Как работает бесколлекторный двигатель. Бесколлекторные двигатели постоянного тока. Что это такое? Как работают моторы

Принцип действия которого основан на частотном регулировании и самосинхронизации получил название бесколлекторного двигателя. В данной конструкции, вектор магнитного поля статора управляется относительно положения ротора. Бесколлекторный двигатель был создан для того, чтобы улучшить свойства стандартных коллекторных электродвигателей постоянного тока.

Он органично соединил в себе самые лучшие качества двигателей постоянного тока и бесконтактных электродвигателей.

Основные отличия от обычных двигателей

Бесколлекторный двигатель нередко используются в радиоуправляемых моделях летательных аппаратов. Их выдающиеся характеристики и живучесть получили широкую популярность, благодаря отсутствию трущихся деталей в виде щеток, которые осуществляют передачу тока.

Для того, чтобы более полно представить разницу, нужно вспомнить, что в стандартном коллекторном электродвигателе происходит вращение ротора с обмотками внутри статора, основой которого служат постоянные магниты. Коммутация обмоток производится с помощью коллектора, в зависимости от положения ротора. В электродвигателе переменного тока, наоборот, ротор с магнитом вращается внутри статора с обмотками. Примерно такую же конструкцию имеет двигатель.

В отличие от стандартных двигателей, в бесколлекторном в качестве подвижной части выступает статор, в котором размещены постоянные магниты, а роль неподвижной части играет ротор с трехфазными обмотками.

Принцип работы бесколлекторного электродвигателя

Вращение двигателя осуществляется путем смены направления магнитного поля в обмотках ротора в определенной последовательности. В этом случае, постоянные магниты взаимодействуют с магнитными полями ротора и приводят в движение подвижный статор. В основе этого движения лежит основное свойство магнитов, когда одноименные полюса отталкиваются, а разноименные - притягиваются.

Управление магнитными полями в обмотках ротора и их сменой, происходит с помощью контроллера. Он представляет собой достаточно сложное устройство, способное коммутировать высокие токи с большой скоростью. Контроллер обязательно имеет в своей схеме бесколлекторный электродвигатель, что в значительной степени удорожает его использование.

В бесколлекторных электродвигателях отсутствуют какие-либо вращающиеся контакты и любые контакты, способные переключаться. В этом состоит их главное преимущество перед обычными электродвигателями, поскольку все потери от трения сведены к минимуму.

Возникновение бесколлекторных двигателей объясняется необходимостью создания электрической машины с множеством преимуществ. Бесколлекторный двигатель представляет собой устройство без коллектора, функцию которого берет на себя электроника.

БКЭПТ - бесколлекторные электродвигатели постоянного тока, могут быть мощностью, примером, 12, 30 вольт.

  • Выбор подходящего двигателя
  • Принцип работы
  • Устройство БКЭПТ
  • Датчики и их отсутствие
  • Отсутствие датчика
  • Понятие ШИМ частоты
  • Система arduino
  • Крепеж двигателя

Выбор подходящего двигателя

Чтобы подобрать агрегат, необходимо сравнить принцип работы и особенности коллекторных и бесколлекторных двигателей.

Слева направо: коллекторный двигатель и двигатель ФК 28-12 бесколлекторный

Коллекторные стоят меньше, но развивают невысокую скорость вращения крутящего момента. Они работают от постоянного тока, имеет небольшой вес и размер, доступный ремонт по замене деталей. Проявление негативного качества выявляется при получении огромного количества оборотов. Щетки контактируют с коллектором, вызывая трение, что может повредить механизм. Работоспособность агрегата снижается.

Щеточки не только требуют ремонта из-за быстрого износа, но и могут привести к перегреву механизма.

Главным преимуществом бесколлекторного двигателя постоянного тока является неимение контактов крутящего момента и переключения. Значит отсутствие источников потерь, как в двигателях с постоянными магнитами. Их функции выполняют транзисторы МОП. Ранее их стоимость была высокой, поэтому они не были доступны. Сегодня цена стала приемлемой, а показатели значительно улучшились. При отсутствии в системе радиатора, мощность ограничивается от 2,5 до 4 ватт, а ток работы от 10 до 30 Ампер. КПД бесколлекторных электродвигателей очень высокий.

Вторым преимуществом выступает настройки механики. Ось устанавливается на широкоподшипники. В структуре нет ломающих и стирающихся элементов.

Единственным минусом является дорогой электронный блок управления.

Рассмотрим, пример механики ЧПУ станка со шпинделем.

Замена коллекторного двигателя на бесколлекторный оградит от поломки шпинделя для ЧПУ. Под шпинделем имеется в видувал, обладающий правыми и левыми оборотами крутящего момента. Шпиндель для ЧПУ обладает большой мощностью. Скорость крутящего момента контролируется регулятором сервотестором, а обороты управляются автоматом контроллером. Стоимость ЧПУ со шпинделем около 4 тысяч рублей.

Принцип работы

Главная особенность механизма - отсутствие коллектора. А постоянные магниты установлены у шпинделя, является ротором. Вокруг него располагаются проволочные обмотки, которые имеют различные магнитные поля. Отличием бесколлекторных моторов 12 вольт является сенсор управления ротором, расположенный на нем же. Сигналы подаются в блок регулятора скорости.

Устройство БКЭПТ

Схему расположения магнитов внутри статора обычно применяют для двухфазных двигателей с небольшим количеством полюсов. Принцип крутящего момента вокруг статора применяют при необходимости получить двухфазный двигатель с небольшими оборотами.

На роторе расположены четыре полюса. Магниты в форме прямоугольника устанавливаются, чередуя полюсы. Однако не всегда количество полюсов равняется числу магнитов, которых может быть 12, 14. Но количество полюсов должно быть четным.Несколько магнитов могут составлять один полюс.

На картинке изображено 8 магнитов, формирующих 4 полюса. Момент силы зависит от мощности магнитов.

Датчики и их отсутствие

Регуляторы хода подразделяются на две группы: с датчиком положения ротора и без.

Токовые силы подаются на обмотки двигателя при особом положении ротора.Его определяет электронная система с помощью датчика положения. Они бывают разнообразных типов. Популярный регулятор хода - дискретный датчик с эффектом Холла. В двигателе на три фазы на 30 вольт будет использовано 3 датчика. Блок электроники постоянно располагает данными о положении ротора и направляет напряжение вовремя в нужные обмотки.

Распространенное приспособление, изменяющие свои выводы при переключении обмоток.

Устройство с разомкнутым контуром измеряет ток, частоту вращения. ШИМ каналы присоединяются к нижней части системы управления.

Три ввода присоединяются к датчику Холла. В случае изменения датчика Холла, начинается процесс переработки прерывания. Для обеспечения быстрого реагирования обработки прерывания подключается датчик Холла к младшим выводам порта.

Использование датчика положения с микроконтроллером

Для экономии на платежах за электроэнергию наши читатели советуют "Экономитель энергии Electricity Saving Box". Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Контроллер силы каскада лежит в основе AVR ядра, который обеспечивает грамотное управление бесколлекторным двигателем постоянного тока. AVR представляет собой чип для выполнения определенных задач.

Принцип работы регулятора хода может быть с датчиком и без. Программа платы AVR осуществляет:

  • пуск двигателя максимально быстро без использования внешних дополнительных приборов;
  • управление скоростью одним внешним потенциометром.

Отдельный вид автоматического управления сма, используется в стиральных машинах.

Отсутствие датчика

Для определения положения ротора необходимо проводить измерение напряжения на незадействованную обмотку. Данный способ применим при вращении двигателя, иначе он не будет действовать.

Бездатчиковые регуляторы хода изготавливаются легче, это объясняет их широкое распространение.

Контроллеры обладают следующими свойствами:

  • значение максимального постоянного тока;
  • значение максимального рабочего напряжения;
  • число максимальных оборотов;
  • сопротивление силовых ключей;
  • импульсная частота.

При подключении контроллера важно делать провода, как можно короче. Из-за возникновения бросков тока на старте. Если провод длинный, то могут возникнуть погрешности определения положения ротора. Поэтому контроллеры продаются с проводом 12 - 16 см.

Контроллеры обладают множеством программных настроек:

  • контроль выключения двигателя;
  • плавное или жёсткое выключение;
  • торможение и плавное выключение;
  • опережение мощности и КПД;
  • мягкий, жесткий, быстрый старт;
  • ограничения тока;
  • режим газа;
  • смена направления.

Контроллер LB11880, изображенный на рисунке, содержит драйвер бесколлекторного двигателя мощной нагрузки, то есть можно запустить двигатель напрямую к микросхеме без дополнительных драйверов.

Понятие ШИМ частоты

Когда происходит включение ключей, полная нагрузка подаётся на двигатель. Агрегат достигает максимальных оборотов. Для того чтобы управлять двигателем, нужно обеспечить регулятор питания. Именно это осуществляет широтно-импульсная модуляция (ШИМ).

Устанавливается необходимая частота открытия и закрытия ключей. Напряжение меняется с нулевого на рабочее. Чтобы управлять оборотами, необходимо наложить сигнал ШИМ на сигналы ключей.

Сигнал ШИМ может быть сформирован аппаратом на несколько выводов. Или создать ШИМ для отдельного ключа программой. Схема становится проще. ШИМ сигнал имеет 4- 80 килогерц.

Увеличение частоты приводит к большему количеству процессов перехода, что даёт выделение тепла. Высота частоты ШИМ повышает количество переходных процессов, от этого происходят потери на ключах. Маленькая частота не даёт нужную плавность управления.

Чтобы уменьшить потери на ключах при переходных процессах, ШИМ сигналы подаются на верхние или на нижние ключи по отдельности. Прямые потери рассчитываются по формуле P=R*I2, где P - мощность потерь, R - сопротивление ключа, I - сила тока.

Меньшее сопротивление минимизируют потери, увеличивает КПД.

Система arduino

Часто для управления бесколлекторными двигателями используется аппаратная вычислительная платформа arduino. В основе находится плата и среда разработки на языке Wiring.

В Плату arduino входит микроконтроллер Atmel AVR и элементная обвязка программирования и взаимодействия со схемами. На плате имеется стабилизатор напряжения. Плата Serial Arduino представляет собой несложную инвертирующую схему для конвертирования сигналов с одного уровня на другой. Программы устанавливаются через USB. В некоторых моделях, например, Arduino Mini, необходима дополнительная плата для программирования.

Язык программирования Arduino используется стандартный Processing. Некоторые модели arduino позволяют управлять несколькими серверами одновременно. Программы обрабатывает процессор, а компилирует AVR.

Проблемы с контроллером могут возникать из-за провалов напряжения и чрезмерной нагрузке.

Крепеж двигателя

Моторама- механизм крепления двигателя. Применяется в установках двигателей. Моторама представляет собой взаимосвязанные стержни и элементы каркаса. Моторамы бывают плоскими, пространственными по элементам. Моторама одиночного двигателя 30 вольт или нескольких устройств. Силовая схема моторамы состоит из совокупности стержней. Моторама устанавливается в сочетании ферменных и каркасных элементов.

Бесколлекторный электродвигатель постоянного тока незаменимый агрегат, применяемый как в быту, так и в промышленности. Например, ЧПУ станок, медицинское оборудование, автомобильные механизмы.

БКЭПТ выделяются надежностью, высокоточным принципом работы, автоматическим интеллектуальным управлением и регулированием.

Бесколлекторные двигатели обладают улучшенными показателями мощности на килограмм веса (собственного) и широким диапазоном скорости вращения; впечатляет и КПД этой силовой установки. Немаловажно, что от установки практически не излучаются радиопомехи. Это позволяет разместить рядом с ней чувствительное к помехам оборудование без опасений за корректность работы всей системы.

Расположить и использовать бесколлекторный двигатель можно в том числе и в воде, это не повлияет на него отрицательным образом. Также его конструкция предусматривает расположение и в агрессивных средах. Однако в этом случае следует заранее продумать месторасположение блока управления. Помните, что только при бережной аккуратной эксплуатации силовой установки она будет работать на вашем производстве эффективно и бесперебойно на протяжении долгих лет.

Длительный и кратковременный режим работы — основные для БД. Например для эскалатора или конвейера подходит длительный режим работы, в котором электродвигатель работает статично в течение долгого количества часов. Для длительного режима работы предусмотрена повышенная внешняя теплоотдача: тепловыделения в окружающую среду должны превышать внутренние тепловыделения силовой установки.

В кратковременном режиме работы двигатель за время своей работы не должен успеть нагреться до максимального значения температуры, т.е. должен быть выключен до наступления этого момента. Во время перерывов между включениями и работой двигателя он должен успеть остыть. Именно так работают бесколлекторные двигатели в подъемных лифтовых механизмах, электробритвах, сушилках фенах и другом современном электрооборудовании.

Сопротивление обмотки двигателя связано с коэффициентом полезного действия силовой установки. Максимального КПД можно достигнуть при наименьшем сопротивлении обмотки.

Максимальное рабочее напряжение — это предельное значение напряжения, которое можно подавать на обмотку статора силовой установки. Максимальное рабочее напряжение напрямую связано с максимальными оборотами двигателя и и максимальным значением тока обмотки. Максимальное значение тока обмотки лимитировано возможностью перегрева обмотки. Именно по этой причине необязательным, но рекомендуемым условием эксплуатации электродвигателей является отрицательная температура окружающей среды. Она позволяет значительно компенсировать перегрев силовой установки и увеличить длительность ее работы.

Максимальная мощность двигателя — это предельная мощность, которой может достигнуть система за несколько секунд. Стоит учитывать, что длительная работа электродвигателя на максимальной мощности неизбежно приведет к перегреву системы и сбою в его работе.

Номинальная мощность — это та мощность которую может развивать силовая установка в течение периодичного заявленного производителем разрешенного периода работы (одно включение).

Угол опережения фазы предусмотрен в электродвигателе из-за необходимости компенсации на задержку переключения фаз.

Работа бесщеточного электродвигателя основывается на электрических приводах, создающих магнитное вращающееся поле. В настоящее время существует несколько типов устройств, имеющих различные характеристики. С развитием технологий и использованием новых материалов, отличающихся высокой коэрцитивной силой и достаточным уровнем магнитного насыщения, стало возможным получение сильного магнитного поля и, как следствие, вентильных конструкций нового вида, в которых отсутствует обмотка на роторных элементах или стартере. Обширное распространение переключателей полупроводникового типа с высокой мощностью и приемлемой стоимостью ускорило создание подобных конструкций, облегчило исполнение и избавило от множества сложностей с коммутацией.

Принцип работы

Увеличение надежности, уменьшение цены и более простое изготовление обеспечивается отсутствием механических коммутационных элементов, обмотки ротора и постоянных магнитов. При этом повышение результативности возможно благодаря уменьшению потерь трения в коллекторной системе. Бесщеточный двигатель может функционировать на переменном либо непрерывном токе. Последний вариант отличается заметным сходством с Его характерной особенностью является формирование магнитного вращающегося поля и применение импульсного тока. В его основе присутствует электронный коммутатор, из-за чего повышается сложность конструкции.

Вычисление положения

Генерирование импульсов происходит в управляющей системе после сигнала, отражающего положение ротора. От стремительности вращения мотора напрямую зависит степень напряжения и подачи. Датчик в стартере определяет положение ротора и подает электрический сигнал. Вместе с магнитными полюсами, проходящими рядом с датчиком, меняется амплитуда сигнала. Также существуют бездатчиковые методики установления положения, к их числу относятся точки прохождения тока и преобразователи. ШИМ на входящих зажимах обеспечивают сохранение переменного уровня напряжения и управление мощностью.

Для ротора с неизменными магнитами подведение тока необязательно, благодаря чему отсутствуют потери в обмотке ротора. Бесщеточный двигатель для шуруповерта отличается низким уровнем инерции, обеспечиваемым отсутствием обмоток и механизированного коллектора. Таким образом появилась возможность использования на высоких скоростях без искрения и электромагнитного шума. Высокие значения тока и упрощение рассеивания тепла достигаются размещением нагревающих цепей на статоре. Стоит также отметить наличие электронного встроенного блока на некоторых моделях.

Магнитные элементы

Расположение магнитов может быть различным в соответствии с размерами двигателя, к примеру, на полюсах или по всему ротору. Создание качественных магнитов с большей мощностью возможно благодаря использованию неодима в сочетании с бором и железом. Несмотря на высокие показатели эксплуатации, бесщеточный двигатель для шуруповертас постоянными магнитами обладает некоторыми недостатками, в их числе утрата магнитных характеристик при высоких температурах. Но они отличаются большей эффективностью и отсутствием потерь по сравнению с машинами, в конструкции которых имеются обмотки.

Импульсы инвертора определяют механизма. При неизменной питающей частоте работа двигателя осуществляется с постоянной скоростью в разомкнутой системе. Соответственно, скорость вращения меняется в зависимости от уровня питающей частоты.

Характеристики

Работает в установленных режимах и имеет функционал щеточного аналога, скорость которого зависит от приложенного напряжения. Механизм обладает множеством достоинств:

  • отсутствие изменений при намагничивании и утечке тока;
  • соответствие скорости вращения и самого вращающего момента;
  • скорость не ограничивается влияющей на коллектор и роторную электрообмотку;
  • нет необходимости в коммутаторе и обмотке возбуждения;
  • используемые магниты отличаются небольшим весом и компактными размерами;
  • высокий момент силы;
  • энергонасыщенность и эффективность.

Использование

Постоянного тока с постоянными магнитами встречается в основном в устройствах с мощностью в пределах 5 кВт. В более мощной аппаратуре их применение нерационально. Также стоит отметить, что магниты в двигателях данного типа отличаются особой чувствительностью к высоким температурам и сильным полям. Индукционные и щеточные варианты лишены таких недостатков. Двигатели активно используются в автомобильных приводах благодаря отсутствию трения в коллекторе. Среди особенностей нужно выделить равномерность вращающего момента и тока, что обеспечивает снижение акустического шума.

Бытовая и медицинская техника, авиамоделирование, трубозапорные приводы газо- и нефтепроводов – это далеко не полный перечень областей применения бесколлекторных двигателей (БД) постоянного тока. Давайте рассмотрим устройство и принцип действия этих электромеханических приводов, чтобы лучше понять их достоинства и недостатки.

Общие сведения, устройство, сфера применения

Одна из причин проявления интереса к БД — это возросшая потребность в высокооборотных микродвигателях, обладающих точным позиционированием. Внутренне устройство таких приводов продемонстрировано на рисунке 2.

Рис. 2. Устройство бесколлекторного двигателя

Как видите, конструкция представляет собой ротор (якорь) и статор, на первом имеется постоянный магнит (или несколько магнитов, расположенных в определенном порядке), а второй оборудован катушками (В) для создания магнитного поля.

Примечательно, что эти электромагнитные механизмы могут быть как с внутренним якорем (именно такой тип конструкции можно увидеть на рисунке 2), так и внешним (см. рис. 3).


Рис. 3. Конструкция с внешним якорем (outrunner)

Соответственно, каждая из конструкций имеет определенную сферу применения. Устройства с внутренним якорем обладают высокой скоростью вращения, поэтому используются в системах охлаждения, в качестве силовых установок дронов и т.д. Приводы с внешним ротором используются там, где требуется точное позиционирование и устойчивость к перегрузкам по моменту (робототехника, медицинское оборудование, станки ЧПУ и т.д.).


Принцип работы

В отличие от других приводов, например, асинхронной машины переменного тока, для работы БД необходим специальный контроллер, который включает обмотки таким образом, чтобы векторы магнитных полей якоря и статора были ортогональны друг к другу. То есть, по сути, устройство-драйвер регулирует вращающий момент, действующий на якорь БД. Наглядно этот процесс продемонстрирован на рисунке 4.


Как видим, для каждого перемещения якоря необходимо выполнять определенную коммутацию в обмотке статора двигателя бесколлекторного типа. Такой принцип работы не позволяет плавно управлять вращением, но дает возможность быстро набрать обороты.

Отличия коллекторного и бесколлекторного двигателя

Привод коллекторного типа отличается от БД как конструктивными особенностями (см. рис 5.), так и принципом работы.


Рис. 5. А – коллекторный двигатель, В – бесколлекторный

Рассмотрим конструктивные отличия. Из рисунка 5 видно, что ротор (1 на рис. 5) двигателя коллекторного типа, в отличие от бесколлекторного, имеет катушки, у которых простая схема намотки, а постоянные магниты (как правило, два) установлены на статоре (2 на рис. 5). Помимо этого на валу установлен коллектор, к которому подключаются щетки, подающие напряжение на обмотки якоря.

Кратко расскажем о принципе работы коллекторных машин. Когда на одну из катушек подается напряжение, происходит ее возбуждение, и образуется магнитное поле. Оно вступает во взаимодействие с постоянными магнитами, это заставляет проворачиваться якорь и размещенный на нем коллектор. В результате питание подается на другую обмотку и цикл повторяется.

Частота вращения якоря такой конструкции напрямую зависит от интенсивности магнитного поля, которое, в свою очередь, прямо пропорционально напряжению. То есть, чтобы увеличить или уменьшить обороты, достаточно повысить или снизить уровень питания. А для реверса необходимо переключить полярность. Такой способ управления не требует специального контролера, поскольку регулятор хода можно сделать на базе переменного резистора, а обычный переключатель будет работать как инвертор.

Конструктивные особенности двигателей бесколлекторного типа мы рассматривали в предыдущем разделе. Как вы помните, их подключение требует наличия специального контролера, без которого они просто не будут работать. По этой же причине эти двигатели не могут использоваться как генератор.

Стоит также отметить, что в некоторых приводах данного типа для более эффективного управления отслеживаются положения ротора при помощи датчиков Холла. Это существенно улучшает характеристики бесколлекторных двигателей, но приводит к удорожанию и так недешевой конструкции.

Как запустить бесколлекторный двигатель?

Чтобы заставить работать приводы данного типа, потребуется специальный контроллер (см. рис. 6). Без него запуск невозможен.


Рис. 6. Контроллеры бесколлекторных двигателей для моделизма

Собирать самому такое устройство нет смысла, дешевле и надежней будет приобрести готовый. Подобрать его можно по следующим характеристикам, свойственным драйверам шим каналов:

  • Максимально допустимая сила тока, эта характеристика приводится для штатного режима работы устройства. Довольно часто производители указывают такой параметр в названии модели (например, Phoenix-18). В некоторых случаях приводится значение для пикового режима, который контролер может поддерживать несколько секунд.
  • Максимальная величина штатного напряжения для продолжительной работы.
  • Сопротивление внутренних цепей контроллера.
  • Допустимое число оборотов, указывается в rpm. Сверх этого значения контроллер не позволит увеличить вращение (ограничение реализовано на программном уровне). Следует обратить внимание, что частота вращения всегда приводится для двухполюсных приводов. Если пар полюсов больше, следует разделить значение на их количество. Например, указано число 60000 rpm, следовательно, для 6-и магнитного двигателя частота вращения составит 60000/3=20000 prm.
  • Частота генерируемых импульсов, у большинства контролеров этот параметр лежит в пределах от 7 до 8 кГц, более дорогие модели позволяют перепрограммировать параметр, увеличив его до 16 или 32 кГц.

Обратим внимание, что первые три характеристики определяют мощность БД.

Управление бесколлекторным двигателем

Как уже указывалось выше, управление коммутацией обмоток привода осуществляется электроникой. Чтобы определить, когда производить переключения, драйвер отслеживает положение якоря при помощи датчиков Холла. Если привод не снабжен такими детекторами, то в расчет берется обратная ЭДС, которая возникает в неподключенных катушках статора. Контроллер, который, по сути, является аппаратно-программным комплексом, отслеживает эти изменения и задает порядок коммутации.

Трёхфазный бесколлекторный электродвигатель постоянного тока

Большинство БД выполняются в трехфазном исполнении. Для управления таким приводом в контролере имеется преобразователь постоянного напряжения в трехфазное импульсное (см. рис.7).


Рисунок 7. Диаграммы напряжений БД

Чтобы объяснить, как работает такой вентильный двигатель, следует вместе с рисунком 7 рассматривать рисунок 4, где поочередно изображены все этапы работы привода. Распишем их:

  1. На катушки «А» подается положительный импульс, в то время как на «В» — отрицательный, в результате якорь сдвинется. Датчиками зафиксируется его движение и подастся сигнал для следующей коммутации.
  2. Катушки «А» отключается, и положительный импульс идет на «С» («В» остается без изменения), далее подается сигнал на следующий набор импульсов.
  3. На «С» — положительный, «А» — отрицательный.
  4. Работает пара «В» и «А», на которые поступают положительный и отрицательный импульсы.
  5. Положительный импульс повторно подается на «В», и отрицательный на «С».
  6. Включаются катушки «А» (подается +) и повторяется отрицательный импульс на «С». Далее цикл повторяется.

В кажущейся простоте управления есть масса сложностей. Нужно не только отслеживать положение якоря, чтобы произвести следующую серию импульсов, а и управлять частотой вращения, регулируя ток в катушках. Помимо этого следует выбрать наиболее оптимальные параметры для разгона и торможения. Стоит также не забывать, что контроллер должен быть оснащен блоком, позволяющим управлять его работой. Внешний вид такого многофункционального устройства можно увидеть на рисунке 8.


Рис. 8. Многофункциональный контроллер управления бесколлекторным двигателем

Преимущества и недостатки

Электрический бесколлекторный двигатель имеет много достоинств, а именно:

  • Срок службы значительно дольше, чем у обычных коллекторных аналогов.
  • Высокий КПД.
  • Быстрый набор максимальной скорости вращения.
  • Он более мощный, чем КД.
  • Отсутствие искр при работе позволяет использовать привод в пожароопасных условиях.
  • Не требуется дополнительное охлаждение.
  • Простая эксплуатация.

Теперь рассмотрим минусы. Существенный недостаток, который ограничивает использование БД – их относительно высокая стоимость (с учетом цены драйвера). К числу неудобств следует отнести невозможность использования БД без драйвера, даже для краткосрочного включения, например, чтобы проверить работоспособность. Проблемный ремонт, особенно если требуется перемотка.