Детонационный ракетный двигатель. Увеличение скорости истечения реактивной струи

Камеры сгорания с
непрерывной детонацией

Идея камеры сгорания с непрерывной детонацией предложена в 1959 г. академиком АН СССР Б.В. Войцеховским . Непрерывно-детонационная камера сгорания (НДКС) представляет собой кольцевой канал, образованный стенками двух коаксиальных цилиндров. Если на днище кольцевого канала поместить смесительную головку, а другой конец канала оборудовать реактивным соплом, то получится проточный кольцевой реактивный двигатель. Детонационное горение в такой камере можно организовать, сжигая топливную смесь, подаваемую через смесительную головку, в детонационной волне, непрерывно циркулирующей над днищем. При этом в детонационной волне будет сгорать топливная смесь, вновь поступившая в камеру сгорания за время одного оборота волны по окружности кольцевого канала. Частота вращения волны в камере сгорания диаметром около 300 мм будет иметь величину порядка 105 об/мин и выше. К достоинствам таких камер сгорания относят: (1) простоту конструкции; (2) однократное зажигание; (3) квазистационарное истечение продуктов детонации; (4) высокую частоту циклов (килогерцы); (5) короткую камеру сгорания; (6) низкий уровень эмиссии вредных веществ (NO, CO и др.); (7) низкий уровень шума и вибраций. К недостаткам таких камер относят: (1) необходимость компрессора или турбонасосного агрегата; (2) ограниченность управления; (3) сложность масштабирования; (4) сложность охлаждения.

Крупные инвестиции в НИОКР и ОКР по этой тематике в США начались сравнительно недавно: 3-5 лет назад (ВВС, ВМФ, НАСА, корпорации аэрокосмической отрасли). Судя по открытым публикациям, в Японии, Китае, Франции, Польше и Корее в настоящее время очень широко развернуты работы по проектированию таких камер сгорания с помощью методов вычислительной газовой динамики. В Российской Федерации исследования в этом направлении наиболее активно проводятся в НП «Центр ИДГ» и в ИГиЛ СО РАН.

Важнейшие достижения в этой области науки и техники перечислены ниже. В 2012 г. специалисты фирм Pratt & Whitney и Rocketdyne (США) опубликовали результаты испытаний экспериментального ракетного двигателя модульной конструкции с заменяемыми форсунками для подачи топливных компонентов и с заменяемыми соплами. Проведены сотни огневых испытаний с использованием разных топливных пар: водород - кислород, метан - кислород, этан - кислород и др. На основе испытаний построены карты устойчивых рабочих режимов двигателя с одной, двумя и более детонационными волнами, циркулирующими над днищем камеры. Исследованы различные способы зажигания и поддержания детонации. Максимальное время работы двигателя, достигнутое в опытах с водяным охлаждением стенок камеры, составило 20 с. Сообщается, что это время ограничивалось только запасом топливных компонентов, но не тепловым состоянием стенок. Польские специалисты совместно с европейскими партнерами работают над созданием непрерывно-детонационной камеры сгорания для вертолетного двигателя. Им удалось создать камеру сгорания, устойчиво работающую в режиме непрерывной детонации в течение 2 с на смеси водорода с воздухом и керосина с воздухом в компоновке с компрессором двигателя ГТД350 советского производства. В 2011-2012 г.г. в Институте гидродинамики СО РАН экспериментально зарегистрирован процесс непрерывно-детонационного горения гетерогенной смеси микронных частиц древесного угля с воздухом в дисковой камере сгорания диаметром 500 мм. До этого в ИГиЛ СО РАН были успешно проведены эксперименты с кратковременной (до 1-2 с) регистрацией непрерывной детонации воздушных смесей водорода и ацетилена, а также кислородных смесей ряда индивидуальных углеводородов. В 2010-2012 г.г. в Центре ИДГ с использованием уникальных вычислительных технологий созданы основы проектирования непрерывно-детонационных камер сгорания как для ракетных, так и для воздушно-реактивных двигателей и впервые расчетным способом воспроизведены результаты экспериментов при работе камеры с раздельной подачей топливных компонентов (водорода и воздуха). Кроме того, в 2013 г. в НП «Центр ИДГ» спроектирована, изготовлена и испытана непрерывно-детонационная кольцевая камера сгорания диаметром 400 мм, шириной зазора 30 мм и высотой 300 мм, предназначенная для выполнения программы исследований, направленных на экспериментальное доказательство энергоэффективности непрерывно-детонационного горения топливно-воздушных смесей.

Важнейшая проблема, с которой сталкиваются разработчики при создании непрерывно-детонационных камер сгорания, работающих на штатном топливе - та же, что и для импульсно-детонационных камер сгорания, т.е. низкая детонационная способность таких топлив в воздухе. Другая важная проблема - снижение потерь давления при подаче топливных компонентов в камеру сгорания, чтобы обеспечить повышение полного давления в камере. Еще одна проблема - охлаждение камеры. В настоящее время способы преодоления этих проблем изучаются.

Большинство отечественных и зарубежных экспертов считают, что обе обсуждаемые схемы организации детонационного цикла являются перспективными как для ракетных, так и для воздушно-реактивных двигателей. Никаких фундаментальных ограничений для практической реализации этих схем не существует. Основные риски на пути создания камер сгорания нового типа связаны с решением инженерных проблем.
Варианты конструкций и способы организации рабочего процесса в импульсно-детонационных и непрерывно-детонационных камерах сгорания защищены многочисленными отечественными и зарубежными патентами (сотни патентов). Главный недостаток патентов - замалчивание или практически неприемлемое (по разным причинам) решение основной проблемы реализации детонационного цикла - проблемы низкой детонационной способности штатных топлив (керосин, бензин, дизтопливо, природный газ) в воздухе. Предлагаемые практически неприемлемые решения этой проблемы заключаются в использовании предварительной тепловой или химической подготовки топлива перед подачей в камеру сгорания, использование активных добавок, включая кислород, или использование специальных топлив с высокой детонационной способностью. Применительно к двигателям, использующим активные (самовоспламеняющиеся) топливные компоненты, эта проблема не стоит, однако остаются актуальными проблемы их безопасной эксплуатации.

Рис. 1: Сравнение удельных импульсов воздушно-реактивных двигателей: ТРД , ПВРД , ПуВРД и ИДД

Применение импульсно-детонационных камер сгорания, в основном, ориентировано на замену существующих камер сгорания в таких воздушно-реактивных силовых установках как ПВРД и ПуВРД. Дело в том, что по такой важной характеристике двигателя, как удельный импульс, ИДД, перекрывая весь диапазон скоростей полета от 0 до числа Маха М = 5, теоретически обладает удельным импульсом, сравнимым (при числе Маха полета М от 2.0 до 3.5) с ПВРД и существенно превышающим удельный импульс ПВРД при числе Маха полета М от 0 до 2 и от 3.5 до 5 (рис. 1). Что касается ПуВРД, то его удельный импульс при дозвуковых скоростях полета почти в 2 раза меньше, чем у ИДД. Данные по удельному импульсу для ПВРД заимствованы из , где проведены одномерные расчеты характеристик идеальных ПВРД, работающих на керосино-воздушной смеси с коэффициентом избытка горючего 0.7. Данные по удельному импульсу воздушно-реактивных ИДД заимствованы из статей , где проведены многомерные расчеты тяговых характеристик ИДД в условиях полета с дозвуковыми и сверхзвуковыми скоростями на разных высотах. Отметим, что в отличие от расчетов расчеты в проведены с учетом потерь, вызванных диссипативными процессами (турбулентность, вязкость, ударные волны и др.).

Для сравнения на рис. 1 представлены результаты расчетов для идеального турбореактивного двигателя (ТРД). Видно, что ИДД уступает идеальному ТРД по удельному импульсу при числах Маха полета до 3.5, однако превосходит ТРД по этому показателю при М > 3.5. Таким образом, при М > 3.5 и ПВРД, и ТРД уступают воздушно-реактивным ИДД по удельному импульсу, и это делает ИДД весьма перспективным. Что касается низких сверхзвуковых и дозвуковых скоростей полета, то ИДД, уступая ТРД по удельному импульсу, все же может считаться перспективным ввиду необычайной простоты конструкции и дешевизны, что крайне важно для одноразовых приложений (средства доставки, мишени и др.).

Наличие «скважности» в тяге, создаваемой такими камерами, делает их малопригодными для маршевых жидкостных ракетных двигателей (ЖРД). Тем не менее, запатентованы схемы импульсно-детонационных ЖРД многотрубной конструкции с низкой скважностью тяги. Кроме того, такие силовые установки могут применяться в качестве двигателей для коррекции орбиты и орбитальных перемещений искусственных спутников Земли и иметь множество других приложений.

Применение непрерывно-детонационных камер сгорания, в основном, ориентировано на замену существующих камер сгорания в ЖРД и ГТД.

В России испытали пульсирующий детонационный двигатель

Опытно-конструкторское бюро имени Люльки разработало, изготовило и испытало опытный образец пульсирующего резонаторного детонационного двигателя с двухстадийным сжиганием керосиновоздушной смеси. Как сообщает ИТАР-ТАСС , средняя измеренная тяга двигателя составила около ста килограммов, а длительность непрерывной работы ─ более десяти минут. До конца текущего года ОКБ намерено изготовить и испытать полноразмерный пульсирующий детонационный двигатель.

По словам главного конструктора ОКБ имени Люльки Александра Тарасова, в ходе испытаний моделировались режимы работы, характерные для турбореактивного и прямоточного двигателей. Измеренные величины удельной тяги и удельного расхода топлива оказались на 30-50 процентов лучше, чем у обычных воздушно-реактивных двигателей. В ходе экспериментов производилось многократное включение и выключение нового двигателя, а также регулирование тяги.

На основе проведенных исследований, полученных при испытании данных, а также схемно-конструкторского анализа ОКБ имени Люльки намерено предложить разработку целого семейства пульсирующих детонационных авиационных двигателей. В частности, могут быть созданы двигатели с коротким ресурсом работы для беспилотных летательных аппаратов и ракет и самолетные двигатели с крейсерским сверхзвуковым режимом полета.

В перспективе на основе новых технологий могут быть созданы двигатели для ракетно-космических систем и комбинированных силовых установок самолетов, способных выполнять полеты в атмосфере и за ее пределами.

По оценке конструкторского бюро, новые двигатели позволят увеличить тяговооруженность самолетов в 1,5-2 раза. Кроме того, при использовании таких силовых установок дальность полета или масса авиационных средств поражения могут увеличиться на 30-50 процентов. При этом удельный вес новых двигателей будет в 1,5-2 раза меньше аналогичного показателя обычных реактивных силовых установок.

О том, что в России ведутся работы по созданию пульсирующего детонационного двигателя, сообщалось в марте 2011 года. Об этом заявил тогда Илья Федоров, управляющий директор научно-производственного объединения «Сатурн», в состав которого входит ОКБ имени Люльки. О каком именно типа детонационного двигателя шла речь, Федоров не уточнил.

В настоящее время известны три вида пульсирующих двигателей ─ клапанные, бесклапанные и детонационные. Принцип работы этих силовых установок заключается в периодической подаче в камеру сгорания топлива и окислителя, где происходит воспламенение топливной смеси и истечение продуктов сгорания из сопла с образованием реактивной тяги. Отличие от обычных реактивных двигателей заключается в детонационном горении топливной смеси, при котором фронт горения распространяется быстрее скорости звука.

Пульсирующий воздушно-реактивный двигатель был изобретен еще в конце XIX века шведским инженером Мартином Вибергом. Пульсирующий двигатель считается простым и дешевым в изготовлении, однако из-за особенностей горения топлива ─ малонадежным. Впервые новый тип двигателя был использован серийно во время Второй мировой войны на немецких крылатых ракетах Фау-1. На них устанавливался двигатель Argus As-014 компании Argus-Werken.

В настоящее время несколько крупных оборонных фирм мира занимаются исследованиями в области создания высокоэффективных пульсирующих реактивных двигателей. В частности, работы ведут французская компания SNECMA и американские General Electric и Pratt & Whitney. В 2012 году Научно-исследовательская лаборатория ВМС США объявила о намерении разработать спиновый детонационный двигатель, который должен будет заменить на кораблях обычные газотурбинные силовые установки.

Спиновые детонационные двигатели отличаются от пульсирующих тем, что детонационное горение топливной смеси в них происходит непрерывно ─ фронт горения перемещается в кольцевой камере сгорания, в которой топливная смесь постоянно обновляется.

Издание «Военно-промышленный Курьер» сообщает великолепную новость из области прорывных ракетных технологий. Детонационный ракетный двигатель испытан в России, сообщил в пятницу вице-премьер Дмитрий Рогозин на своей странице в Facebook.

«Прошли успешные испытания так называемых детонационных ракетных двигателей, разработанных в рамках программы Фонда перспективных исследований», — цитирует вице-премьера Интерфакс-АВН.


Считается, что детонационный ракетный двигатель — один из путей реализации концепции так называемого моторного гиперзвука, то есть создания гиперзвуковых летательных аппаратов, способных за счет собственного двигателя достигать скорости в 4 — 6 Махов (Мах — скорость звука).

Портал russia-reborn.ru приводит интервью одного из ведущих профильных двигателистов России по поводу детонационных ракетных двигателей.

Интервью с Петром Левочкиным, главным конструктором «НПО Энергомаш им. академика В.П. Глушко».

Создаются двигатели для гиперзвуковых ракет будущего
Прошли успешные испытания так называемых детонационных ракетных двигателей, давшие очень интересные результаты. Опытно-конструкторские работы в этом направлении будут продолжены.

Детонация — это взрыв. Можно ли ее сделать управляемой? Можно ли на базе таких двигателей создать гиперзвуковое оружие? Какие ракетные двигатели будут выводить необитаемые и пилотируемые аппараты в ближний космос? Об этом наш разговор с заместителем гендиректора — главным конструктором «НПО Энергомаш им. академика В.П. Глушко» Петром Левочкиным.

Петр Сергеевич, какие возможности открывают новые двигатели?

Петр Левочкин: Если говорить о ближайшей перспективе, то сегодня мы работаем над двигателями для таких ракет, как «Ангара А5В» и «Союз-5», а также другими, которые находятся на предпроектной стадии и неизвестны широкой публике. Вообще наши двигатели предназначены для отрыва ракеты от поверхности небесного тела. И она может быть любой — земной, лунной, марсианской. Так что, если будут реализовываться лунная или марсианская программы, мы обязательно примем в них участие.

Какова эффективность современных ракетных двигателей и есть ли пути их совершенствования?

Петр Левочкин: Если говорить об энергетических и термодинамических параметрах двигателей, то можно сказать, что наши, как, впрочем, и лучшие зарубежные химические ракетные двигатели на сегодняшний день достигли определенного совершенства. Например, полнота сгорания топлива достигает 98,5 процента. То есть практически вся химическая энергия топлива в двигателе преобразуется в тепловую энергию истекающей струи газа из сопла.

Совершенствовать двигатели можно по разным направлениям. Это и применение более энергоемких компонентов топлива, введение новых схемных решений, увеличение давления в камере сгорания. Другим направлением является применение новых, в том числе аддитивных, технологий с целью снижения трудоемкости и, как следствие, снижение стоимости ракетного двигателя. Все это ведет к снижению стоимости выводимой полезной нагрузки.

Однако при более детальном рассмотрении становится ясно, что повышение энергетических характеристик двигателей традиционным способом малоэффективно.

Использование управляемого взрыва топлива может дать ракете скорость в восемь раз выше скорости звука
Почему?

Петр Левочкин: Увеличение давления и расхода топлива в камере сгорания, естественно, увеличит тягу двигателя. Но это потребует увеличение толщины стенок камеры и насосов. В результате сложность конструкции и ее масса возрастают, энергетический выигрыш оказывается не таким уж и большим. Овчинка выделки стоить не будет.


То есть ракетные двигатели исчерпали ресурс своего развития?

Петр Левочкин: Не совсем так. Выражаясь техническим языком, их можно совершенствовать через повышение эффективности внутридвигательных процессов. Существуют циклы термодинамического преобразования химической энергии в энергию истекающей струи, которые гораздо эффективнее классического горения ракетного топлива. Это цикл детонационного горения и близкий к нему цикл Хамфри.

Сам эффект топливной детонации открыл наш соотечественник — впоследствии академик Яков Борисович Зельдович еще в 1940 году. Реализация этого эффекта на практике сулила очень большие перспективы в ракетостроении. Неудивительно, что немцы в те же годы активно исследовали детонационный процесс горения. Но дальше не совсем удачных экспериментов дело у них не продвинулось.

Теоретические расчеты показали, что детонационное горение на 25 процентов эффективней, чем изобарический цикл, соответстветствующий сгоранию топлива при постоянном давлении, который реализован в камерах современных жидкостно-рактивных двигателей.

А чем обеспечиваются преимущества детонационного горения по сравнению с классическим?

Петр Левочкин: Классический процесс горения — дозвуковой. Детонационный — сверхзвуковой. Быстрота протекания реакции в малом объеме приводит к огромному тепловыделению — оно в несколько тысяч раз выше, чем при дозвуковом горении, реализованному в классических ракетных двигателях при одной и той же массе горящего топлива. А для нас, двигателистов, это означает, что при значительно меньших габаритах детонационного двигателя и при малой массе топлива можно получить ту же тягу, что и в огромных современных жидкостных ракетных двигателях.

Не секрет, что двигатели с детонационным горением топлива разрабатывают и за рубежом. Каковы наши позиции? Уступаем, идем на их уровне или лидируем?

Петр Левочкин: Не уступаем — это точно. Но и сказать, что лидируем, не могу. Тема достаточно закрыта. Один из главных технологических секретов состоит в том, как добиться того, чтобы горючее и окислитель ракетного двигателя не горели, а взрывались, при этом не разрушая камеру сгорания. То есть фактически сделать настоящий взрыв контролируемым и управляемым. Для справки: детонационным называют горение топлива во фронте сверхзвуковой ударной волны. Различают импульсную детонацию, когда ударная волна движется вдоль оси камеры и одна сменяет другую, а также непрерывную (спиновую) детонацию, когда ударные волны в камере движутся по кругу.

Насколько известно, с участием ваших специалистов проведены экспериментальные исследования детонационного горения. Какие результаты были получены?

Петр Левочкин: Были выполнены работы по созданию модельной камеры жидкостного детонационного ракетного двигателя. Над проектом под патронажем Фонда перспективных исследований работала большая кооперация ведущих научных центров России. В их числе Институт гидродинамики им. М.А. Лаврентьева, МАИ, «Центр Келдыша», Центральный институт авиационного моторостроения им. П.И. Баранова, Механико-математический факультет МГУ. В качестве горючего мы предложили использовать керосин, а окислителя — газообразный кислород. В процессе теоретических и экспериментальных исследований была подтверждена возможность создания детонационного ракетного двигателя на таких компонентах. На основе полученных данных мы разработали, изготовили и успешно испытали детонационную модельную камеру с тягой в 2 тонны и давлением в камере сгорания около 40 атм.

Данная задача решалась впервые не только в России, но и мире. Поэтому, конечно, проблемы были. Во-первых, связанные с обеспечением устойчивой детонации кислорода с керосином, во-вторых, с обеспечением надежного охлаждения огневой стенки камеры без завесного охлаждения и массой других проблем, суть которых понятна лишь специалистам.

Детонационный двигатель часто рассматривают как альтернативу стандартному двигателю внутреннего сгорания или ракетному. Он оброс множеством мифов и легенд. Рождаются и живут эти легенды только по тому, что распространяющие их люди или забыли школьный курс физики, или вообще прогуляли его полностью!

Рост удельной мощности или тяги

Заблуждение первое.

Из роста скорости сгорания топлива вплоть до 100 раз, можно будет поднять удельную (в расчете на единице рабочего объема) мощность двигателя внутреннего сгорания. Для работающих на детонационных режимах ракетных двигателей в 100 раз вырастит тяга на единицу массы.

Примечание: Как всегда, не понятно о какой массе идет речь — о массе рабочего тела или всей ракеты в целом.

Связи между тем с какой скоростью горит топливо и удельной мощностью нет вообще никакой.

Есть связь между степенью сжатия и удельной мощностью. Для бензиновых двигателей внутреннего сгорания степень сжатия около 10. В двигателях, использующих детонационный режим, ее можно увечить приблизительно в 2 раза, что как раз реализуется в дизельных двигателях, которые имеют степень сжатия уже около 20. Собственно работают в режиме детонации. То есть, конечно, степень сжатия повысить можно, но после того как произошла детонация, это никому не нужно! Ни о каких 100 раз не может быть и речи!! Более того, рабочий объем ДВС, скажем, 2л, объем всего двигателя литров 100 или 200. Экономия по объему составит 1%!!! А вот дополнительный «расход»(толщина стенок, новые материалы и тд) будет мериться не в процентах, а в разах или десятках раз!!

Для справки. Произведенная работа пропорционально, грубо говоря, V*P (у адиабатического процесса присутствуют коэффициенты, но сути сейчас не меняет). Если объем уменьшить в 100 раз, значит начальное давление должна вырасти в те же 100 раз! (чтобы произвести такую же работу).

Литровую мощность можно поднять если вообще отказаться от сжатия или оставить его на том же уровне, но подавать углеводороды (в большем количестве) и чистый кислород в весовом соотношении около 1:2,6-4, в зависимости от состава углеводородов, или вообще жидкий кислород (где уже это было:-)). Тогда можно и литровую мощность повысить, и КПД (за счет роста «степени расширения» которая может достигать 6000!). Но на пути стоит как способность камеры сгорания выдержать такие давления и температуры, так и необходимость «питаться» не атмосферным кислородом, а запасенным чистым или вообще жидким кислородом!

Собственно некое подобие этого — использование закиси азота. Закись азота — это просто способ поставить повышенное количество кислорода в камеру сгорания.

Но никакого отношения к детонации эти способы не имеют!!

Можно предложить дальнейшее развитие таких экзотических способов повышения литровой мощности — использовать вместо кислорода фтора. Это более сильный окислитель, т.е. реакции с ним идут с большим выделением энергии.

Увеличение скорости истечения реактивной струи

Залужение второе.
В двигателях ракет, использующих детонационные режимы работы, в результате того, что режим сгорания происходит на скоростях выше скорости звука в данной среде (которая зависит от температуры и давления), в камере сгорания параметры давления и температуры увеличиваются в несколько раз, повышается скорость выходящей реактивной струи. Это пропорционально улучшает все параметры подобного двигателя, в том числе, снижает его массу и расход, а значит и необходимый запас топлива.

Как уже отмечалось выше нельзя повысить степень сжатия более чем в 2 раза. Но опять-таки скорость истечения газов зависит от подведенной энергии и их температуры! (Закон сохранения энергии). При том же количестве энергии (том же количестве топлива) повысить скорость можно только понизив их температуру. Но этому уже препятствуют законы термодинамики.

Детонационные ракетные двигатели — будущее межпланетных полетов

Заблуждение третье.

Только ракетные двигатели на детонационных технологиях позволяют получить скоростные параметры требуемые для межпланетных перелетов на основе химической реакции окисления.

Ну это заблуждение хотя бы логически последовательное. Вытекает из первых двух.

Никакие технологии не способны ничего уже выжать из реакции окисления! По крайней мере для известных веществ. Скорость истечения определяется энергетическим балансом реакции. Часть этой энергии, согласно законам термодинамики, можно перевести в работу (кинетическую энергию). Т.е. даже если вся энергия перейдет в кинетическую, то это предел на основе закона сохранения энергии и никакими детонациями, степенями сжатия и тд его нельзя преодолеть.

Кроме энергетического баланса очень важный параметр — «энергия на нуклон». Если сделать небольшие расчеты, то можно получить что реакция окисления атома углерода(C) дает в 1,5 раза больше энергии чем реакция окисления молекулы водорода (H2). Но из-за того что продукт окисления углерода (СО2) в 2,5 раза тяжелее продукта окисления водорода (Н2О), скорость истечения газов из водородных двигателей на 13%. Правда, надо еще учитывать теплоемкость продуктов горения, но это дает совсем небольшую поправку.

Опытно-конструкторское бюро имени Люльки разработало, изготовило и испытало опытный образец пульсирующего резонаторного детонационного двигателя с двухстадийным сжиганием керосиновоздушной смеси. Как сообщает ИТАР-ТАСС, средняя измеренная тяга двигателя составила около ста килограммов, а длительность непрерывной работы ─ более десяти минут. До конца текущего года ОКБ намерено изготовить и испытать полноразмерный пульсирующий детонационный двигатель.

По словам главного конструктора ОКБ имени Люльки Александра Тарасова, в ходе испытаний моделировались режимы работы, характерные для турбореактивного и прямоточного двигателей. Измеренные величины удельной тяги и удельного расхода топлива оказались на 30-50 процентов лучше, чем у обычных воздушно-реактивных двигателей. В ходе экспериментов производилось многократное включение и выключение нового двигателя, а также регулирование тяги.



На основе проведенных исследований, полученных при испытании данных, а также схемно-конструкторского анализа ОКБ имени Люльки намерено предложить разработку целого семейства пульсирующих детонационных авиационных двигателей. В частности, могут быть созданы двигатели с коротким ресурсом работы для беспилотных летательных аппаратов и ракет и самолетные двигатели с крейсерским сверхзвуковым режимом полета.

В перспективе на основе новых технологий могут быть созданы двигатели для ракетно-космических систем и комбинированных силовых установок самолетов, способных выполнять полеты в атмосфере и за ее пределами.

По оценке конструкторского бюро, новые двигатели позволят увеличить тяговооруженность самолетов в 1,5-2 раза. Кроме того, при использовании таких силовых установок дальность полета или масса авиационных средств поражения могут увеличиться на 30-50 процентов. При этом удельный вес новых двигателей будет в 1,5-2 раза меньше аналогичного показателя обычных реактивных силовых установок.

О том, что в России ведутся работы по созданию пульсирующего детонационного двигателя, сообщалось в марте 2011 года. Об этом заявил тогда Илья Федоров, управляющий директор научно-производственного объединения «Сатурн», в состав которого входит ОКБ имени Люльки. О каком именно типе детонационного двигателя шла речь, Федоров не уточнил.

В настоящее время известны три вида пульсирующих двигателей ─ клапанные, бесклапанные и детонационные. Принцип работы этих силовых установок заключается в периодической подаче в камеру сгорания топлива и окислителя, где происходит воспламенение топливной смеси и истечение продуктов сгорания из сопла с образованием реактивной тяги. Отличие от обычных реактивных двигателей заключается в детонационном горении топливной смеси, при котором фронт горения распространяется быстрее скорости звука.

Пульсирующий воздушно-реактивный двигатель был изобретен еще в конце XIX века шведским инженером Мартином Вибергом. Пульсирующий двигатель считается простым и дешевым в изготовлении, однако из-за особенностей горения топлива ─ малонадежным. Впервые новый тип двигателя был использован серийно во время Второй мировой войны на немецких крылатых ракетах Фау-1. На них устанавливался двигатель Argus As-014 компании Argus-Werken.

В настоящее время несколько крупных оборонных фирм мира занимаются исследованиями в области создания высокоэффективных пульсирующих реактивных двигателей. В частности, работы ведут французская компания SNECMA и американские General Electric и Pratt & Whitney. В 2012 году Научно-исследовательская лаборатория ВМС США объявила о намерении разработать спиновый детонационный двигатель, который должен будет заменить на кораблях обычные газотурбинные силовые установки.

Научно-исследовательская лаборатория (NRL) ВМС США намерена разработать ротационный, или спиновый, детонационный двигатель (Rotating Detonation Engine, RDE), который в перспективе сможет заменить на кораблях обычные газотурбинные силовые установки. Как сообщает NRL, новые двигатели позволят военным снизить потребление топлива, одновременно повысив энергетическую отдачу силовых установок.

В настоящее время ВМС США используют 430 газотурбинных двигателей (ГТД) на 129 кораблях. Ежегодно они потребляют топлива на два миллиарда долларов. По оценке NRL, благодаря RDE военные смогут экономить на топливе до 400 миллионов долларов в год. RDE смогут вырабатывать на десять процентов больше энергии, чем обычные ГТД. Прототип RDE уже создан, однако когда такие двигатели начнут поступать на флот, пока неизвестно.

В основу RDE легли наработки NRL, полученные при создании пульсирующего детонационного двигателя (Pulse Detonation Engine, PDE). Работа таких силовых установок основана на устойчивом детонационном горении топливной смеси.

Спиновые детонационные двигатели отличаются от пульсирующих тем, что детонационное горение топливной смеси в них происходит непрерывно ─ фронт горения перемещается в кольцевой камере сгорания, в которой топливная смесь постоянно обновляется.