Машина с ракетным двигателем. Китайцы создали гибридные автомобили с газотурбинным двигателем. Реактивная установка Катюша

Самая известная из всех реактивных машин

Реактивные машины

Недавно мы уже писали про . Мы рассматривали их принцип действия и внутреннее устройство. Немного коснулись областей их применения. Сегодня мы хотим провести второй парад изобретений, посвятив его безумным видам реактивного транспорта. Куда только не присобачивали изобретатели эти двигатели. Итак парад объявляем открытым!

Реактивный самолет.

Тут все понятно. Первым реактивным самолетом был Heinkel He 178, созданный в 1937 году.

С тех пор прошло много времени, все сильно изменилось и сейчас большинство самолетов реактивные, с различными модификациями этих двигателей. Самыми очевидными являются истребители, которые используют только реактивные двигатели. Это обусловленно тем, что винтовой истребитель будет очень быстро сбит, из-за своей тихоходности по сравнению с конкурентами.

Все авиалайнеры – турбореактивные, почти все винтовые пассажирские самолеты, на самом деле турбовинтовые. В общем в авиации турбодвигатели прижились и чувствуют себя хорошо, благо топливные баки большие. Но что происходит в других областях техники? Ходят же слухи и байки про туробореактивные машины, поезда, ранцы наконец? Они есть, читаем далее.

Реактивный поезд.

Bombardier JetTrain собственной персовной

Идея поставить на поезд реактивные двигатели, дабы придать ему должное ускорение витает в умах изобретателей с 60 года. Тогда, во время холодной войны и гонки вооружений были созданы прототипы поездов, на крышах которых были установлены спаренные реактивные двигатели, прямоточного типа. Мы рассказывали об этом в предыдущем “ “.
И казалось бы – это отголоски гонки вооружений, ан нет. И современные конструкторы бредят реактивными поездами. Вот например новейший прототип реактивного локомотива JetTrain Bombardier. По нашему мнению тема реактивных поездов до сих пор не раскрыта. Конечно на крышу турбины уже никто не ставит, но она присуствует в двигателе этого поезда.
Такие двигатели способны долгое время поддерживать стабильную работу, а также не могут работать вхолостую, потому что даже без нарузки, этот тип двигателей потребляет 65% от обычного потребления топлива под нагрузкой. Куда? На поддержание “цепной реакции” – подпитку собственной турбины, на минимальных оборотах. Именно поэтому такие двигатели не получили жизни в автомобилях, зато повсеместно используются в самолетах, где они не только двигают самолет, но еще и вырабатывают электроэнергию.
Если суметь преодолеть все технические недостатки, то турбины могут поселится в поездах дальнего следования, благо сил хватает мощность локомотива от Bombardier – 5000 л.с.

Реактивная машина.

Самый быстрый в мире автомобиль

Подвешивание 6000 сильной турбины к своему Ford Focus будоражит многие умы. Неясно практическое применение этой модификации, но смотрится крайне здорово. Вообще, если смотреть со стороны, введя в гугл запрос jet car, можно подумать что за рубежом этим занимается любой школьник. Неизвестно что привело к такому повальному турбированию машин, но последствия хорошо и ярко показаны в фильме “Премия Дарвина”

Если же обратить свой взор к соревнованиям, то здесь автомобиль с обычным двигателем уже никогда е сможет поставить рекорды. Реактивные авто уже много лет ставят рекорды скорости на земле. На момент написания статьи есть информация про последний рекорд скорости, установленный Энди Грином, на автомобиле Thrust II SSC, сконструированном Ричардом Ноблом. Энди проехал по дну знаменитого озера в Неваде с максимальной скоростью 1229,78 км/ч. Это выше скорости звука, и является абсолютным рекордомю Однако средняя скорость машины по двум заездам составила 1226,522 км/ч.
Такую подвижность машине весом в делять тонн, с корпусом из кевлара, придали два реактивных двигателя Rolls-Royse (Spey 205), суммарной мощностью 110 000 л.с. Управление этого чуда техники было самолетным.

Реактивный грузовик.

Встречается и такое.
Существует видео про реактивный грузовик. Где и когда это было и есть ли еще что-то подобное – неизвестно.

Реактивный велосипед.

Еще одно увлекательное занятие, будоражащее умы зарубежных изобретателей, это реактивный велосипед. В принципе, на это многострадальное средство передвижения можно навесить прямоточный реактивный двигатель.
Например

Смотрится крайне эффектно. Реактивные велосипеды продаются и видимо выпускаются серийно, вот фотография агрегата под названием Fire Trick BOB.

Стоит 1 миллион йен. Все серьезно: скоростная турбина, самолетное топливо, стоимость одной минуты работы (учитывая все расходные материалы – 500 йен), тяга 5,5 лошадиных сил. Заметьте – здесь используется полноценный реактивный двигатель, с турбиной, наддувом и прочими прелестями.
Вот еще одно фото, найденное на просторах интернета. Но здесь, в отличие от Fire Trick используется прямоточный двигатель, что намного проще в конструировании и обслуживании.

Реактивный ранец

Этот вид реактивного транспорта слабо распространен из-за больших сложностей в изготовлении, применении и управлении данным аппаратом. Первоначально Jetpack планировалось применять в военных целях, например для перелета через границу (чтобы не касаться земляной полосы и ограды, не оставлять следов).
Разработки велись в США в 50-60-е годы. Главным инженером в этих исследованиях был Венделл Мур, который поначалу лично и на свои средства разрабатывал реактивные ранцы.
Впервые свободный полет на реактивном ранце был совершен 20 апреля 1961 года, в пустыне около городка Ниагара Фоллс.
Рекондная продолжительность полета составила 21 секунду, и 120 метров, на высоте 10 метров. При этом расходовалось 19 литров перекиси водорода, которая была дефицитом.
В общем после того, как ранец был сделан, товарищи военные поняли, что заигрались. Хотя было ясно изначально, что даже если взвод солдат (7 человек) перелетит тихой ночью через границу на Jetpacks, об этом будут знать ближайшие 8-10 квадратных километров, сила звука достигает 130 дб) Тащить далее за собой такое оборудование (50 кг) никто не будет, да и в остальных применениях ранцы практически бесполезны.

Реактивный мопед

Теоретически должен развивать до ста километров в час. На него привешены два реактивных двигателя JFS 100.

Практичность применения такая же как и у турбо велосипеда, но ведь прикольно!

Реактивная установка Катюша

Легендарная система реактивного залпового огня. Является одним из самых безбашенных проектов советской военной промышленности. Стреляет снарядами РС-132.
Каждый снаряд имеет твердотопливных реактивных двигатель на бездымном порохе, включает в себя боевую, топливную и собственно реактивную части.
Применение катюши сопровождалось неслыханным фейерверком и полным уничтожением всего что попадало под обстрел на расстоянии до 8,5 км от установки. Впервые БМ-13 были применены для уничтожения складов с горючим, чтобы они не достались подходящим фашистским войскам.
Применение же реактивной установки по прямому назначению первое время часто вызывало панику у противника.

Высокий уровень развития теории лопаточных двигателей, металлургии и техники производства обеспечивает теперь реальную возможность создания надежных газотурбинных двигателей, способных с успехом заменить на автомобиле поршневые двигатели внутреннего сгорания.
Что представляет собой газотурбинный двигатель?

Рис. 1. Принципиальная схема газотурбинного двигателя

На рис. 1 показана принципиальная схема такого двигателя. Ротационный компрессор 9, находящийся на одном валу 8 с газовой турбиной 7, засасывает воздух из атмосферы, сжимает его и нагнетает в камеру сгорания 3. Топливный насоc 1, также приводимый в движение от вала турбины, нагнетает топливо в форсунку 2, установленную в камере сгорания. Газообразные продукты сгорания поступают через направляющий аппарат 4 на рабочие лопатки 5 колеса газовой турбины 7 и заставляют его вращаться в одном, определенном направлении. Газы, отработавшие в турбине, выпускаются в атмосферу через патрубок 6. Вал 8 газовой турбины вращается в подшипниках 10.
По сравнению с поршневыми двигателями внутреннего сгорания газотурбинный двигатель обладает весьма существенными преимуществами. Правда, он тоже еще не свободен от недостатков, но они постепенно ликвидируются по мере развития конструкции.
Характеризуя газовую турбину, прежде всего следует отметить, что она, как и паровая турбина, может развивать большие обороты. Это дает возможность получать значительную мощность от гораздо меньших по размерам (по сравнению с поршневыми) и почти в 10 раз более легких по весу двигателей.
Вращательное движение вала является по существу единственным видом движения в газовой турбине, в то время как в двигателе внутреннего сгорания, помимо вращательного движения коленчатого вала, имеет место возвратно-поступательное движение поршня, а также сложное движение шатуна. Газотурбинные двигатели не требуют специальных устройств для охлаждения. Отсутствие трущихся деталей при минимальном количестве подшипников обеспечивают длительную работоспособность и высокую надежность газотурбинного двигателя.
Наконец, важное значение имеет то обстоятельство, что для питания газотурбинного двигателя используется керосин либо топлива типа дизельных, т.е. более дешевые, чем бензин.
Основная причина, которая сдерживает развитие автомобильных газотурбинных двигателей, заключается в необходимости искусственно ограничивать температуру газов, поступающих на лопатки турбины. Это снижает коэффициент полезного действия двигателя и приводит к повышенному удельному расходу топлива (на 1 л.с.).
Температуру газа приходится ограничивать для газотурбинных двигателей пассажирских и грузовых автомобилей в пределах 600-700°C, а в авиационных турбинах до 800-900°C потому, что еще очень дороги высокожаропрочные металлы.
В настоящее время уже существуют некоторые способы повышения коэффициента полезного действия газотурбинных двигателей путем охлаждения лопаток, использования тепла отработавших газов для подогрева поступающего в камеры сгорания воздуха, производства газов в высокоэффективных свободно-поршневых генераторах, работающих по дизель-компрессорному циклу с высокой степенью сжатия и т. д. От успеха работ в этой области во многом зависит решение проблемы создания высокоэкономичного автомобильного газотурбинного двигателя.
Большинство существующих автомобильных газотурбинных двигателей построено по так называемой двухвальной схеме с теплообменниками. На рис. 2 представлена такая схема.


Рис.2. Принципиальная схема двухвального газотурбинного двигателя с теплообменником

Здесь для привода компрессора 1 служит специальная турбина 8, а для привода колес автомобиля - тяговая турбина 7. Валы турбин не соединены между собой. Газы из камеры сгорания 2 вначале поступают на лопатки турбины привода компрессора, а затем на лопатки тяговой турбины. Воздух, нагнетаемый компрессором, прежде чем поступить в камеры сгорания, подогревается в теплообменниках 3 за счет тепла, отдаваемого отработавшими газами.
Применение двухвальной схемы создает выгодную тяговую характеристику газотурбинных двигателей, позволяющую сократить число ступеней в обычной коробке передач автомобиля и улучшить его динамические качества.
Ввиду того, что вал тяговой турбины механически не связан с валом турбины компрессора, число его оборотов может изменяться в зависимости от нагрузки, не оказывая существенного влияния на число оборотов вала компрессора. Вследствие этого характеристика крутящего момента газотурбинного двигателя имеет вид, представленный на рис. 3, где для сопоставления нанесена также и характеристика поршневого автомобильного двигателя (пунктиром).


Рис. 3. Характеристики крутящего момента двухвального газотурбинного двигателя и поршневого

Из диаграммы видно, что у поршневого двигателя по мере уменьшения числа оборотов, происходящего под влиянием возрастающей нагрузки, крутящий момент вначале несколько возрастает, а затем падает. В то же время у двухвального газотурбинного двигателя крутящий момент автоматически возрастает по мере увеличения нагрузки. В результате необходимость в переключении коробки передач отпадает либо наступает значительно позже, чем у поршневого двигателя. С другой стороны, ускорения при разгоне у двухвального газотурбинного двигателя будут значительно большими.
Характеристика одновального газотурбинного двигателя отличается от показанной на рис. 3 и, как правило, уступает, с точки зрения требований динамики автомобиля, характеристике поршневого двигателя (при равной мощности).
Большую перспективу имеет газотурбинный двигатель, схема которого показана на рис. 4. В этом двигателе газ для турбины вырабатывается в так называемом свободно-поршневом генераторе, представляющем собой двухтактный дизель и лоршневой компрессор, объединенные в общем блоке.


Рис. 4. Принципиальная схема газотурбинного двигателя со свободно-поршневым генератором газа

Энергия от поршней дизеля передается непосредственно поршням компрессора. Ввиду того, что движение поршневых групп осуществляется исключительно под действием давления газов и режим движения зависит только от протекания термодинамических процессов в дизельном и компрессорных цилиндрах, такой агрегат и называется свободно-поршневым. В его средней части расположен открытый с двух сторон цилиндр 4, имеющий прямоточную щелевую продувку, в котором протекает двухтактный рабочий процесс с воспламенением от сжатия. В цилиндре оппо-зитно перемещаются два поршня, один из которых 9 во время рабочего хода открывает, а во время возвратного хода закрывает выхлопные окна, прорезанные в стенках цилиндра. Другой поршень 3 также открывает и закрывает продувочные окна. Поршни связаны между собой легким реечным или рычажным синхронизирующим механизмом, не показанным на схеме. Когда они сближаются, воздух, заключенный между ними, сжимается; к моменту достижения мертвой точки температура сжимаемого воздуха становится достаточной для воспламенения топлива, которое впрыскивается через форсунку 5. В результате сгорания топлива образуются газы, обладающие высокой температурой и давлением; они заставляют поршни разойтись в стороны, при этом поршень 9 открывает выхлопные окна, через которые газы устремляются в газосборник 7. Затем открываются продувочные окна, через которые в цилиндр 4 поступает сжатый воздух, находящийся в ресивере 6. Воздух вытесняет из цилиндра выхлопные газы, смешивается с ними и также поступает в газосборник. За то время, пока продувочные окна остаются открытыми, сжатый воздух успевает очистить цилиндр от выхлопных газов и заполнить его, подготовив таким образом двигатель к следующему рабочему ходу.
С поршнями 3 и 9 связаны компрессорные поршни 2, двигающиеся в своих цилиндрах. При расходящемся ходе поршней идет всасывание воздуха из атмосферы в компрессорные цилиндры, при этом самодействующие впускные клапана 10 открыты, а выпускные 11 закрыты. При встречном ходе поршней впускные клапана закрыты, а выпускные открыты и через них воздух нагнетается в ресивер 6, окружающий дизельный цилиндр. Поршни двигаются навстречу друг другу за счет энергии воздуха, накопившейся в буферных полостях 1 во время предыдущего рабочего хода. Газы из сборника 7 поступают в тяговую турбину 8, вал которой соединен с трансмиссией. Следующее сопоставление коэффициентов полезного действия показывает, что описанный газотурбинный двигатель уже сейчас по своей эффективности не уступает двигателям внутреннего сгорания:

Таким образом, к.п.д. лучших образцов турбин не уступает к.п.д. дизелей. Не случайно поэтому количество экспериментальных газотурбинных автомобилей различного типа возрастает с каждым годом. Все новые фирмы в различных странах объявляют о своих работах в этой области.
Значительных успехов в создании газотурбинных двигателей добилась, пожалуй, американская фирма Дженерал Моторс Компани, ведущая экспериментальные работы с газотурбинным двигателем ХР-21, который был испытан на гоночном автомобиле «Огненная птица» и многоместном междугородном автобусе. Схема этого двухкамерного двигателя, не имеющего теплообменника, представлена на рис. 5.

Рис.5. Схема газотурбинного двигателя ХР-21

Его эффективная мощность составляет 370 л.с. Топливом для него служит керосин. Скорость вращения вала компрессора достигает 26 000 об/мин, а скорость вращения вала тяговой турбины от 0 до 13000 об/мин. Температура газов, поступающих на лопатки турбины, равна 815°C, давление воздуха на выходе из компрессора - 3,5 ат. Общий вес силовой установки, предназначенной для гоночного автомобиля, составляет 351 кг, причем газопроизводящая часть весит 154 кг, а тяговая часть с коробкой передач и передачей на ведущие колеса - 197 кг.
Автомобиль «Огненная птица» с этим двигателем развивает скорость выше 320 км/час. Его полный вес равен 1270 кг. Расход топлива на максимальной скорости составляет 189,3 л/час, или 59 л на 100 км. Двигатель расположен в задней части автомобиля; привод осуществляется на задние колеса. Отработавшие в двигателе газы выходят в атмосферу через реактивное сопло, в результате чего создается дополнительное тяговое усилие.
Другой газотурбинный двигатель - «Боинг 502-1» (рис. 6) был установлен на тяжелом грузовике. Двигатель развивает мощность 175 л. с.


Рис.6. Газотурбинный двигатель «Боинг-502-1»

Весит он 90,7 кг и занимает небольшое подкапотное пространство. О компактности газотурбинного двигателя можно судить по фотографии (рис. 7), на которой показаны два грузовика, шасси которых одинаковы, но на одном (слева) установлен газотурбинный двигатель, а на другом (справа) - поршневой бензиновый.


Рис. 7. Тяжелые грузовики с различными двигателями

Фирма Крайслер (США) также ведет экспериментальные работы с газотурбинными двигателями. Легковой автомобиль этой фирмы («Плимут») с установленным на нем газотурбинным двигателем мощностью 120 л. с., снабженным теплообменником, расходует 15,9 л топлива на 100 км пробега.
В течение нескольких лет проводит испытания своего газотурбинного спортивно-пассажирского автомобиля мощностью 250 л.с. (рис. 8) итальянская фирма Фиат.


Рис.8. Газотурбинный автомобиль Фиат

Двухступенчатый центробежный нагнетатель газотурбинного двигателя этого автомобиля вращается со скоростью 30 000 об/мин. Степень повышения давления в нагнетателе 4,5:1. Три камеры сгорания подают в турбину газ при температуре 800°C. Тяговая турбина вращается со скоростью до 22 000 об/мин. Вал тяговой турбины пропущен внутри вала компрессора и соединен с редуктором, расположенным спереди двигателя. Двигатель помещается в задней части кузова автомобиля и приводит в движение задние колеса. Общий вес автомобиля - 1000 кг. Двигатель с редуктором, системой передач и дифференциалом весит 258,6 кг. Автомобиль развивает скорость до 240 км/час.
Английская фирма Ровер одна из первых начала заниматься газотурбинными двигателями (1948 г.). Сейчас она подготовила два новых экспериментальных автомобиля с газотурбинными двигателями. Один из них - «Джет-1» с двигателем мощностью 200 л.с. предназначается для спортивных целей. Другой (рис. 9) - пассажирский, с двигателем мощностью 120 л. с., имеющим теплообменник; вал компрессора этого двигателя вращается со скоростью 50 000 об/мин, а вал тяговой турбины - до 30 000 об/мин. Автомобиль расходует 16,9 л топлива на 100 км пробега.


Рис.9. Газотурбинный автомобиль Ровер

Разносторонние работы в области газотурбинных автомобилей проводятся также и во Франции. Так, фирма Сосьете Турбомека выпустила газотурбинный автомобильный двигатель с одноступенчатым радиальным компрессором и кольцевой камерой сгорания, причем горючее подводится по валу компрессора (рис. 11).


Рис. 11. Разрез малой турбины «Турбомека»: 1 - вход воздуха; 2 - компрессор; 3 - камера сгорания; 4 - турбина привода компрессора; 5 - тяговая турбина; 6 - коробка передач; 7 - управление двигателем

Установка запроектирована без теплообменника и развивает мощность до 300 л.с., расходуя 440 г/л.с. в час. Она весит 100 кг, т.е. около 0,36 кг/л. с. Число оборотов компрессора составляет 35 000 в минуту, турбины - 27 000 об/мин. Температура входящего в турбину газа достигает 820°C.
Для 10-тонного грузовика, предназначенного к эксплуатации в трудных условиях, французская фирма Ляфли создала газотурбинный агрегат мощностью 180-200 л.с. с одноступенчатым радиальным компрессором, без теплообменника. Рабочий газ для турбины вырабатывается в двух камерах сгорания. Вес агрегата составляет 205 кг, что соответствует 1,1 кг/л.с. Расход топлива не должен превышать 400 г/л.с. в час. Скорость вращения вала компрессора достигает 42 000 об/мин, а турбины - 30 000 об/мин. Входная температура газа равна 800°C.
В последнее время большое внимание привлекают также работы французской фирмы Гочкис, создавшей газотурбинный двигатель с тремя камерами сгорания, мощностью 100 л. с. Автомобиль с этим двигателем (рис. 12) развивает скорость до 200 км/час, расходуя от 40 до 57 л топлива на 100 км пробега. Компрессор двигателя развивает 45 000 об/мин, а вал турбины - 25 000 об/мин.


Рис. 12. Расположение агрегатов в газотурбинном автомобиле фирмы Гочкис: 1 - вход; 2 - центробежный нагнетатель; 3 - стартер; 4 - камера сгорания; 5 - топливный насос; 6 - газовая турбина; 7 - выхлопная труба; 8 - понижающая коробка передач; 9 - шарнирное сцепление; 10 - приводной вал; 11 - фрикционное сцепление; 12 - электромагнитная коробка передач фирмы Коталь; 13 - электромагнитные тормоза; 14 - задняя ось с дифференциалом

В заключение следует упомянуть новый испанский проект, разработанный Центральным автомобильно-техническим институтом в Мадриде (рис. 10). Испанская установка, снабженная двумя теплообменниками, весит 120 кг и развивает мощность 170 л. с., что соответствует 0,7 кг/л.с. Температура газа в турбине составляет 800° Ц. Радиальный двухступенчатый нагнетатель, имеющий степень повышения давления 4,35, развивает 29 000 об/мин, турбина - 24 700 об/мин. Этот газотурбинный двигатель предназначен для установки на автобус; запроектировано заднее расположение двигателя, с подводом воздуха через крышу.


Рис. 10. Испанский газотурбинный двигатель, предназначенный для автобуса: 1 - двухступенчатый нагнетатель; 2 - две независимые турбины; 3 - теплообменник; 4 - вспомогательные агрегаты; 5 - планетарная передача


Сразу два гибридных инновационных автомобиля были представлены китайскими производителями. Концептуальные кары удивили всех вовсе не своим дизайном, а новой системой зарядки, которая позволяет демонстрировать просто невероятные ездовые качества.


Пекинский стартап Techrules показал сразу два гибридных концептуальных кара AT96 для трековой езды и GT96 для дорожной езды. Главными на показе впрочем, были не сами автомобили, а новая турбинная система зарядки TREV, о которой китайские инженеры рассказали очень подробно.


Система Turbine-Recharging Electric Vehicle, как выяснилось, вовсе не очередная бравада инженеров. В технологическом плане здесь все очень и очень серьезно. Мощность системы составляет 1044 л.с, а крутящий момент достигает показателя в 8 640 Нм. Максимальная скорость движения машин ограничена электроникой до 350 км\ч, а до «сотни» новая система позволяет добираться за внушительные 2.5 секунды. Вишенкой на торте появляется внушительный запас хода в 2 тысячи километров и невероятно низкий расход горючего – 0.18 л на 100 км.


С новым газотурбинным двигателем используется 80-литровый бак для топлива. В нем могут быть бензин, дизельное топливо или авиационный керосин. Можно также установить баллоны для газа, как природного, так и синтетического. Во время работы микротурбина всасывает воздух, который сжимается и попадает в теплообменник, где нагревается выхлопными газами. После этого он поступает в камеру сгорания. Полученная от воспламенения топливно-воздушной смеси энергия поступает в генератор, который смонтирован уже вместе с турбиной, работающей на одном валу. Скорость вращения при этом достигает 96 тысяч оборотов в минуту.

Полная зарядка аккумулятора происходит за 40 минут. Он питает шесть тяговых электромоторов. В конструкции обеих авто используется углеволоконный монокок. В связи с этим было решено использовать два движка для каждого из задних колес, вместо одного более мощного, так как это в значительной мере упрощает монтаж. Сама система TREV при этом установлена на заднем подрамнике. Вес установки без батарейного блока с жидкостной системой охлаждения не превышает 100 кг. На одной лишь электротяге машины Techrules способный пройти до 150 км.

В России 13 ноября отмечается День войск радиационной, химической и биологической защиты. В этом году российским войскам РХБЗ исполнилось сто лет.

Минобороны России в честь векового юбилея выпустила видеоролик, в котором представлена современная военная техника данного подразделения.

Обозреватели американского издания «Драйв» (The Drive), посмотревшие ролик, были восхищены увиденным. Они посвятили целую машине химических войск ТМС-65У (тепловая машина специальная). Военный аналитик и журналист Джозеф Тревитик (Joseph Trevithick) называет её одной из самых необычных систем из-за турбореактивного двигателя, который установлен на шасси «Урала».

Видео: youtube.com/Минобороны России

В ТМС-65У установлен двигатель ВК-1, который ранее использовался на истребителях МиГ-15 и МиГ-17, бомбардировщике-торпедоносце Ту-14, а также на Ил-28.

Джозеф Тревитик пишет, что данная техника может использоваться для очистки транспортных средств, покрытых химическими веществами, а также для создания массивных дымовых завес, которые помогают скрыть дружественные войска на поле боя от глаз противника. Он также отмечает, что ТМС-65У позволяет специальную обработку намного быстрее, чем использование ручного инструмента.

«ТМС-65У – это своего рода импровизированная передвижная мойка на поле боя, быстро чистящая технику», – написал обозреватель «Драйв».

Журналист считает, что тепловая специальная машина – это, безусловно, эффективная система. Однако не стоит забывать, что двигатель ВК-1 был построен ещё в Советском Союзе, поэтому потребляет много топлива.

В своей статье Тревитик называет ТМС-65У «сумасшедшей машиной», которая может не только проводить специальную обработку газовым или газокапельным способом, но и ставить огромные дымовые завесы.

«Экипаж ТМС-65У может заполнить резервуар, который обычно содержит раствор для обеззараживания, дымообразующей жидкостью, такой как мазут. Горячие выхлопные газы превращают эту жидкость в густой белый дым, который может скрыть дружественные силы от невооруженного глаз противника и некоторых датчиков», – отмечает журналист.

Тревитик обращает внимание на то, что, если в дымообразующей смеси нет специальных добавок, то скрыть войска от инфракрасной оптики противника невозможно.

«Самое интересное в этом автомобиле – это продолжение использования ВК-1. Этот реактивный двигатель является антикварным», – восхищается Тревитик.

По мнению обозревателя The Drive, на сегодняшний день нет никаких признаков того, что Москва в ближайшее время намеревается заменить «сумасшедший» ТМС-65У. Данные машины, несомненно, играют важную роль в доктрине военной защиты армии России.

Источник фото: wikipedia.org/Vitaly V. Kuzmin, wikipedia.org/Kogo

Газотурбинные двигатели - это невероятная вещь, и их применение не ограничивается лишь самолетами. Мы подобрали для вас десять самых интересных наземных транспортных средств, питающихся от огромных турбин.

Jet Corvette. Кастомайзеры очень любят брать моторы от Corvette и устанавливать их на другие машины, чтобы сделать их быстрее. Винс Гранателли подошел к делу с другого конца. Он, наоборот, избавил свой Corvette от V8 в пользу... газотурбинного двигателя Pratt & Whitney ST6B. 880-сильная турбина делает машину самым быстрым Corvette, допущенным к эксплуатации по дорогам общего пользования. Разгон до 100 км/ч осуществляется всего за 3,2 секунды.

Thrust SSC. Невероятный (но еще не завершенный) Bloodhound SSC наверняка возьмет свой рекорд (запланированы 1 600 км/ч), однако оригинальный Thrust SSC по-прежнему является серьезным техническим достижением. Благодаря 110 000 л. с. от двух турбореактивных двигателей Rolls-Royce, Thrust в 1997 году установил сухопутный рекорд скорости на отметке 1 228 км/ч и стал первым автомобилем, преодолевшим звуковой барьер.


Турбинный мотоцикл MTT. Как будто мотоциклы и без этого недостаточно страшны... MTT снабдили свой мотоцикл турбиной Rolls-Royce, которая передает 286 л. с. на заднее колесо. Один из таких принадлежит американскому телеведущему Джею Лено, который описывает его так: "Он веселый, но способен запугать вас до смерти".


Бэтмобиль. Главный транспорт из кинофильмов "Бэтмен" и "Бэтмен возвращается". Построен на шасси Chevrolet Impala. На сегодняшний день существуют компании, которые изготавливают реплики этого бэтмобиля с настоящими газотурбинными двигателями.


Shockwave. Этот седельный тягач Peterbilt оснащен тремя реактивными двигателями Pratt & Whitney J34-48 и однажды разогнался до 605 км/ч. Четверть мили он проезжает за 6,63 секунды, сопровождая свой заезд потрясающим огненным зрелищем!


Big Wind. Это ультимативное средство пожаротушения идеально дополнило бы предыдущий грузовик. Что скажете насчет борьбы с огнем при помощи огня? Big Wind как раз этим и занимается. Он представляет собой два двигателя от МИГ-21, смонтированные на советский танк Т-34. Эти штуки тушили нефтяные пожары в Кувейте во время войны в Персидском заливе. Сначала шесть шлангов гасят огонь, а затем реактивные двигатели нагнетают мощную струю пара, который буквально сдувает пламя с нефти.


Lotus 56. Этот болид имел вертолетный газотурбинный двигатель и был лишен коробки передач, сцепления и системы охлаждения. В 1971 году он дебютировал в Формуле-1. Самой серьёзной проблемой было значительное запаздывание реакции турбины на нажатие газа — поначалу задержка составляла шесть секунд. Это вынуждало пилота открывать газ ещё в торможении перед поворотом. Позднее задержку сократили до трех секунд, но это увеличило расход топлива и стартовый вес. В Сильверстоуне машина отстала на 11 кругов, а в Монце Эмерсону Фиттипальди удалось финишировать восьмым с отставанием в 1 круг. Контрольное взвешивание показало, что Lotus 56 на 101 кг тяжелее машины победителя. Естественно, от него пришлось отказаться.


Газотурбинный автомобиль Chrysler. Эти экспериментальные автомобили так и называют, потому что своего имени у модели не было. Они разрабатывались с 1953 по 1979 годы. За это время Chrysler испытал 7 поколений и построил 77 прототипов. В начале 60-х годов они успешно прошли тесты на дорогах общего пользования, но финансовый кризис в Chrysler и введение новых норм токсичности и расхода топлива помешали запуску модели в массовое производство. Девять машин сохранились в музеях и домашних коллекциях, а остальные были уничтожены.


ГАЗ М20 Аэросани "Север". В 1959 году в вертолетном конструкторском бюро Н. И. Камова был разработан автомобиль-аэросани "Север". Это была поставленная на лыжи "Победа" с авиационным мотором АИ-14 мощностью 260 л. с. Она использовалась как быстроходный транспорт для северных районов страны в зимние периоды. Средняя скорость составляла 35 км/ч. Маршруты проходили по целинному снегу и торосистому льду в морозы до 50 градусов. Аэросани работали вдоль Амура, обслуживали поселки по берегам рек Лена, Обь и Печора.


Трактор. Американцы любят разного рода забавы, и тракторные гонки - одна из них. Главным состязанием является транспортировка трактором тяжеленной платформы на дистанцию 80-100 метров. И тут, конечно, на помощь трактору приходят мощные газотурбинные двигатели.