стоимости производства. Однако, по проведенным расчетам, одиночная газотурбинная автономная установка мощностью 100 кВт и КПД 30% может быть использована для энергоснабжения стандартных 80 квартир с газовыми плитами.

Коротенькое видео, использования турбовального двигателя для электрогенератора.

За счет установки абсорбционных холодильников, микротурбина может использоваться в качестве системы кондиционирования и для одновременного охлаждения значительного количества помещений.

Автомобильная промышленность

Малые ГТД продемонстрировали удовлетворительные результаты при проведении дорожных испытаний, однако стоимость автомобиля, за счет сложности элементов конструкции многократно возрастает. ГТД с мощностью 100-1200 л.с. имеют характеристики, подобные бензиновым двигателям, однако в ближайшее время не ожидается массовое производство таких авто. Для решения этих задач необходимо усовершенствовать и удешевить все составляющие части двигателя.

По иному дела обстоят в оборонной промышленности. Военные не обращают внимание на стоимость, для них важнее эксплуатационные характеристики. Военным нужна была мощная, компактная, безотказная силовая установка для танков. И в середине 60-ых годов 20 века к этой проблеме привлекли Сергея Изотова, создателя силовой установки для МИ-2 — ГТД-350. КБ Изотова начало разработку и в итоге создало ГТД-1000 для танка Т-80. Пожалуй это единственный положительный опыт использования ГТД для наземного транспорта. Недостатки использования двигателя на танке — это его прожорливость и привередливость к чистоте проходящего по рабочему тракту воздуху. Внизу представлено короткое видео работы танкового ГТД-1000.

Малая авиация

На сегодняшний день высокая стоимость и низкая надежность поршневых двигателей с мощностью 50-150 кВт не позволяют малой авиации России уверенно расправить крылья. Такие двигатели, как «Rotax» не сертифицированы на территории России, а двигатели «Lycoming», применяемые в сельскохозяйственной авиации имеют заведомо завышенную стоимость. Кроме того, они работают на бензине, который не производится в нашей стране, что дополнительно увеличивает стоимость эксплуатации.

Именно малая авиация, как ни одна другая отрасль нуждается в проектах малых ГТД. Развивая инфраструктуру производства малых турбин, можно с уверенностью говорить о возрождении сельскохозяйственной авиации. За рубежом производством малых ГТД занимается достаточное количество фирм. Сфера применения: частные самолеты и беспилотники. Среди моделей для легких самолетов можно выделить чешские двигателиTJ100A, TP100 и TP180, и американский TPR80.

В России со времен СССР малые и средние ГТД разрабатывались в основном для вертолетов и легких самолетов. Их ресурс составлял от 4 до 8 тыс. часов,

На сегодняшний день для нужд вертолета МИ-2 продолжают выпускаться малые ГТД завода «Климов» такие как: ГТД-350, РД-33,ТВЗ-117ВМА, ТВ-2-117А, ВК-2500ПС-03 и ТВ-7-117В.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Предназначение и принцип работы паротурбинных и газотурбинных двигателей. Опыт эксплуатации судов с ГТУ. Внедрение ГТД в различные отрасли промышленности и транспорта. Производство турбореактивного двигателя с форсажной камерой, схема его подключения.

    презентация , добавлен 19.03.2015

    Характеристика метрологической службы ООО "Белозерный ГПК", основные принципы ее организации. Метрологическое обеспечение испытаний газотурбинных двигателей, их цели и задачи, средства измерения. Методика проведения измерений ряда параметров работы ГТД.

    дипломная работа , добавлен 29.04.2011

    Проблемы, возникающие при эксплуатации систем автоматического управления двигателями типа FADEC. Характеристика газотурбинных двигателей. Гидропневматические системы управления топливом. Управление мощностью и программирование подачи топлива (CFM56-7B).

    дипломная работа , добавлен 08.04.2013

    Обоснование схемы технологического процесса капитального ремонта двигателя ЗИЛ-130. Выбор режима работы и расчет годовых фондов времени работы рабочих и оборудования. Компоновка производственного корпуса. Технико-экономические показатели предприятия.

    курсовая работа , добавлен 06.02.2013

    Способы расчета котельного агрегата малой мощности ДЕ-4 (двухбарабанного котла с естественной циркуляцией). Расчет объемов и энтальпий продуктов сгорания и воздуха. Определение КПД котла и расхода топлива. Поверочный расчёт топки и котельных пучков.

    курсовая работа , добавлен 07.02.2011

    Общая характеристика асинхронных микродвигателей с короткозамкнутым ротором, анализ преимуществ: низкая стоимость производства, малая шумность, надежность в эксплуатации. Рассмотрение тапы расчета размеров зубцовой зоны статора и воздушного зазора.

    контрольная работа , добавлен 19.05.2014

    Основные виды, устройство и принцип работы шаговых двигателей. Управление шаговым двигателем с помощью автономного контроллера. Управление контроллером с помощью системы программирования PureBasic. Модель крана как пример применения шаговых двигателей.

    дипломная работа , добавлен 06.03.2013

В данном пособии рассматривается лишь один тип газотурбинные двигатели ГТД т. ГТД широко применяются в авиационной наземной и морской технике.1 показаны основные объекты применения современных ГТД. Классификация ГТД по назначению и объектам применения В настоящее время в общем объеме мирового производства ГТД в стоимостном выражении авиационные двигатели составляют около 70 наземные и морские около 30 .


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Лекция 1

ОБЩИЕ СВЕДЕНИЯ О ГАЗОТУРБИННЫХ ДВИГАТЕЛЯХ

1.1. Введение

В современной технике разработано и используется множество различных типов двигателей.

В данном пособии рассматривается лишь один тип - газотурбинные двигатели (ГТД), т.е. двигатели, имеющие в своем составе компрессор, камеру сгорания и газовую турбину.

ГТД широко применяются в авиационной, наземной и морской технике. На рис. 1.1 показаны основные объекты применения современных ГТД.

Рис. 1.1. Классификация ГТД по назначению и объектам применения

В настоящее время в общем объеме мирового производства ГТД в стоимостном выражении авиационные двигатели составляют около 70 %, наземные и морские - около 30 %. Объем производства наземных и морских ГТД распределяется следующим образом:

Энергетические ГТД ~ 91 %;

ГТД для привода промышленного оборудования и наземных транспортных средств ~ 5 %;

ГТД для привода судовых движителей ~ 4 %.

В современной гражданской и военной авиации ГТД практически полностью вытеснили поршневые двигатели и заняли доминирующее положение.

Их широкое применение в энергетике, промышленности и транспорте стало возможным благодаря более высокой энергоотдаче, компактности и малому весу по сравнению с другими типами силовых установок.

Высокие удельные параметры ГТД обеспечиваются особенностями конструкции и термодинамического цикла. Цикл ГТД, хотя и состоит из тех же основных процессов, что и цикл поршневых двигателей внутреннего сгорания, имеет существенное отличие. В поршневых двигателях процессы происходят последовательно, один за другим, в одном и том же элементе двигателя - цилиндре. В ГТД эти же процессы происходят одновременно и непрерывно в различных элементах двигателя. Благодаря этому в ГТД нет такой неравномерности условий работы элементов двигателя, как в поршневом, а средняя скорость и массовый расход рабочего тела в 50...100 раз выше, чем в поршневых двигателях. Это позволяет сосредоточить в малогабаритных ГТД большие мощности.

Авиационные ГТД по способу создания тягового усилия относятся к классу реактивных двигателей, классификация которых показана на рис. 1.2.

Рис. 1.2. Классификация реактивных двигателей.

Ко второй группе относятся воздушно-реактивные двигатели (ВРД), для которых атмосферный воздух является основным компонентом рабочего тела, а кислород воздуха используется как окислитель. Задействование воздушной среды позволяет значительно сократить запас рабочего тела и повысить экономичность двигателя.

Газотурбинные ВРД, получившие свое название из-за наличия турбокомпрессорного агрегата, имеющего в своем составе газовую турбину как основной источник механической энергии.

Реактивные двигатели, в которых вся полезная работа цикла затрачивается на ускорение рабочего тела, называются двигателями прямой реакции. К ним относятся ракетные двигатели всех типов, комбинированные двигатели, прямоточные и пульсирующие ВРД, а из группы ГТД - турбореактивные двигатели (ТРД) и двухконтурные турбореактивные двигатели (ТРДД). Если же основная часть полезной работы цикла в виде механической работы на валу двигателя передается специальному движителю, например воздушному винту, то такой двигатель называется двигателем непрямой реакции. Примерами двигателей непрямой реакции являются турбовинтовой двигатель (ТВД) и вертолетный ГТД.

Классическим примером двигателя непрямой реакции может служить также поршневая винтомоторная установка. Качественного отличия по способу создания тягового усилия между ней и турбовинтовым двигателем нет.

1.2. ГТД наземного и морского применения

Параллельно с развитием авиационных ГТД началось применение ГТД в промышленности и на транспорте. B1939r. швейцарская фирма A.G. Brown Bonery ввела в эксплуатацию первую электростанцию с газотурбинным приводом мощностью 4 МВт и КПД 17,4 %. Эта электростанция и в настоящее время находится в работоспособном состоянии. В 1941 г. вступил в строй первый железнодорожный газотурбовоз, оборудованный ГТД мощностью 1620 кВт разработки этой же фирмы. С конца 1940-хгг. ГТД начинают применяться для привода морских судовых движителей, а с конца 1950-х гг. - в составе газоперекачивающих агрегатов на магистральных газопроводах для привода нагнетателей природного газа.

Таким образом, постоянно расширяя область и масштабы своего применения, ГТД развиваются в направлении повышения единичной мощности, экономичности, надежности, автоматизации эксплуатации, улучшения экологических характеристик.

Быстрому внедрению ГТД в различные отрасли промышленности и транспорта способствовали неоспоримые преимущества этого класса тепловых двигателей перед другими энергетическими установками - паротурбинными, дизельными и др. К таким преимуществам относятся:

Большая мощность в одном агрегате;

Компактность, малая масса рис. 1.3;

Уравновешенность движущихся элементов;

Широкий диапазон применяемых топлив;

Легкий и быстрый запуск, в том числе при низких температурах;

Хорошие тяговые характеристики;

Высокая приемистость и хорошая управляемость.

Рис. 1.3. Сравнение габаритных размеров ГТД и дизельного двигателя мощностью 3 МВт

Основным недостатком первых моделей на земных и морских ГТД была относительно низкая экономичность. Однако эта проблема достаточно быстро преодолевалась в процессе постоянного совершенствования двигателей, чему способствовало опережающее развитие технологически близких авиационных ГТД и перенос передовых технологий в наземные двигатели.

1.3. Области применения наземных ГТД

1.3.1. Механический привод промышленного оборудования

Наиболее массовое применение ГТД механического привода находят в газовой промышленности. Они используются для привода нагнетателей природного газа в составе ГПА на компрессорных станциях магистральных газопроводов, а также для привода агрегатов закачки природного газа в подземные хранилища (рис. 1.4).

Рис. 1.4. Применение ГТД для прямого привода нагнетателя природного газа:

1 — ГТД; 2 — трансмиссия; 3 — нагнетатель

ГТД используются также для привода насосов, технологических компрессоров, воздуходувок на предприятиях нефтяной, нефтеперерабатывающей, химической и металлургической промышленности. Мощностной диапазон ГТД от 0,5 до 50 МВт .

Основная особенность перечисленного при водимого оборудования - зависимость потребляемой мощности N от частоты вращения n (обычно близкая к кубической: N ~ n 3 ), температуры и давления нагнетаемых сред. Поэтому ГТД механического привода должны быть приспособлены к работе с переменными частотой вращения и мощностью. Этому требованию в наибольшей степени отвечает схема ГТД со свободной силовой турбиной. Различные схемы наземных ГТД будут рассмотрены ниже.

1.3.2. Привод электрогенераторов

ГТД для привода электрогенераторов рис. 1.5 используются в составе газотурбинных электростанций (ГТЭС) простого цикла и конденсационных электростанций комбинированного парогазового цикла (ПГУ), вырабатывающих «чистую» электроэнергию, а также в составе когенерационных установок производящих совместно электрическую и тепловую энергию.

Рис. 1.5. Применение ГТД для привода генератора (через редуктор):

1 - ГТД; 2 - трансмиссия; 3 - редуктор; 4 – генератор.

Современные ГТЭС простого цикла, имеющие относительно умеренный электрический КПД η эл =25...40 %, в основном используются в пиковом режиме эксплуатации - для покрытия суточных и сезонных колебаний спроса на электроэнергию. Эксплуатация ГТД в составе пиковых ГТЭС характеризуется высокой цикличностью (большим количеством циклов «пуск - нагружение – работа под нагрузкой - останов»). Возможность ускоренного пуска является важным преимуществом ГТД при работе в пиковом режиме.

Электростанции с ПГУ используются в базовом режиме (постоянная работа с нагрузкой, близкой к номинальной, с минимальным количеством циклов «пуск - останов» для проведения регламентных и ремонтных работ). Современные ПГУ, базирующиеся на ГТД большой мощности (N >150 МВт ), достигают КПД выработки электроэнергии η эл =58...60 %.

В когенерационных установках тепло выхлопных газов ГТД используется в котле-утилизаторе для производства горячей воды и (или) пара для технологических нужд или в системах централизованного отопления. Совместное производство электрической и тепловой энергии значительно снижает её себестоимость. Коэффициент использования тепла топлива в когенерационных установках достигает 90 %.

Электростанции с ПГУ и когенерационные установки являются наиболее эффективными и динамично развивающимися современными энергетическими системами. В настоящее время мировое производство энергетических ГТД составляет около 12000 штук в год суммарной мощностью около 76000 МВт.

Основная особенность ГТД для привода электрогенераторов - постоянство частоты вращения выходного вала на всех режимах (от холостого хода до максимального), а также и высокие требования к точности поддержания частоты вращения, от которой зависит качество вырабатываемого тока. Этим требованиям в наибольшей степени соответствуют одновальные ГТД, поэтому они широко используются в энергетике. ГТД большой мощности (N >60 МВт ), работающие, как правило, в базовом режиме в составе мощных электростанции, выполняются исключительно по одновальной схеме.

В энергетике используется весь мощностной ряд ГТД от нескольких десятков кВт до 350 МВт .

1.3.3. Основные типы наземных ГТД

Наземные ГТД различного назначения и класса мощности можно разделить на три основных технологических типа:

Стационарные ГТД;

ГТД, конвертированные из авиадвигателей (авиапроизводные);

Микротурбины.

1.3. 3 .1. Стационарные ГТД

Двигатели этого типа разрабатываются и производятся на предприятиях энергомашиностроительного комплекса согласно требованиям, предъявляемым к энергетическому оборудованию:

Высокий ресурс (не менее 100 000 час) и срок службы (не менее 25 лет);

Высокая надежность;

Ремонтопригодность в условиях эксплуатации;

Умеренная стоимость применяемых конструкционных материалов и ГСМ для снижения стоимости производства и эксплуатации;

Отсутствие жестких габаритно-массовых ограничений, существенных для авиационных ГТД.

Перечисленные требования сформировали облик стационарных ГТД, для которых характерны следующие особенности:

Максимально простая конструкция;

Использование недорогих материалов с относительно низкими характеристиками;

Массивные корпуса, как правило, с горизонтальным разъемом для возможности выемки и ремонта ротора ГТД в условиях эксплуатации;

Конструкция камеры сгорания, обеспечивающая возможность ремонта и замены жаровых труб в условиях эксплуатации;

Использование подшипников скольжения.

Типичный стационарный ГТД показан на рис. 1.6.

Рис. 1. 6 . Стационарный ГТД (модель M 501 F фирмы Mitsubishi )

мощностью 150 МВт.

В настоящее время ГТД стационарного типа используются во всех областях применения наземных ГТД в широком диапазоне мощности от 1 МВт до 350 МВт .

На начальных этапах развития в стационарных ГТД применялись умеренные параметры цикла. Это объяснялось некоторым технологическим отставанием от авиационных двигателей из-за отсутствия мощной государственной финансовой поддержки, которой пользовалась авиадвигателестроительная отрасль во всех странах-производителях авиадвигателей. С конца 1980-х г.г. началось широкое внедрение авиационных технологий при проектировании новых моделей ГТД и модернизации действующих.

К настоящему времени мощные стационарные ГТД по уровню термодинамического и технологического совершенства вплотную приблизились к авиационным двигателям при сохранении высокого ресурса и срока службы.

1.3.3.2. Наземные ГТД, конвертированные из авиадвигателей

ГТД данного типа разрабатываются на базе авиационных прототипов на предприятиях авиа-двигателестроительного комплекса с использованием авиационных технологий. Промышленные ГТД, конвертированные из авиадвигателей, начали разрабатываться вначале 1960- x г.г., когда ресурс гражданских авиационных ГТД достиг приемлемой величины (2500...4000ч.).

Первые промышленные установки с авиаприводом появились в энергетике в качестве пиковых или резервных агрегатов. Дальнейшему быстрому внедрению авиапроизводных ГТД в промышленность и транспорт способствовали:

Более быстрый прогресс вавиадвигателестроении по параметрам цикла и повышению надежности, чем в стационарном газотурбостроении;

Высокое качество изготовления авиационных ГТД и возможность организации их централизованного ремонта;

Возможность использования авиадвигателей, отработавших летный ресурс, с необходимым ремонтом для эксплуатации на земле;

Преимущества авиационных ГТД - малая масса и габариты, более быстрый пуск и приемистость, меньшая потребная мощность пусковых устройств, меньшие потребные капитальные затраты при строительстве объектов применения.

При конвертации базового авиационного двигателя в наземный ГТД в случае необходимости заменяются материалы некоторых деталей холодной и горячей частей, наиболее подверженных коррозии. Так, например, магниевые сплавы заменяются на алюминиевые или стальные, в горячей части применяются более жаростойкие сплавы с повышенным содержанием хрома. Камера сгорания и система топливопитания модифицируются для работы на газообразном топливе или под многотопливный вариант. Дорабатываются узлы, системы двигателя (запуска, автоматического управления (САУ), противопожарная, маслосистема и др.) и обвязка для обеспечения работы в наземных условиях. При необходимости усиливаются некоторые статорные и роторные детали.

Объем конструктивных доработок базового авиадвигателя в наземную модификацию в значительной степени определяется типом авиационного ГТД.

Сравнение конвертированного ГТД и ГТД стационарного типа одного класса мощности показано на рис. 1.7.

Авиационные ТВД и вертолетные ГТД функционально и конструктивно более других авиадвигателей приспособлены для работы в качестве наземных ГТД. Они фактически не требуют модификации турбокомпрессорной части (кроме камеры сгорания).

В 1970-е годы был разработан наземный ГТД HK-12CT на базе одновального авиационного ТВД HK-12, который эксплуатировался на самолетах ТУ-95, ТУ-114 и АН-22. Конвертированный двигатель HK-12CT мощностью 6,3 МВт был выполнен со свободной CT и работает в составе многих ГПА и по сей день.

В настоящее время конвертированные авиационные ГТД различных производителей широко используются в энергетике, промышленности, в морских условиях и на транспорте.

Рис. 1.7. Сравнение типичных конструкций ГТД, конвертированного из авиадвигателя и ГТД стационарного типа одного класса мощности 25 МВт :

1 — тонкие корпуса; 2 — подшипники качения; 3 — выносные КС;

4 — массивные корпуса; 5 — подшипники скольжения; 6 — горизонтальный разъем

Мощностной ряд - от нескольких сотен киловатт до 50 МВт .

Данный тип ГТД характеризуется наиболее высоким эффективным КПД при работе в простом цикле, что обусловлено высокими параметрами и эффективностью узлов базовых авиадвигателей.

1.3.3.3. Микротурбины

В 1990-е годы за рубежом начали интенсивно разрабатываться энергетические ГТД сверхмалой мощности (от 30 до 200 кВт), названные микротурбинами.

Примечание: необходимо иметь ввиду, что в зарубежной практике терминами «турбина», «газовая турбина» обозначается как отделъный узел турбины, так и ГТД в целом).

Особенности микротурбин обусловлены их исключительно малой размерностью и областью применения. Микротурбины используются в малой энергетике в составе компактных когенерационных установок (ГТУ-ТЭЦ) как автономные источники электрической и тепловой энергии. Микротурбины имеют максимально простую конструкцию - одновальная схема и минимальное количество деталей рис.1.8.

Рис. 1.7. Микротурбина (модель ТА-60 фирмы Elliot Energy Systems мощностью 60 кВт )

Используются одноступенчатый центробежный компрессор и одноступенчатая центростремительная турбина, выполненные в виде моноколес. Частота вращения ротора из-за малой размерности достигает 40000...120 000 об / мин , поэтому применяются керамические и газостатические подшипники. Камера сгорания выполняется многотопливной и может работать на газообразном и жидком топливе.

Конструктивно ГТД максимально интегрируется в энергетическую установку: ротор ГТД объединяется на одном валу с ротором высокочастотного электрического генератора.

КПД микротурбин в простом цикле составляет 14...18 %. Для повышения эффективности часто используются регенераторы тепла выхлопных газов. КПД микротурбины в регенеративном цикле достигает 28...32 %.

Относительно низкая экономичность микротурбин объясняется малой размерностью и невысокими параметрами цикла, которые применяются в данном типе ГТД для упрощения и удешевления установок. Поскольку микротурбины работают в составе когенерационных установок (ГТУ-ТЭЦ), низкая экономичность ГТД компенсируется повышенной тепловой мощностью, вырабатываемой мини «ГТУ-ТЭЦ» за счет тепла выхлопных газов.

Коэффициент использования тепла топлива в этих установках достигает 80 %.

1.4. Основные мировые производители ГТД

General Electric, США . Компания General Electric (GE ) - крупнейший мировой производитель авиационных, наземных и морских ГТД. Отделение компании General Electric Aircraft Engines (GE AE) в настоящее время занимается разработкой и производством авиационных ГТД различных типов - ТРДД, ТРДДФ, ТВД и вертолетных ГТД.

Pratt & Whitney, США . ФирмаРгай & Whitney (PW) входит в состав компании United Technologies Corporations (UTC). В настоящее время PW занимается разработкой и производством авиационных ТРДД средней и большой тяги.

Pratt & Whitney Canada , (Канада). Фирма Pratt & Whitney Canada (PWC) также входит в состав компании UTC в группу PW. PWC занимается разработкой и производством малоразмерных ТРДД, ТВД и вертолетных ГТД.

Rolls-Royce (Великобритания) . Компания Rolls-Royce в настоящее время разрабатывает и производит широкий спектр ГТД авиационного, наземного и морского применения.

Honeywell (США) . Компания Honeywell занимается разработкой и производством авиационных ГТД - ТРДД и ТРДДФ в малом классе тяги, ТВД и вертолетных ГТД.

Snecma (Франция). Компания занимается разработкой и производством авиационных ГТД - военных ТРДДФ и гражданских ТРДД совместно с компанией GE. Совместно с фирмой Rolls-Royce разрабатывала и производила ТРДФ «Олимп».

Turbomeca (Франция). Фирма Turbomeca в основном разрабатывает и выпускает ТВД и вертолетные ГТД малой и средней мощности.

Siemens (Германия). Профилем этой крупной фирмы являются стационарные наземные ГТД для энергетического и механического привода и морского применения в широком диапазоне мощности.

Alstom (Франция, Великобритания). Компания Alstom разрабатывает и производит стационарные одновальные энергетические ГТД малой мощности.

Solar (США). Фирма Solar входит в состав компании Caterpillar и занимается разработкой и производством стационарных ГТД малой мощности для энергетического и механического привода и морского применения.

ОАО «Авиадвигатель» (г. Пермь) . Разрабатывает, изготавливает и сертифицирует авиационные ГТД - гражданские ТРДД для магистральных самолетов, военные ТРДДФ, вертолетные ГТД, а также авиапроизводные наземные промышленные ГТД для механического и энергетического привода.

ГУНПП «Завод имени В.Я. Климова» (г. Санкт-Петербург) . Государственное унитарное научно-производственное предприятие «Завод им. В.Я. Климова» в последние годы специализируется на разработке и производстве авиационных ГТД. Номенклатура разработок широка - военные ТРДДФ, самолетные ТВД и вертолетные ГТД; танковые ГТД, а также конвертированные промышленные ГТД.

ОАО «ЛМЗ» (г. Санкт-Петербург). ОАО «Ленинградский Металлический завод» разрабатывает и производит стационарные энергетические ГТД.

ФГУП «Мотор» (г. Уфа). Федеральное государственное унитарное предприятие «Научно-производственное предприятие "Мотор"» занимается разработкой военных ТРД и ТРДФ для истребителей и штурмовиков.

«Омское МКБ» (г. Омск). АО «Омское моторостроительное конструкторское бюро» занимается разработкой малоразмерных ГТД и вспомогательных СУ.

ОАО «НПО "Сатурн"» (г.Рыбинск) . ОАО «Научно-производственное объединение "Сатурн"» в последние годы разрабатывает и производит военные ТРДДФ, ТВД, вертолетные ГТД, конвертированные наземные ГТД. Совместно с НПО «Машпроект» (Украина) участвует в программе энергетического одновального ГТД мощностью 110 МВт.

ОАО «СНТК им. Н.Д.Кузнецова». ОАО «Самарский научно-технический комплекс им. Н.Д. Кузнецова» разрабатывает и выпускает авиационные ГТД (ТВД, ТРДД, ТРДДФ) и наземные ГТД, конвертированные из авиадвигателей.

AMHTK «Союз» (г. Москва). ОАО «Авиамоторный научно-технический комплекс "Союз"» разрабатывает и изготавливает авиационные ГТД - ТРД, ТРДФ, подъемно-маршевые ТРДДФ.

Тушинское МКБ «Союз» (г. Москва) . Государственное предприятие «Тушинское машиностроительное конструкторское бюро "Союз"» занимается доводкой и модернизацией военных ТРДФ.

НПП «Машпроект» (Украина, г. Николаев) . Научно-производственное предприятие «Зоря-Машпроект» (Украина, г. Николаев) разрабатывает и производит ГТД для морских СУ, а также наземные ГТД для энергетического и механического привода. Наземные двигатели являются модификациями моделей морского применения. Класс мощности ГТД: 2...30 МВт . C 1990 г.г. НПП «Зоря-Машпроект» разрабатывает также стационарный одновальный энергетический двигатель UGT-110 мощностью 110 МВт.

ГП «ЗМКБ "Прогресс" им. А.Г. Ивченко» (Украина, г. Запорожье). Государственное предприятие «Запорожское машиностроительное конструкторское бюро «Прогресс» имени академика А.Г. Ивченко» специализируется на разработке, изготовлении опытных образцов и сертификации авиационных ГТД - ТРДД в диапазоне тяги 17...230 кН , самолетных ТВД и вертолетных ГТД мощностью 1000...10000 кВт , а также промышленных наземных ГТД мощностью от 2,5 до 10000 кВт .

Двигатели разработки «ЗМКБ "Прогресс" серийно выпускаются в ОАО «Мотор Сич» (Украина, г. Запорожье) . Наиболее массовые серийные авиационные двигатели и перспективные проекты:

ТВД и вертолетные ГТД - АИ-20, АИ-24, Д-27;

ТРДД - АИ-25, ДВ-2, Д-36, Д-18Т, Д-436Т1/Т2/ЛП.

Наземные ГТД:

Д-336-1/2, Д-336-2-8, Д-336-1/2-10.

Другие похожие работы, которые могут вас заинтересовать.вшм>

8415. Общие сведения о ссылках 20.99 KB
Язык C предлагает альтернативу для более безопасного доступа к переменным через указатели.Объявив ссылочную переменную, можно создать объект, который, как указатель, ссылается на другое значение, но, в отличие от указателя, постоянно привязан к этому значению. Таким образом, ссылка на значение всегда ссылается на это значение.
12466. Общие сведения о гидропередачах 48.9 KB
Поэтому в дальнейшем для краткости изложения слово “статические†как правило будет опускаться. При этом усилие F1 необходимое для перемещения поршней бесконечно мало. Для удовлетворения понятию “статическая гидропередача†должно быть выполнено условие геометрического отделения полости нагнетания от полости всасывания.
17665. Общие сведения из метрологии 31.74 KB
Современное состояние измерений в телекоммуникациях Процесс совершенствования измерительных технологий подчиняется общей тенденции усложнения высоких технологий в процессе их развития. Основными тенденциями в развитии современной измерительной техники являются: расширение пределов измеряемых величин и повышение точности измерений; разработка новых методов измерений и приборов с использованием новейших принципов действия; внедрение автоматизированных информационно-измерительных систем характеризуемых высокой точностью быстродействием...
14527. Общие сведения о методах прогнозирования 21.48 KB
Общие сведения о методах прогнозирования ОФП в помещении Общие понятия и сведения об опасных факторах пожара. Методы прогнозирования ОПФ Общие понятия и сведения об опасных факторах пожара Разработка экономически оптимальных и эффективных противопожарных мероприятий основана на научнообоснованном прогнозе динамики ОФП. Современные методы прогнозирования пожара позволяют воспроизвести восстановить картину развития реального пожара. Это необходимо при криминалистической или пожарнотехнической экспертизе пожара.
7103. ОБЩИЕ СВЕДЕНИЯ И ПОНЯТИЯ О КОТЕЛЬНЫХ УСТАНОВКАХ 36.21 KB
В результате этого в паровых котлах вода превращается в пар а в водогрейных котлах нагревается до требуемой температуры. Тягодутьевое устройство состоит из дутьевых вентиляторов системы газовоздуховодов дымососов и дымовой трубы с помощью которых обеспечиваются подача необходимого количества воздуха в топку и движение продуктов сгорания по газоходам котла а также удаление их в атмосферу. представлена схема котельной установки с паровыми котлами. Установка состоит из парового котла который имеет два барабана верхний и нижний.
6149. Общие сведения о промышленных предприятиях РФ и региона 29.44 KB
В частности угольные производства горнорудные производства химические производства нефтедобывающие производства газодобывающие производства геологоразведочные предприятия объекты эксплуатирующие магистральные газопроводы предприятия газоснабжения металлургические производства производства хлебопродуктов объекты котлонадзора объекты эксплуатирующие стационарные грузоподъемные механизмы и сооружения предприятия занятые перевозкой опасных грузов и другие. Классификация объектов экономики промышленных предприятий В...
1591. ОБЩИЕ СВЕДЕНИЯ О ГЕОГРАФИЧЕСКИХ ИНФОРМАЦИОННЫХ СИСТЕМАХ 8.42 KB
Географическая информационная система или геоинформационная система (ГИС) - это информационная система, обеспечивающая сбор, хранение, обработку, анализ и отображение пространственных данных и связанных с ними непространственных, а также получение на их основе информации и знаний о географическом пространстве.
167. Общие сведения по эксплуатация средств вычислительной техники 18.21 KB
Основные понятия Средства вычислительной техники СВТ – это компьютеры к которым относятся персональные компьютеры ПЭВМ сетевые рабочие станции серверы и другие виды компьютеров а также периферийные устройства компьютерная оргтехника и средства межкомпьютерной связи. Эксплуатация СВТ заключается в использовании оборудования по назначению когда ВТ должна выполнять весь комплекс возложенных на нее задач. Для эффективного использования и поддержания СВТ в работоспособном состоянии в процессе эксплуатации проводится...
10175. Исходные понятия и общие сведения о методах прогнозирования ОФП в помещениях 15.8 KB
Исходные понятия и общие сведения о методах прогнозирования ОФП в помещениях План лекции: Введение Опасные факторы пожара. Цели лекции: Учебные В результате прослушивания материала слушатели должны знать: опасные факторы пожара воздействующие на людей на конструкции и оборудование предельно допустимые значения ОФП методы прогнозирования ОФП Уметь: прогнозировать обстановку на пожаре.Кошмаров Прогнозирование опасных факторов пожара в помещении.
9440. Общие сведения о приемо-передающих устройствах систем управления средствами поражения 2.8 MB
Электрическая копия первичного сообщения ток или напряжение подлежащего передаче называется управляющим сигналом и обозначается при аналитической записи символами или. Название обусловлено тем что этот сигнал в дальнейшем управляет одним или несколькими из параметров высокочастотных колебаний в процессе модуляции. Спектры управляющих сигналов в этой связи лежат в области низких частот и эффективно излучены быть не могут.