Назначение и состав рулевого устройства. Конструкция рулей, рулевое устройство, классификация судов, транспортные суда, служебно-вспомогательные суда, суда технического флота и специальные суда, суда на подводных крыльях. Рис.3.13 Подвесной небалансирный

Рулевое устройство предназначено для обеспечения управляемости судном (устойчивости на курсе и поворотливости).

Общий вид рулевого устройства показан на рис.6.20. В состав рулевого устройства входят руль, привод руля, привод управления.

Вруль входит перо руля и баллер. Основой пера руля является мощная вертикальная балка –рудерпис . С рудерписом соединены горизонтальные рёбра жесткости и петли. По сечению рули делятся на пластинчатые и обтекаемые. Обтекаемый руль - пустотелый в сечении имеет каплевидную форму, улучшает управляемость, увеличивает КПД винта, обладая собственной

Рис. 6.19.Основные типы рулей: а – обыкновенный небалансирный; б – балансирный; в – балансирный подвесной; г – полубалансирный полуподвесной.

плавучестью, уменьшает нагрузку на подшипники. Из-за этих преимуществ практически все морские суда имеют обтекаемые рули. По положению оси вращения рули делятся на: небалансирные, полубалансирные и балансирные, По методу крепления к корпусу судна - обыкновенные, подвесные и полуподвесные (рис.6.19). У балансирных и полубалансирных рулей часть площади руля (до 20%) расположена в нос от оси вращения руля, что уменьшает момент и мощность, необходимую для поворота руля и нагрузку на подшипники.

Баллер служит для передачи вращающего момента на перо руля и его поворота. Баллер – прямой или изогнутый стержень, который крепится одним концом к перу руля с помощью фланца или конуса, а другой конец входит через гельмпортовую трубу и сальник в корпус судна. Баллер поддерживается подшипниками, на его верхний конец насажен румпель – одноплечий или двуплечий рычаг.

Рулевой привод связывает баллер руля с рулевой машиной и состоит из румпеля и соответствующей передачи к нему от рулевой машины. Наибольшее применение имеет гидравлический плунжерный привод рис. 6.21 и рулевая машина с качающимися цилиндрами рис. 6.23. Находят применение зубчатосекторный привод(устаревший тип), румпельный и винтовой (рис.6.22).

Рис. 6.20. Рулевое устройство.

1 – перо руля; 2 – рудерпис; 3 – баллер; 4 – нижний подшипник; 5 – рулевая машина; 6 – гельпортовая труба.

От рулевого устройства зависит безопасность судна, поэтому требуется, чтобы кроме основного привода был и запасной. Основной привод должен обеспечивать поворот руля на полном ходу судна с 35° одного борта до 30° другого борта за 28 сек (механический ограничитель поворота руля на 35 о, а конечный выключатель на 30 о). Запасной привод должен обеспечивать перекладку руля при половинной скорости (но не менее 7 узлов) с 20° на 20° другого борта за 60 сек. Аварийный привод должен быть предусмотрен, если какая-либо ватерлиния проходит выше палубы румпельной (помещения, где размещена рулевая машина).

Учитывая особую важность рулевого устройства для безопасности судна, на современных судах обычно устанавливают два одинаковых привода, которые соответствуют требованиям к основному приводу (рис. 6.21). Это значительно повышает надёжность рулевого устройства, так как в этом случае возможна взаимная замена узлов.

При гидроприводе поворот руля осуществляется за счёт подачи масла высокого давления в один из гидроцилиндров и под действием плунжера поворачивается румпель и руль (из противоположного гидроцилиндра масло свободно сливается).

Рис. 6.21. Общий вид (а) и схема действия электрогидравлической рулевой машины (б): 1-баллер, 2 – румпель, 3 – цилиндр, 4 – плунжер, 5 – электродвигатель, 6 – масляный насос, 7 – пост управления.

Рис. 6.22. Рулевые приводы: а – румпельный; б – винтовой; в – секторный.

1- перо руля; 2- баллер; 3- румпель; 4- штуртрос; 5- зубчатый сектор; 6- пружинный амортизатор;

7-винтовой шпиндель; 8- ползун.

Ручной румпельный привод (рис.6.22.а ) применяется на катерах. Так как тросы намотаны на барабан в противоположных направлениях, то при вращении штурвала с барабаном один трос удлиняется, а второй укорачивается, что заставляет поворачиваться румпель и руль.

Винтовой привод (рис.6.22.б ) применяется на небольших судах. Так как резьба на шпинделе в районе ползунов противоположного направления, то при вращении шпинделя в одну сторону ползуны сближаются, а при вращении в другую - удаляются друг от друга. Это заставляет поворачиваться румпель и руль.

Зубчато-секторный привод раннее достаточно широко применялся (рис.6.22.в ). Приводится в движение электромотором через редуктор. В этом приводе румпель как всегда жёстко посажен на баллер, а зубчатый сектор свободно вращается на баллере. Румпель связан с сектором пружинным аммортизатором, что смягчает удары волн передаваемые от пера руля на редуктор

Привод управления рулевой машины связывает штурвал, расположенный в рулевой рубке и рулевую машину. Наиболее распространены электрический и гидравлический приводы.


Рис. 6.23. Рулевой привод с качающимися цилиндрами

В узкостях на малом ходу судно плохо слушается руля, так как малая скорость набегающего на руль потока резко уменьшает поперечную гидродинамическую силу на руле. Поэтому в этих случаях обычно прибегают к помощи буксиров или на судне устанавливают средства активного управления (САУ): подруливающие устройства, выдвижные поворотные винтовые колонки, активные рули, поворотные насадки.

Подруливающие устройства (рис. 6.24.а) обычно устанавливают в носовой части судна, а иногда и в кормовой. Для того, чтобы ниша в корпусе не создавала дополнительного сопротивления на ходу судна, она закрывается жалюзями.

Выдвижная рулевая колонка обеспечивает упор в любом направлении, поэтому она часто используется на малых судах и плавсредствах для удержания на одном месте на больших глубинах. На малых глубинах возможно повреждение колонки.

Активный руль (рис.6.25) – это установленный в пере руля небольшой винт с приводом от электродвигателя или гидродвигателя, расположенного в капсуле, встроенной в руль. В некоторых случаях привод винта осуществляется от электродвигателя, расположенного в румпельной через вал, который проходит через полый баллер. При неработающем главном двигателе руль может поворачиваться до 90 о и создавать упор в нужном направлении при работе вспомогательного винта. Иногда этот вариант САУ используется, когда необходимо обеспечить малую скорость судна порядка 2 – 4 узлов

Рис. 6.24. Подруливающее устройство (а) и выдвижная поворотная движительно-рулевая колонка (б).

Поворотная насадка (рис. 6.25.б) представляет собой обтекаемое кольцеобразное тело, внутри которого вращается винт. При повороте насадки отклоняется отбрасываемая винтом струя воды, что вызывает поворот судна. Поворотная насадка значительно улучшает поворотливость на малых ходах и особенно на заднем ходу. Это объясняется тем, что вся струя воды отклоняется насадкой как на переднем, так и на заднем ходу, в отличие от руля. Кроме того, в ряде случаев насадка позволяет увеличить КПД винта.

К

рыльчатый движитель, как было показано в первой части, позволяет перемещаться судну в любом направлении.

Рис.6.25 Активный руль (а) и поворотная насадка (б): 1- перо руля; 2- вспомогательный винт; 3- электродвигатель;4- баллер; 5- электрокабель; 6- гребной винт; 7-насадка поворотная.

Все большую популярность приобретают азимутальные комплексы “AZIPOD”, которые устанавливаю на пассажирских судах и даже на суда арктического плавания. Типичная компоновка предусматривает: две кормового расположения поворотные винторулевые колонки, удерживающие гондолы, вмещающие в себя электродвигатели, приспособленные для вращения “тянущих” гребных винтов (ВФШ) (рис.6.26). Мощность каждой из колонок до 24000 квт.

Рис.6.26. Винторулевые колонки типа “AZIPOD”

Специальный гидравлический привод обеспечивает поворот каждой из гондол на 360° с угловой скоростью до 8° за секунду. Управление вращением винтов дает возможность выбрать любой режим работы в диапазоне от “полного вперед” до “полного назад”. Существенно, что режим “полный назад” может быть обеспечен судну без разворота колонок-гондол на 180°.

Ходовой режим” -используется при движении судна с относительно большой скоростью; гондолы при этом поворачиваются синхронно (углы совместной перекладки в пределах ±35°). Отмечается высокая гидродинамическая эффективность такого рулевого комплекса: управляемость судна остается приемлемой даже при остановке вращения винтов. Ходовой режим допускает экстренное торможение (за счет реверса – без поворота колонок);

Режим маневрирования” (мягкая форма) – используется при движении судна с относительно малой скоростью. В этом режиме одна из гондол сохраняют функцию “маршевого” устройства, вторую разворачивают на 90°, заставляя работать в качестве мощного кормового подруливающего устройства;

Режим маневрирования” (жесткая форма ) – винты, переложенные на правый и левый борт (+45° и –45°), заставляют вращаться “вперед” или “назад”. Если винт правой гондолы рабо­тает “вперед”, левой – “назад”, возникает поперечная управляющая сила в направлении правого борта; в симметричной ситуации – в направлении левого борта.

Рулевое устройство — совокупность механизмов, агрегатов и узлов, обеспечивающих управление судном. Основными конструктивными элементами любого рулевого устройства являются:
— рабочий орган — перо руля (руль) или поворотная направляющая насадка;
— баллер, соединяющий рабочий орган с рулевым приводом;
— рулевой привод, передающий усилие от рулевой машины к рабочему органу;
— рулевая машина, создающая усилие для поворота рабочего органа;
— привод управления, связывающий рулевую машину с постом управления.
На современных судах устанавливают пустотелые обтекаемые рули, состоящие из горизонтальных ребер и вертикальных диафрагм, покрытых стальной обшивкой (рис. 4). Обшивку крепят к раме электрозаклепками. Внутреннее пространство руля заполняют смолистыми веществами или самовспенивающимся пенополиуретаном ППУ3С.
Рули бывают в зависимости от расположения оси вращения:
1) балансирные (рис. 4, 6), ось вращения проходит через перо руля;
2) небалансирные (рис. 5), ось вращения совпадает с передней кромкой пера;
3) полубалансирные рули.
Момент сопротивления повороту балансирного или полубалансирного руля меньше, чем небалансирного, и соответственно меньше требуемая мощность рулевой машины.
По способу крепления рули разделяют на:
1) Подвесные, которые крепят горизонтальным фланцевым соединением к баллеру и устанавливают только на малых и малых маломерных добывающих судах.
2) простые.
Простой одноопорный балансирный руль (см. рис. 4) штырем упирается в упорный стакан пятки ахтерштевня. Для уменьшения трения цилиндрическая часть штыря имеет бронзовую облицовку, а в пятку ахтерштевня вставлена бронзовая втулка. Соединение руля с баллером — горизонтальное фланцевое на шести болтах или конусное. При конусном соединении коническая концевая часть баллера вставляется в конусное отверстие верхней торцевой диафрагмы руля и плотно затягивается гайкой, доступ к которой обеспечивается через крышку, поставленную на винтах, входящих в обшивку руля. Изогнутый баллер дает возможность раздельного демонтажа руля и баллера (при их взаимном развороте).
Простой двухопорный небалансирный руль (рис. 5) сверху закрыт листовой диафрагмой и литой головкой, имеющей фланец для соединения руля с баллером и петлю под верхнюю штыревую опору. В петлю рудерпоста вставляют бакаутовые, бронзовые или другие втулки.
Недостаточная жесткость нижней опоры балансирных рулей часто становится причиной вибрации кормы судна и руля. Этот недостаток отсутствует у балансирного руля со съемным рудерпостом (рис. 6). В перо такого руля вмонтирована труба, через которую проходит съемный рудерпост. Нижний конец рудерпоста закрепляют конусом в пятке ахтерштевня, а верхний крепят фланцем к ахтерштевню. Внутри трубы устанавливают подшипники. Рудерпост в местах прохождения через подшипники имеет бронзовую облицовку. Крепление руля к баллеру — фланцевое.
В пере активного руля (рис. 7) помещен вспомогательный гребной винт. При перекладке руля направление упора вспомогательного винта изменяется и возникает дополнительный момент, поворачивающий судно.
Направление вращения вспомогательного винта противоположно направлению вращения основного. Электродвигатель размещается в пере руля или в румпельном отделении. В последнем случае электродвигатель непосредственно соединен с вертикальным валом, передающим вращение редуктору движителя. Винт активного руля может обеспечить судну ско-рость до 5 уз.
На многих судах промыслового флота вместо руля устанавливают поворотную направляющую насадку (рис. 8), которая создает такую же, как и руль, боковую силу при меньших углах перекладки. Причем момент на бал-лере насадки примерно в два раза меньше момента на баллере руля. Для обеспечения устойчивого положения насадки при перекладках и увеличения ее рулевого действия к хвостовой части насадки в плоскости оси баллера крепят стабилизатор. Конструкция и крепление насадки аналогичны конструкции и креплению балансирного руля.

Рис.4 Рабочие органы рулевых устройств: руль одноопорный балансирный.
1 - баллер; 2 - фланец; 3 - обшивка пера руля; 4 - наделка-обтекатель; 5 - вертикальная диафрагма; 6 - горизонтальное ребро; 7 - пятка ахтерштевня; 8 - гайка; 9 - шайба; 10 - рулевой штырь; 11 - бронзовая облицовка штыря; 12 - бронзовая втулка (подшипник); 13 - упорный стакан; 14 - канал для демонтажа упорного стакана.

Рис.5. Рабочие органы рулевых устройств: руль двухопорный небалансирный.
1 - баллер; 2 - фланец; 3 - обшивка пера руля; 7 - пятка ахтерштевня; 8 - гайка; 9 - шайба; 10 - рулевой штырь; 11 - бронзовая облицовка штыря; 12 - бронзовая втулка (подшипник); 15 - гельмпортовая труба; 17 - рудерпост; 18 - бакаут.

Рис.6 Руль балансирный со съемным рудерпостом.
1 - баллер; 3 - обшивка пера руля; 7 - пятка ахтерштевня; 11 - бронзовая облицовка штыря; 12 - бронзовая втулка (подшипник); 15 - гельмпортовая труба; 19 - фланец рудерпоста; 20 — съемный рудерпост; 21 — вертикальная труба.

Рис. 7 Активный руль.
3 - обшивка пера руля; 4 - наделка-обтекатель; 23 - редуктор с обтекателем; 24 - стабилизатор;

Баллер — изогнутый или прямой стальной цилиндрический брус, выведенный через гельмпортовую трубу в румпельное отделение. Соединение гельмпортовой трубы с наружной обшивкой и настилом палубы — водонепроницаемое. В верхней части трубы устанавливают уплотнительный сальник и подшипники баллера, которые могут быть опорными и упорными.
Рулевое устройство должно иметь приводы: главный и вспомогатель-ный, а при их расположении ниже грузовой ватерлинии дополнительный аварийный, размещенный выше палубы переборок. Вместо вспомогательного привода допускается установка сдвоенного главного, состоящего из двух автономных агрегатов. Все приводы должны действовать независимо друг от друга, но, как исключение, допускается наличие у них некоторых общих деталей. Главный привод должен работать от источников энергии, вспомогательный может быть ручным.
Конструкция привода руля зависит от типа рулевой машины. На судах промыслового флота устанавливают электрические и электрогидравлические рулевые машины. Первые выполняют в виде электродвигателя постоянного тока, вторые — в виде комплекса электродвигатель — насос в сочетании с плунжерным, лопастным или винтовым гидравлическим приводом. Ручные рулевые машины в сочетании с штуртросовым, валиковым или гидравлическим рулевым приводом встречаются только на малых и маломерных добывающих судах.
Дистанционное управление рулевой машиной из рулевой рубки обеспечивают телединамические передачи, называемые рулевыми телепередача-ми или рулевыми телемоторами. На современных промысловых судах нашли применение гидравлические и электрические рулевые телепередачи. Часто они дублируются или комбинируются в электрогидравлические.
Электрическая телепередача состоит из специального контроллера, расположенного в рулевой тумбе и связанного электрической системой с пусковым устройством рулевой машины. Управление контроллером осу-ществляется с помощью штурвала, рукоятки или кнопки.
Гидравлическая телепередача состоит из ручного насоса, приводимого в работу штурвалом, и системы трубок, связывающих насос с пусковым устройством рулевой машины. Рабочей жидкостью системы служат незамерзающая смесь воды с глицерином или минеральное масло.
Управление главным и вспомогательным рулевыми приводами независимо и производится с ходового мостика, а также из румпельного отделения. Время перехода с главного на вспомогательный привод не должно превышать 2 мин. При наличии постов управления главным рулевым приводом в рулевой и промысловой рубках выход из строя системы управления с одного поста не должен препятствовать управлению с другого поста.
Угол перекладки руля определяют по установленному у каждого поста управления аксиометру. Кроме того, на секторе рулевого привода или других деталях, жестко связанных с баллером, наносят шкалу для определения действительного положения руля. Автоматическую согласованность между скоростью, направлением вращения и положением штурвала и скоростью, стороной и углом перекладки руля обеспечивает сервомотор.
Тормоз (стопор) руля предназначен для удержания руля при аварийном ремонте или при переходе с одного привода на другой. Наиболее часто применяют ленточный стопор, зажимающий непосредственно баллер руля. Секторные приводы имеют колодочные стопоры, в которых тормозная колодка прижимается к специальной дуге на секторе. В гидравлических приводах роль стопора выполняют клапаны, перекрывающие доступ рабочей жидкости к приводам.
Удержание судна на заданном курсе при благоприятных погодных условиях без участия рулевого обеспечивает авторулевой, принцип работы кото-рого основан на применении гирокомпаса или магнитного компаса. Органы обычного управления связаны с авторулевым. Когда судно ложится на заданный курс, руль по аксиометру устанавливают в нулевое положение и включают авторулевой. Если под действием ветра, волнения или течения судно отклоняется от заданного курса, электродвигатель системы, получив импульс от датчика компаса, обеспечивает возвращение судна на заданный курс. При изменении курса или маневрировании авторулевой отключают и переходят на обычное рулевое управление.
Общие требования Регистра к рулевому устройству следующие:
— Каждое судно, за исключением судовых барж, должно иметь надежное устройство, обеспечивающее его поворотливость и устойчивость на курсе: рулевое устройство, устройство с поворотной насадкой и другие;
— С учетом назначения и особенной эксплуатации судна допускается использование указанных устройств совместно со средствами активного управления судном (САУС).
— Время перекладки полностью погруженного руля или поворотной насадки главным приводом (при наибольшей скорости переднего хода) с 35° одного борта на 30° другого не должно превышать 28 с, вспомогательным (при скорости, равной половине наибольшей скорости переднего хода или 7 узлов, в зависимости от того, какое значение больше) с 15° одного борта на 15° другого — 60 с, аварийным (при скорости не менее 4 узлов) не ограничивается.
В Регистре Части III Главы 2 изложены требования, предъявляемые ко всем элементам рулевого устройства, даны формулы для расчета эффектив-ности и рулей и поворотных насадок.

Рулевое устройство предназначено для сохранения заданного курса или изменения его в нужном направлении. В состав рулевого устройства входят руль, рулевой привод, рулевая машина и системы дистанционного управления рулевой машиной с ходового мостика.

Руль. Основными органами управления большинства современных морских судов являются рули: обыкновенные, балансирные и полубалансирные. На некоторых судах улучшение ходкости и управляемости достигается установкой винтов с насадками, активных рулей, подруливающих устройств, крыльчатых движителей и др. Перекладка обычных и активных рулей, а также поворотных насадок с нужной скоростью на требуемый угол (от диаметральной плоскости - ДП) или удержание их в заданном положении производится рулевой машиной.

Рулевой привод . Рулевые приводы делятся на две группы: с гибкой связью (штуртросовые, цепные) и с жесткой связью (зубчатые, винтовые, гидравлические).

Выбор типа рулевого привода обусловливается расположением рулевой машины на судне. На большинстве судов, особенно маломерных, рулевая машина располагается в рулевой рубке или под ней на уровне верхней палубы. При таком расположении рулевой машины ее связь с баллером руля осуществляется обычно через гибкую цепную или тросовую передачу. Охватывающую тяговый барабан рулевой машины цепь направляют через ролики вдоль бортов и присоединяют концами к сектору или румпелю, закрепленному на баллере руля. На. прямолинейных участках цепь часто заменяют стальными штангами. В бортовую проводку включают талрепные стяжки для выборки слабины и амортизирующие буферные пружины, работающие на сжатие.

На рис. 4.1 схематически изображен штуртросовый привод с рычажным румпелем.

Рис. 4.1. Схема штуртросового привода с рычажным румпелем

Румпель 5 представляет собой рычаг, один конец которого жестко насажен на головку баллера руля О. Ко второму концу румпеля присоединен штуртрос 4, выполненный из цепи или стального троса. Штуртрос проходит по направляющим блокам 2 и навивается на барабан 1. При вращении барабана один конец штуртроса навивается и тянет за собой румпель, который поворачивает руль, а второй конец в это время сматывается с барабана. Для смягчения толчков от ударов волн о перо руля в системе штуртроса предусмотрены пружинные амортизаторы 3.

Недостатком описанного рулевого привода является появление неизбежной слабины в штуртросах. Это приводит к неточности перекладки руля, так как при перемене направления вращения штуртросового барабана сначала будет выбираться слабина, т. е. будет мертвый ход.

Провисание штуртроса устранено в штуртросовых приводах с секторным румпелем (рис. 4.2). Замена румпеля сектором позволяет уравнять длины сбегающего и набегающего тросов при перекладке пера руля.


Рис. 4.2. Схема секторного штуртросового привода


Рис. 4.3, Схема секторного зубчатого привода

На внешней стороне сектора 3 имеются две канавки, в которых размещены два противоположных конца штуртроса, закрепленные на ступице в точках 1 и 2. Трос к проушинам крепят через амортизирующие пружины, работающие на сжатие. Провисание штуртроса исключается, так как последний не сходит полностью с сектора при его повороте на углы перекладки руля и обеспечивает постоянство плеча, создающего момент на баллере.

Секторный зубчатый рулевой привод показан на рис. 4.3.

Он состоит из зубчатого сектора 2, свободно сидящего на голове баллера 1 руля, и румпеля 3, жестко укрепленного на баллере. Связь между сектором и румпелем осуществляется с помощью буферных пружин 4, которые предохраняют зубчатую передачу от поломки при ударе волн о перо руля. Зубчатый сектор находится в зацеплении с цилиндрической шестерней 5, вал 6 которой вращается рулевой машиной. Секторный зубчатый привод позволяет осуществлять точную перекладку руля.

Расположение рулевой машины на корме в специальном румпельном отделении обеспечивает надежную связь машины с румпелем, однако при этом требуется довольно длинная кинематическая связь рулевой машины с ходовым мостиком.

В современном судостроении более широко применяются рулевые приводы с жесткой связью. Рулевые машины расположены в непосредственной близости от рулевого привода.

На рис. 4.4 изображен винтовой привод, который может приводиться в действие электродвигателем или ручным штурвалом.


Рис. 4.4. Винтовой привод

Привод состоит из вала 12 с правой и левой резьбами, по которому при вращении движутся в разные стороны ползуны 11 и 4, скользящие вдоль неподвижных направляющих 5 и 10. Тягами 3 и 13 ползуны соединены с концами румпеля 1, насаженного на баллер руля 2. Винтовой вал приводится во вращение червяком 8, сидящим на валу двигателя и находящимся в зацеплении с червячным колесом 7 и парой цилиндрических шестерен 9 и 6. Если при вращении вала ползун 11 пойдет вправо, а ползун 4 - влево, то руль будет перекладываться на правый борт. При обратном движении вала ползуны 11 и 4 будут расходиться и руль будет перекладываться на левый борт.

Рулевой привод такой конструкции часто применяют в качестве запасного ручного привода. Его недостатками являются косвенное влияние конечной длины тяг на точность перемещения ползуна, низкий механический КПД и жесткость соединений.

Рулевое устройство предназначено для удержания судна на курсе или изменение направления его движения. Оно обеспечивает управляемость судна.

На судах применяют рули: обыкновенные, балансирные и полубалансирные.

Руль обыкновенный – это руль, перо которого расположено в корму от оси вращения.

По конструкции различают 2 типа рулей: 1-слойные или плоские, опирающихся на рёбра, соединённые с рудерписом, и 2-хслойные, или обтекаемые, у которых перо руля состоит из рамы, обшитой стальными листами. Пустое пространство заполняется деревом или гарпиусом с целью предупреждение коррозии.

Для навешивания обыкновенного руля на рудерпирсе и рудерпосте делаются петли. Отверстия в петлях на рудерпирсе конические, а на рудерпосте цилиндрические. Нижняя петля на рудерпосте не имеет сквозного отверстия и является опорой, воспринимающей вес руля. В подпятнике под штырь кладётся «чечевица». В процессе эксплуатации при износе чечевица заменяется. Для того, чтобы ударом волны руль не был поднят вверх и сорван с петель, 1 из штырей, обычно верхний имеет головку. Такая конструкция позволяет снять руль не входя в док.

Для предупреждения перекладки руля на угол, больший 35 о, устанавливают ограничители: выступы на рудерпирсе и рудерпосте, цепи, выступы на палубе.

Верхней частью рудерпирс соединяется с баллером. Способы соединения могут быть различными, но должно быть выполнено 1-о непременное условие: руль должен сниматься без вертикального сдвига баллера. Наиболее употребительным является фланцевое соединение на болтах. Верхний конец баллера выводится на ту палубу, где расположен рулевой привод.

Для того, чтобы предотвратить поступление воды в корпус судна через вырез для прохода баллера, он помещается в гельмпортовую трубу, соединение которой с наружной обшивкой и настилом палубы делается водонепроницаемым.

Использование обтекаемых рулей позволяет уменьшить сопротивление воды при движении судна. Благодаря этому повышается управляемость судна и уменьшается мощность, затрачиваемая на перекладку руля.

Рама пустотелого руля состоит из рудерпирса, наружного обода и нескольких рёбер. Листы обшивки соединяются с рамой при помощи сварки.

Навешивание обыкновенного 2-хслойного руля производится так же, как и 1-слойного, но делают 2 штыря, что позволяет максимально приблизить перо руля к рудерпосту (его также делают обтекаемым). Он является неподвижной частью пера руля – контрруль. Эта конструкция позволяет увеличить скорость судна на 5-6%.

а) Обыкновенный плоский руль имеет ось вращения у передней кромки руля. Перо руля 9, изготовленное из толстого стального листа, с обеих сторон подкреплено ребрами жесткости 8. Они отлиты или откованы заодно с утолщенной вертикальной кромкой руля – редерпирсом 7 – с петлями 6, в которых надежно закреплены штыри 5 руля, навешиваемого на петли 4 рудерпоста 1. Штыри имеют бронзовую облицовку, а петли рудерпоста – бакаутовые втулки. Нижний штырь рудерпирса входит в углубление пятки ахтерштевня 10, в которое для уменьшения трения вставляется бронзовая втулка с закаленной стальной чечевицей на дне. Пятка ахтерштевня через чечевицу воспринимает на себя давление руля.

Для предупреждения смещения руля вверх один из штырей, обычно верхний, на нижнем конце имеет головку. Верхняя часть рудерпирса соединяется с баллером 2 руля специальным фланцем 3. Фланец несколько смещен от оси вращения, поэтому образуется плечо и облегчается поворот пера руля. Смещение фланца позволяет во время ремонта пера руля снять его с петель рудерпоста без подъема баллера, разобщив фланец и развернув перо и баллер в разные стороны.

Обыкновенные плоские рули просты по конструкции и прочны, но создают большое сопротивление движению судна, поэтому требуется большое усилие для их перекладки. На современных судах применяют обтекаемые, балансирные и полубалансирные рули.

б) Перо обтекаемого руля представляет собой сварной металлический водонепроницаемый каркас, обшитый листовой сталью.

Перу придают обтекаемую форму и иногда устанавливают на нем дополнительно специальные наделки – обтекатели. Рудерпост также делают обтекаемым.

в) Убалансирного руля часть пера смещена от оси вращения к носу судна. Площадь этой части, называемой балансирной, составляет 20 – 30% всей площади пера. При перекладке руля давление встречных потоков воды на балансирную часть пера содействует повороту руля, уменьшая нагрузку на рулевую машину.

г) Полубалансирный руль отличается от балансирного тем, что его балансирная часть имеет меньшую высоту, чем основная.

Рули балансирный и полубалансирный – это рули, у которых перо руля располагается по обе стороны оси вращения. Эти рули требуют меньших усилий для перекладки. Часть площади, расположенной в нос от оси вращения, - балансирная часть руля. Отношение площади балансирной части ко всей остальной – степень балансировки и выражается в %. На современных судах степень балансировки равна 20-30%

Руль называется балансирным , если высота его балансирной части равна высоте главной части руля. Если балансирная часть имеет по оси баллера меньшую высоту, чем главная часть, то такой руль – полубалансирный.

Балансирный руль навешивается на ахтерштевень, не имеющий рудерпоста. Руль навешивается на 2-е петли в верхней части и подпятнике, но может быть и иная конструкция: руль удерживается баллером, который имеет подпятник в нижней части гельмпорта. Часто встречается балансирный подвесной руль. Перо такого руля вообще не имеет опор и удерживается только баллером, который в свою очередь лежит на упорных и опорных подшипниках.

Активный руль представляет собой обтекаемый руль, снабжённый небольшим гребным винтом. При перекладке руля к возникающей на пере силе добавляется сила упора винта. Для повышения эффективности винт помещают в направляющую насадку. Винт вращается от электромотора, помещённого в каплевидную наделку на пере руля. Мощность установки колеблется от 50 до 700л.с. При аварии главных машин можно использовать рулевой винт, судно сохранит ход 4-5 узлов.

Носовые подруливающие устройства . В носовой части судна делаются поперечные туннели, в которых размещаются небольшие гребные винты. Диаметр подруливающих винтов достигает 2м, мощность мотора до 800л.с. Для изменения направления струи применяют систему заслонок, а также реверсирование гребного винта.

Подруливающие устройства обеспечивают управляемость на малом и заднем ходах, позволяя перемещаться даже лагом. Могут применяться на самых различных судах.

Секторный привод со штуртросовой передачей . На баллере вместо прямого румпеля закреплён сектор. Каждая ветвь штуртроса по специальной канавке обегает сектор и крепится на его ступице. При такой конструкции в нерабочей ветви штуртроса слабина устранена. Величина центрального угла сектора должна быть такой, чтобы штуртрос не имел больших изломов. Обычно он равен двойному углу перекладки руля, т.е. 70 о.

При ремонте руля в море его требуется закрепить в определённом положении. Для этого на рулевом приводе имеется тормоз. На сектор устанавливают тормозную дугу, к которой винтовым приводом прижимают тормозную колодку.

В секторном приводе с зубчатой передачей зубья располагаются по дуге сектора и зацепляются с шестернёй, связанной с рулевым приводом. Зубчатый сектор свободно сидит на баллере и связан с прямым румпелем, закреплённым на баллере жёстко, через буферные пружины. Такая связь предохраняет зубья сектора и шестерни от поломки при ударах волны в перо руля.

В настоящее время широкое применение получают гидравлические приводы , являющиеся разновидностью румпельного привода. На прямом продольном румпеле установлен ползун, который соединяется штангами с поршнями цилиндров. Цилиндры соединены с насосом, приводимым в движение электродвигателем. При перекачки жидкости из 1-го цилиндра в другой поршни перемещаются и разворачивают румпель. В систему привода включен перепускной клапан. При ударе волны в перо руля в 1-ом из цилиндров создаётся избыточное давление, жидкость по дополнительному трубопроводу через перепускной клапан поступает в другой цилиндр, выравнивая давление. Таким образом смягчаются рывки румпеля.

Для переведение в действие рулевых приводов используют паровые машины и электродвигатели. На больших судах, как правило, применяют ручные приводы, устанавливаемые в рулевой рубке. Для облегчения перекладки руля между штурвалом и барабаном рулевой машины включают зубчатую или червячную передачу.

=Матрос II класса (стр.56)=

Среди общепромышленных, употребляемых для учета продукции и сырья, распространены товарные, автомобильные, вагонные, вагонеточные и др. Технологические служат для взвешивания продукции в ходе производства при технологически непрерывных и периодических процессах. Лабораторные применяют для определения влажности материалов и полуфабрикатов, проведения физикохимического анализа сырья и других целей. Различают технические, образцовые, аналитические и микроаналитнческие .

Можно разделить на ряд типов в зависимости от физических явлений, на которых основан принцип их действия. Наиболее распространены приборы магнитоэлектрической, электромагнитной, электродинамической, ферродинамической и индукционной систем.

Схема прибора магнитоэлектрической системы показана на рис. 1.

Неподвижная часть состоит из магнита 6 и магнитопровода 4 с полюсными наконечниками 11 и 15, между которыми установлен строго центрированный стальной цилиндр 13. В зазоре между цилиндром и полюсными наконечниками, где сосредоточено равномерное радиально направленное , размещается рамка 12 из тонкой изолированной медной проволоки.

Рамка укреплена на двух осях с кернами 10 и 14, упирающихся в подпятники 1 и 8. Противодействующие пружины 9 и 17 служат токоподводами, соединяющими обмотку рамки с электрической схемой и входными зажимами прибора. На оси 4 укреплена стрелка 3 с балансными грузиками 16 и противодействующая пружина 17, соединенная с рычажком корректора 2.

01.04.2019

1.Принцип активной радиолокации.
2.Импульсная РЛС. Принцип работы.
3.Основные временные соотношения работы импульсной РЛС.
4.Виды ориентации РЛС.
5.Формирование развертки на ИКО РЛС.
6.Принцип функционирования индукционного лага.
7.Виды абсолютных лагов. Гидроакустический доплеровский лаг.
8.Регистратор данных рейса. Описание работы.
9.Назначение и принцип работы АИС.
10.Передаваемая и принимаемая информация АИС.
11.Организация радиосвязи в АИС.
12.Состав судовой аппаратуры АИС.
13.Структурная схема судовой АИС.
14.Принцип действия СНС GPS.
15.Сущность дифференциального режима GPS.
16.Источники ошибок в ГНСС.
17.Структурная схема приемника GPS.
18.Понятие об ECDIS.
19.Классификация ЭНК.
20.Назначение и свойства гироскопа.
21.Принцип работы гирокомпаса.
22.Принцип работы магнитного компаса.

Соединение кабелей технологический процесс получения электрического соединения двух отрезков кабеля с восстановлением в месте соединения всех защитных и изоляционных оболочек кабеля и экранных оплеток.

Перед соединением кабелей измеряют сопротивление изоляции . У неэкранированных кабелей для удобства измерений один вывод мегаомметра поочередно подключают к каждой жиле, а второй — к соединённым между собой остальным жилам. Сопротивление изоляции каждой экранированной жилы измеряют при подключении выводов к жиле и ее экрану. , полученное в результате измерений, должно быть не менее нормированного значения, установленного для данной марки кабеля.

Измерив сопротивление изоляции, переходят к установлению или нумерации жил, или направлений повива, которые указывают стрелками на временно закрепленных бирках (рис. 1).

Закончив подготовительные работы, можно приступать к разделке кабелей. Геометрию разделки соединений концов кабелей видоизменяют в целях обеспечения удобства восстановления изоляции жил и оболочки, а для многожильных кабелей также для получения приемлемых размеров места соединения кабелей.

МЕТОДИЧЕСКОЕ ПОСОБИЕ К ПРАКТИЧЕСКОЙ РАБОТЕ: «ЭКСПЛУАТАЦИЯ СИСТЕМ ОХЛАЖДЕНИЯ СЭУ»

ПО ДИСЦИПЛИНЕ: «ЭКСПЛУАТАЦИЯ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК И БЕЗОПАСНОЕ НЕСЕНИЕ ВАХТЫ В МАШИННОМ ОТДЕЛЕНИИ »

ЭКСПЛУАТАЦИЯ СИСТЕМЫ ОХЛАЖДЕНИЯ

Назначение системы охлаждения:

  • отвод теплоты от ГД;
  • отвод теплоты от вспомогательного оборудования;
  • подвод теплоты к ОУ и другому оборудованию (ГД перед пуском, ВДГ поддержание в "горячем" резерве и т.д.);
  • прием и фильтрация забортной воды;
  • продувание кингстонных ящиков летом от забивания медузами, водорослями, грязью, зимой - ото льда;
  • обеспечение работы ледовых ящиков и др.
Структурно система охлаждения подразделяется на пресной воды и систему охлаждения заборной воды. Системы охлаждения АДГ выполняются автономно.