Асинхронный двигатель с совмещенными обмотками. Электродвигатели энергоэффективные Энергоэффективные электродвигатели

По всем миру сегодня шагает экономический кризис. Одной из его причин является кризис энергетический. Поэтому сегодня очень остро встает вопрос энергосбережения. Особенно эта тема актуальна для России и Украины, где затраты электроэнергии на единицу продукции в 5 раз выше, чем в развитых европейских странах. Уменьшение потребления электроэнергии предприятиями топливно-энергетического комплекса Украины и России основная задача науки, электротехнической и электронной промышленности этих стран. Более 60% используемой электроэнергии на предприятиях приходится на электропривод. Если учесть, что КПД его составляет не более 69%, то только используя энергосберегающие двигатели можно экономить более 120 ГВт/ч электроэнергии в год, что составит более 240 млн. рублей со 100 тыс. электродвигателей. Если добавит сюда еще экономию уменьшения установленной мощности, то получим более 10 млрд. рублей.

Если пересчитать эти цифры в экономию топлива то экономия получается 360-430 млн. тонн условного топлива в год. Такая цифра соответствует 30% всей внутренней потребленной энергии в стране. Если же добавить сюда экономию электроэнергии за счет применения частотно-регулируемого привода, то это число вырастает до 40%. В России уже подписан приказ о снижение энергоемкости к 2020 году на 40 %.

С сентября 2008 г в Европе был принят стандарт IEC 60034-30, где все двигатели делятся на 4 класса энергоэффективности:

  • стандартный (ie1);
  • высокий (ie2);
  • высший, PREMIUM (ie3);
  • сверхвысокий, Supper-Premium (ie4).

Сегодня все крупные европейские производители приступили к выпуску энергоэффективных двигателей. Более того, все американские производители заменяют двигатели «высокой» энергоэффективности, на двигатели «высшей», PREMIUM энергоэффективности.

  • Разработкой энергоэффективных серии двигателей общего применения занимаются и в наших странах. Перед производителями стоит три задачи повышения энергоэффективности;
  • Разработка и освоение новых энергоэффективнных моделей низковольтных асинхронных двигателей, соответствующих мировому уровню развития электротехнической и машиностроительной отраслей для применения на внутреннем и международном рынках;
  • Увеличение значений КПД вновь созданных энергоэффективных двигателей согласно стандарту энергоэффективности IEC 60034-30, при том, что увеличение расхода материала, применяемого в двигателях класса ie2 не более 10 процентов;
  • Должна быть достигнута экономия активных материалов, соответствующая сбережению 10 кВт мощности на 1 кг обмоточной меди. В результате использования энергоэффективных моделей электродвигателей, уменьшается количество штамповой оснастки на 10-15 %;

Освоение и внедрение электродвигателей высокой эффективности устраняет проблему необходимости увеличения установленной мощности электрооборудования и снижения выбросов вредных веществ в атмосферу. Кроме того снижение величины шума и вибрации, увеличение надежности всего электропривода является неоспоримым аргументом в пользу применения энергоэффективных асинхронных электродвигателей;

Описание энергоэффективных асинхронных двигателей серии 7А

Асинхронные короткозамкнутые двигатели серии 7А (7AVE) относятся к трехфазным асинхронным электродвигателям, общепромышленной серии с короткозамкнутым ротором. Эти двигатели уже адаптированы для использования в схемах частотно-регулируемого электропривода. Они имеют КПД на 2-4% выше чем у аналогов, произведенных в России (EFFI). Выпускаются со стандартным рядом оси вращения: от 80 до 355 мм, рассчитаны на мощности от 1 до 500 кВт. Промышленность освоила двигатели со стандартной частотой вращения: 1000, 1500, 3000 об/мин и напряжения: 220/380, 380/660. Двигатели выполнены со степенью защиты соответствующей IP54 и изоляцие класса F. Допустимый перегрев соответствует классу B.

Преимущества применения асинхронных двигателей серии 7А

К преимуществам применения асинхронных двигателей серии 7А относится их высокая экономичность. Экономия электроэнергии при установленной мощности P уст.= 10 000 кВт на экономии энергии можно экономить до 700 тыс.дол/год. Другим преимуществом таких двигателей является их высокая надежность и срок службы, кроме того, у них ниже уровень шума примерно в 2-3 раза по отношению к двигателям предыдущих серий. Они позволяют производить большее число включений-выключений и более ремонтопригодные. Двигатели могут работать при колебаниях сети до 10 % по напряжению.

Особенности конструкции

В электродвигателях серии 7А используется обмотка нового вида, которую можно намотать на обмоточном оборудовании старого поколения. При изготовлении двигателей этой серии применяются новые пропиточные лаки, обеспечивающие более высокую цементацию и высокую теплопроводность. Значительно повышена эффективность использования магнитных материалов. В течение 2009 г. освоены габариты 160 и 180, а в течение 2010-2011 гг. были освоены габариты 280, 132, 200, 225, 250, 112, 315, 355 мм.

Экскурс в историю. Зарождение проблемы энергосбережения

Проблема сбережения энергетических ресурсов планеты была обозначена еще во второй половине XX века. Так в 70-х годах прошлого столетия во всем мире разразился энергетический кризис. Цены на нефть с 1972 по 1981 годы возрасли в 14,5 раз. И хотя большинство сложных моментов того времени были преодолены, проблема сбережения мирового топливно-энергетического комплекса получила статус глобальной особо значимой проблемы, и с каждым годом этому вопросу уделяется все больше и больше внимания.


Энергосбережение сегодня

За счет технологического развития, во всем мире значится быстрый рост потребления энергии. Чтобы ресурсов планеты хватило человечеству в будущем, люди ищут различные пути и решения: используются альтернативные природные источники энергии (ветер, вода, солнечные батареи), были изобретены экологичные технологии получения энергии путем переработки мусора и различных бытовых отходов, технологическое оборудование из года в год модернизируется с целью уменьшения потребляемой этим оборудованием энергии.

Энергоэффективность оборудования, в частном порядке касается каждого из нас. Ведь, от нее напрямую зависит сумма в ежемесячном счете за элетроэнергию. В Европе электроэнергия значительно дороже чем в России, поэтому каждый европеец пытается подбирать технологичное оборудование, потребялющее как можно меньше энергии. У нас же об этом задумывается гораздо меньшее количество людей, но и в нашей стране использвание энергосберегающих технологий способно благополучно сказаться на «толщине вашего кошелька». Оплачивая ежемесечные счета за электроэнергию мы не задумываемся, что годовые эксплутационные затраты – это внушительная сумма, которой могла бы быть потрачена на другие цели.

Энергоэффективность в вентиляции

Основной источник потребления электроэнергии в вентиляционных установка, как не трудно догадаться, является вентилятор, а конкретнее электродвигатель (или мотор), благодаря которому вращается крыльчатка вентилятора.

Класс энергоэффективности IE

Европейские стандарты электродвигалей DIN основаны на стандарте классификации энергоэффективности оборудования IEC (Международная электротехническая комиссия).


Согласно международным стандартам на сегодняшний день разработы четыре класса энергоэффективности двигателей IE1, IE2, IE3 и IE4. IE означает «International Energy Efficiency Class» - международный класс энергоэффективности


  • IE1 стандартный класс энергоэффективности.
  • IE2 высокий класс энергоэффективност.
  • IE3 сверхвысокий класс энергоэффективности.
  • IE4 максимально высокий класс энергоэффективности.

Ниже преведены кривые зависимости КПД двигателя, соответствующего класса энергетической эффективности, от номинальной мощности.


Начиная с 1 января 2017 года все европейские производители двигателей, согласно принятой директиве, будут производить электродвигатели класса энергоэффективности не ниже IE3

Выбор энергоэффективности двигателей при подборе установок в программе QC Ventilazione

ТМ QuattroClima предлагает вентиляционные установки с асинхронными двигателями класса IE2 и IE3, также EC-моторами премиум-класса IE4.

Выбор типа вентилятора осуществляется нажатием левой кнопки мыши на вкладку «Вентилятор».


Радиальный вентилятор с прямой передачей – асинхронный двигатель (стандартно IE2).

Радиальный вентилятор c прямой передачей и двигателем EC соответствует классу IE4.

Выбрать нужный класс энергоэффективности асинхронного двигателя можно здесь же, чуть ниже.

От теории к практике

Для наглядности, рассмотрим пример. Рассчитаем стандартную приточную установку расходом 20 000 м3/ч и свободным напором 500 Па в трех вариантах:

1) С асинхронным двигателем класса IE2

2) С асинхронным двигателем класса IE3

3) C EC-двигателем класса IE4

А затем сравним полученные результаты.

Установка с асинхронным двигателем класса IE2


Установка с асинхронным двигателем класса IE3


Установка с EC-двигателем класса IE4


В этом случае, программой подобралась секция из двух EC-вентиляторов.

Теперь сравним полученные результаты.

Техническая характеристика

Асинхронный двигатель Класс энергоэффективности IE2

Асинхронный двигатель Класс энергоэффективности IE3

EC-двигатель
Класс энергоэффективности IE4

КПД вентилятора, %

Номинальная мощность, кВт

Потребляемая мощность, кВт

Потребляемая мощность двигателя класса IE3 меньше аналогичного двигателя класса IE2 на 0,18 КВт. А разница мозностей двух EC-моторов и двигателя IE2 составляет уже 1,16 кВт.

В случае аналогичных расчетов для приточно-вытяжных вентиляционных большерасходных вентиляционных агрегатов разница потреблемых мощностей двигателей IE2 и IE3 может достигать 25-30 %. А если на объекте, используется десятки установок, то энергопотребление вентиляци можно снизить на порядок и, благодаря этому, сэкономить сотни тысяч, а то и миллионы рублей.

В следующих статьях мы расскажем о других способах уменьшения потребляемой электродвигателями мощности при подборе вентиляционных установок в программе QC Ventilazione. Ранее мы рассказывали о повышении энергетической эффективности малорасходных вентиляционных агрегатов с роторными рекуператорами. Прочитать статью можно .

Вопрос создания энергосберегающих электродвигателей возник одновременно с изобретением самих электрических машин. На Международной электротехнической выставке 1891 г. во Франкфурте-на-Майне, Чарльз Браун (впоследствии основавший компанию ABB) показал синхронный трехфазный генератор, собственного производства, КПД которого превышал 95%. Асинхронный трехфазный двигатель, представленный Михаилом Доливо-Добровольским, показал КПД 95%. С тех пор показатели КПД трехфазного асинхронного двигателя удалось улучшить всего на один-два процента.

Наиболее остро интерес к энергосберегающим двигателям возник в конце 1970-х годов во время мире нефтяного энергетического кризиса. Оказалось, что сэкономить одну тонну условного топлива во много раз дешевле, чем добыть.Во время кризиса во много раз выросли капиталовложения в сферу энергосбережения. Во многих странах стали выделять специальные гранды на энергосберегающие программы.

После проведения анализа проблемы энергосбережения оказалось, что более половину электроэнергии, вырабатываемой в мире, расходуют электродвигатели. Потому над их совершенствованием работают все ведущие электротехнические компании в мире.

Что же такое энергосберегающие двигатели?

Это электродвигатели, КПД которых на 1–10% выше, чем у стандартных двигателей. В крупных энергосберегающих двигателях, разница в значениях КПД составляет 1–2%, а в двигателях малой и средней мощности эта разница составляет уже 7–10%.

КПД электродвигателей Siemens

Увеличение КПД в в энергосберегающих двигателях достигается за счет:

  • увеличения доли активных материалов – меди и стали;
  • использование более тонкой и высококачественной электротехнической стали;
  • применение вместо алюминия меди в роторных обмотках;
  • уменьшения воздушного зазора в статоре с помощью прецизионного технологического оборудования;
  • оптимизации формы зубцовой зоны магнитопровода и конструкции обмоток;
  • использование подшипников более высокого класса;
  • особой конструкции вентилятора;

По статистическим данным, цена всего двигателя составляет менее 2% суммарных затрат на жизненный цикл. Так, если двигатель работает 4000 часов ежегодно в течение 10 лет, то на электроэнергию приходится примерно 97% всех затрат на весь жизненный цикл. Еще около одного процента приходится на монтаж и техобслуживание. Поэтому увеличение КПД двигателя средней мощности на 2% позволит окупить увеличение стоимости энергосберегающего двигателя уже через 3 года, в зависимости от режима работы. Практический опыт и расчеты показывают, что увеличение стоимости энергосберегающего двигателя окупается за счет сэкономленной электроэнергии при эксплуатации в режиме S1 за год-полтора (при годовой наработке 7000 часов).

В общем случае переход к применению энергосберегающего двигателя позволяет:

  • увеличить КПД двигателя на 1–10%;
  • повысить надежность его работы;
  • снизить время простоев;
  • уменьшить затраты на техобслуживание;
  • увеличить устойчивость двигателя к тепловым перегрузкам;
  • повысить перегрузочную способность;
  • поднять устойчивость двигателя к ухудшению эксплуатационных условий;
  • сниженному и завышенному напряжению, искажению формы кривой напряжения, перекосу фаз и т. д.;
  • повысить коэффициент мощности;
  • уменьшить уровень шума;
  • поднять скорость двигателя за счет уменьшения скольжения;

Отрицательным свойством электродвигателей с повышенным КПД по сравнению с обычными являются:

  • на 10 – 30% выше стоимость;
  • несколько больше масса;
  • более высокая величина пускового тока.

В некоторых случаях использование энергоэффективного двигателя является нецелесообразным:

  • при эксплуатации двигателя эксплуатируется короткое время (менее 1–2 тыс.часов/год), внедрение энергоэффективного двигателя может не внести существенного вклада в энергосбережение;
  • при работе двигателя в режимах с частым запуском, так как сэкономленная электроэнергия будет израсходована на более высокое значение пускового тока;
  • при работе двигателя работает с недогрузом, за счет уменьшения КПД при работе на нагрузку ниже номинальной.

Объемы энергосбережения в результате внедрения энергоэффективного двигателя могут оказаться незначительными по сравнению с потенциалом привода с переменной скоростью.Каждый дополнительный процент КПД требует увеличения массы активных материалов на 3–6%. При этом момент инерции ротора возрастает на 20–50%. Поэтому высокоэффективные двигатели уступают обычным по динамическим показателям, если при их разработке специально не учитывается это требование.

При выборе в пользу энергоэффективного двигателя, необходимо тщательно подходить к вопросу цены. По прогнозам аналитиков медь будет дорожать значительно быстрее стали. Поэтому там, где есть возможность, применять так называемые стальные двигатели (с меньшей площадью пазов), то лучше применять их. Такие двигатели имеют меньшую стоимость за счет экономии меди. По тем же причинам необходимо относиться к энергосберегающим двигателям с постоянными магнитами. Если вам в будущем придется искать замену такого двигателя. может оказаться, что его цена будет слишком высока, а замена его на энергосберегающий двигатель общепромышленного исполнения будет затруднительна из за несоответствия габаритов. По оценкам экспертов постоянные магниты из редкоземельных материалов будут дорожать больше и быстрее, чем медь, что приведет к значительному подорожанию таких двигателей. Хотя такие двигатели при высшем классе энергоэффективности достаточно компактны, их внедрение в промышленность ограничено тем, что постоянные магниты сейчас востребованы в других отраслях, нежели общепром, и, по оценкам специалистов будут использоваться при выпуске специальной техники, на которую денег не жалеют.

Уже около пяти лет «НПО „Санкт-Петербургская электротехническая компания“ (СПБЭК) настойчиво собирает по предприятиям, институтам, научным центрам бывшего Союза внедренные рацпредложения, инновации, разработки.

Еще одна новация, применимая в российских реалиях связана с именем Дмитрия Александровича Дуюнова, занимающегося проблемой повышения энергоэффективности асинхронных двигателей:

"В России на долю асинхронных двигателей, по разным оценкам, приходится от 47 до 53% потребления всей вырабатываемой электроэнергии. В промышленности в среднем 60%, в системах холодного водоснабжения до 80%. Они осуществляют практически все технологические процессы, связанные с движением и охватывают все сферы жизнедеятельности человека. В каждой квартире находится асинхронных двигателей больше, чем жильцов. Ранее, поскольку задачи экономии энергоресурсов не было, при проектировании оборудования стремились „подстраховаться“, и использовали двигатели с мощностью, превышающей расчетную. Экономия электроэнергии в проектировании отходила на второй план, и такое понятие как энергоэффективность не было столь актуальным. Промышленность России энергоэффективные двигатели не проектировала и не выпускала. Переход к рыночной экономике резко изменил ситуацию. Сегодня сэкономить единицу энергетических ресурсов, например 1 т топлива в условном исчислении, вдвое дешевле, чем её добыть.

Энергоэффективные двигатели (ЭД) — это асинхронные ЭД с короткозамкнутым ротором, в которых за счет увеличения массы активных материалов, их качества, а также за счет специальных приемов проектирования удалось поднять на 1-2% (мощные двигатели) или на 4-5% (небольшие двигатели) номинальный КПД при некотором увеличении цены двигателя. Этот подход может приносить пользу, если нагрузка меняется мало, регулирование скорости не требуется и двигатель правильно выбран. С появлением двигателей с совмещенными обмотками „Славянка“ имеется возможность существенно улучшить их параметры без увеличения их цены. За счет улучшенной механической характеристики и более высоких энергетических показателей, стало возможным не только экономить от 30 до 50% потребления энергии при той же полезной работе, но и создавать регулируемый привод с уникальными характеристиками, не имеющий аналогов в мире.

В отличие от стандартных, ЭД с совмещенными обмотками обладают более высокой кратностью моментов, имеют КПД и коэффициент мощности близкий к номинальному в широком диапазоне нагрузок. Это позволяет повысить среднюю нагрузку на двигатель до 0,8 и повысить эксплуатационные характеристики обслуживаемого приводом оборудования.

По сравнению с известными методами повышения энергоэффективности асинхронного привода, новизна предлагаемого нами подхода заключается в изменении основополагающего принципа конструкции классических обмоток двигателя. Научная новизна заключается в том, что сформулированы новые принципы конструирования обмоток двигателей, а также выбора оптимальных соотношений чисел пазов ротора и статора. На их основе разработаны промышленные конструкции и схемы однослойных и двухслойных совмещенных обмоток, как для ручной, так и для автоматической укладки обмоток на стандартном оборудовании. На технические решения получен ряд патентов РФ.

Сущность разработки вытекает из того, что в зависимости от схемы подключения трёхфазной нагрузки к трёхфазной сети (звезда или треугольник) можно получить две системы токов, образующий между векторами угол в 30 электрических градусов. Соответственно, к трёхфазной сети можно подключить электродвигатель, имеющий не трёхфазную обмотку, а шестифазную. При этом часть обмотки должна быть включена в звезду, а часть в треугольник и результирующие вектора полюсов одноименных фаз звезды и треугольника должны образовывать между собой угол в 30 электрических градусов. Совмещение двух схем в одной обмотке позволяет улучшить форму поля в рабочем зазоре двигателя и как следствие существенно улучшить основные характеристики двигателя.

По сравнению с известными, частотно-регулируемый привод может быть выполнен на базе новых двигателей с совмещенными обмотками с повышенной частотой питающего напряжения. Это достигается за счёт меньших потерь в стали магнитопровода двигателя. В результате себестоимость такого привода получается существенно ниже, чем при использовании стандартных двигателей, в частности, значительно снижаются шумность и вибрации».

УДК 621.313.333:658.562

ЭНЕРГОЭФФЕКТИВНЫЕ АСИНХРОННЫЕ ДВИГАТЕЛИ ДЛЯ РЕГУЛИРУЕМОГО ЭЛЕКТРОПРИВОДА

О.О. Муравлева

Томский политехнический университет E-mail: [email protected]

Рассмотрена возможность создания энергоэффективных асинхронных двигателей без изменения поперечного сечения для регулируемых электроприводов, что позволяет обеспечить реальное энергосбережение. Показаны пути обеспечения энергосбережения за счет использования асинхронных двигателей повышенной мощности в насосных агрегатах сферы жилищно-коммунального хозяйства. Проведенные экономические расчеты и анализ результатов показывают экономическую эффективность использования двигателей повышенной мощности, несмотря на увеличение стоимости самого двигателя.

Введение

В соответствии с «Энергетической стратегией на период до 2020 года» высшим приоритетом государственной энергетической политики является повышение энергоэффективности промышленности. Эффективность российской экономики существенно снижается из-за ее высокой энергоемкости. По этому показателю Россия опережает США в 2,6 раза, Западную Европу в 3,9 раза, Японию - в 4,5 раза . Лишь отчасти указанные различия могут быть оправданы суровыми климатическими условиями России и обширностью ее территории. Одним из основных способов предотвращения энергетического кризиса в нашей стране - проведение политики, предусматривающей масштабное внедрение на предприятиях энерго- и ресурсосберегающих технологий. Энергосбережение превратилось в приоритетное направление технической политики во всех развитых странах мира.

В ближайшем будущем проблема энергосбережения повысит свой рейтинг при ускоренном развитии экономики, когда появится дефицит электрической энергии и компенсировать его можно двумя путями - введением новых энергогенерирующих систем и энергосбережением. Первый путь более дорогой и длительный во времени, а второй -значительно быстрее и экономически выгоднее потому, что 1 кВт мощности при энергосбережении стоит в 4...5 раз меньше, чем в первом случае. Большие затраты электрической энергии на единицу всеобщего валового продукта создают огромный потенциал энергосбережения в народном хозяйстве. В основном высокая энергоемкость экономики вызвана использованием энергорасточительных технологий и оборудования, большими потерями энергоресурсов (при их добыче, переработке, преобразовании, транспорте и потреблении), нерациональной структурой экономики (высокая доля энергоемкого промышленного производства). В результате накопился обширный потенциал энергосбережения, оцениваемый в 360.430 млн. т у. т., или 38.46 % современного потребления энергии . Реализация этого потенциала может позволить при росте экономики за 20 лет в 2,3...3,3 раза ограничиться ростом потребления энергии всего в 1,25.1,4 раза, значительно повысить качество жизни граждан и конкурентоспособность отечествен-

ных товаров и услуг на внутреннем и внешнем рынках. Таким образом, энергосбережение является важным фактором экономического роста и повышения эффективности народного хозяйства.

Целью данной работы является рассмотрение возможностей создания энергоэффективных асинхронных двигателей (АД) для регулируемых электроприводов для обеспечения реального энергосбережения.

Возможности создания энергоэффективных

асинхронных двигателей

В настоящей работе на основе системного подхода определены эффективные пути обеспечения реального энергосбережения. Системный подход к энергосбережению объединяет два направления - совершенствование преобразователей и асинхронных двигателей. Учитывая возможности современной вычислительной техники, совершенствование методов оптимизации, приходим к необходимости создания программно-вычислительного комплекса для проектирования энергоэффективных АД, работающих в регулируемых электроприводах. Принимая во внимание большой потенциал энергосбережения в жилищнокоммунальном хозяйстве (ЖКХ), рассмотрим возможности применения регулируемого электропривода на базе асинхронных двигателей в этой сфере.

Решение проблемы энергосбережения возможно при совершенствовании регулируемого электропривода на базе асинхронных двигателей, которые должны быть спроектированы и изготовлены специально для энергосберегающих технологий. В настоящее время потенциал энергосбережения для самых массовых электроприводов - насосных агрегатов составляет более 30 % от потребляемой мощности. На основании мониторинга в Алтайском крае можно получить при использовании регулируемого электропривода на базе асинхронных двигателей следующие показатели: экономия электроэнергии - 20.60 %; экономия воды - до 20 %; исключение гидравлических ударов в системе; снижение пусковых токов двигателей; минимизация затрат на обслуживание; снижение вероятности возникновения аварийных ситуаций . Это требует совершенствования всех звеньев электропривода, и, прежде всего, основного элемента, выполняющего электромеханическое преобразование энергии, - асинхронного двигателя.

Сейчас в большинстве случаев в регулируемом электроприводе используются серийные асинхронные двигатели общего назначения. Уровень расхода активных материалов на единицу мощности АД практически стабилизировался. Согласно некоторым оценкам применение серийных АД в регулируемых электроприводах приводит к снижению их КПД и повышению установленной мощности на 15.20 % . Среди российских и зарубежных специалистов высказывается мнение о том, что для подобных систем нужны специальные двигатели. В настоящее время требуется новый подход к проектированию в связи с энергетическим кризисом. Масса АД перестала быть определяющим фактором. На первый план выходит повышение энергетических показателей, в том числе за счет увеличения их стоимости и расхода активных материалов.

Одним из перспективных способов совершенствования электропривода является проектирование и изготовление АД специально для конкретных условий эксплуатации, что благоприятно для обеспечения энергосбережения. При этом решается задача адаптации АД к конкретному электроприводу, что дает наибольший экономический эффект в условиях эксплуатации.

Следует отметить, что выпуск АД специально для регулируемого электропривода производят фирмы Simens (Германия), Atlans-Ge Motors (США), Lenze Bachofen (Германия), Leroy Somer (Франция), Мэйден (Япония). Существует устойчивая тенденция мирового электромашиностроения по расширению производства таких двигателей. На Украине разработан программный комплекс проектирования модификаций АД для регулируемого электропривода . В нашей стране утвержден ГОСТ Р 51677-2000 для АД с высокими энергетическими показателями и возможно в ближайшее время будет организован их выпуск. Применение модификаций АД, специально спроектированных для обеспечения эффективного энергосбережения, - перспективное направление для совершенствования асинхронных двигателей.

При этом встает вопрос об обоснованном выборе подходящего двигателя из разнообразной по исполнению, модификациям номенклатуры выпускаемых двигателей, потому что применение общепромышленных асинхронных двигателей для электропривода с регулируемой частотой вращения оказывается неоптимальным по массогабаритным, стоимостным и энергетическим показателям. В связи с этим требуется проектирование энергоэффективных асинхронных двигателей.

Энергоэффективным является асинхронный двигатель, в котором с использованием системного подхода при проектировании, изготовлении и эксплуатации повышены КПД, коэффициент мощности и надежность. Характерными требованиями к общепромышленным приводам являются минимизация капитальных и эксплуатационных затрат,

в том числе и на техническое обслуживание. В этой связи, а также в силу надежности и простоты механической части электропривода подавляющее большинство общепромышленных электроприводов строятся именно на основе асинхронного двигателя - наиболее экономичного двигателя, который конструктивно прост, неприхотлив и имеет низкую стоимость. Анализ проблем регулируемых асинхронных двигателей показал, что их разработка должна выполняться на основании системного подхода с учетом особенностей работы в регулируемых электроприводах .

В настоящее время в связи с возросшими требованиями к эффективности за счет решения вопросов энергосбережения и повышения надежности функционирования электротехнических систем приобретают особую актуальность задачи модернизации асинхронных двигателей для улучшения их энергетических характеристик (КПД и коэффициента мощности), получения новых потребительских качеств (совершенствование защиты от окружающей среды, в том числе герметизация), обеспечение надежности при проектировании, изготовлении и эксплуатации асинхронных двигателей. Поэтому при выполнении исследований и разработок в области модернизации и оптимизации асинхронных двигателей необходимо создание соответствующих методик для определения их оптимальных параметров, из условия получения максимальных энергетических характеристик, и расчета динамических характеристик (время пуска, нагрев обмоток и т.д.). В результате теоретических и экспериментальных исследований важно определить наилучшие абсолютные и удельные энергетические характеристики асинхронных двигателей, исходя из требований предъявляемых к регулируемому электроприводу переменного тока.

Стоимость преобразователя обычно в несколько раз выше стоимости асинхронного двигателя одинаковой мощности. Асинхронные двигатели являются основными преобразователями электрической энергии в механическую, и в значительной степени они определяют эффективность энергосбережения.

Существует три пути обеспечения эффективного энергосбережения при применении регулируемого электропривода на базе асинхронных двигателей:

Совершенствование АД без изменения поперечного сечения;

Совершенствование АД с изменением геометрии статора и ротора;

Выбор АД общепромышленного исполнения

большей мощности.

Каждый из этих способов имеет свои достоинства, недостатки и ограничения по применению и выбор одного их них возможен только путем экономической оценки соответствующих вариантов.

Совершенствование и оптимизация асинхронных двигателей с изменением геометрии статора и ротора даст больший эффект, спроектированный двигатель будет иметь лучшие энергетические и динамические характеристики. Однако при этом финансовые затраты на модернизацию и переоборудование производства для его выпуска составят значительные суммы. Поэтому на первом этапе рассмотрим мероприятия, которые не требуют больших финансовых затрат, но при этом позволяют обеспечить реальное энергосбережение.

Результаты исследования

В настоящее время АД для регулируемого электропривода практически не разрабатываются. Целесообразно использовать специальные модификации асинхронных двигателей, в которых сохраняются штампы на листы статора и ротора и основные конструкционные элементы. В данной статье рассматривается возможность создания энергоэффективных АД путем изменения длины сердечника статора (/), числа витков в фазе обмотки статора (№) и диаметра провода при использовании заводской геометрии поперечного сечения. На начальном этапе была произведена модернизация асинхронных двигателей с короткозамкнутым ротором за счет изменения только активной длины . В качестве базового двигателя взят асинхронный двигатель АИР112М2 мощностью 7,5 кВт, выпускающийся на ОАО «Сибэлектромотор» (г. Томск). Значения длины сердечника статора для расчетов принимались в диапазоне /=100.170 %. Результаты расчетов в виде зависимостей максимального (Ппш) и номинального (цн) КПД от длины для взятого типоразмера двигателя представлены на рис. 1.

Рис. 1. Зависимости максимального и номинального коэффициента полезного действия при различной длине сердечника статора

Из рис. 1 видно, как количественно изменяется значение КПД при увеличении длины. Модернизированный АД имеет номинальный КПД выше, чем у базового двигателя при изменении длины сердечника статора до 160 %, при этом наиболее высокие значения номинального КПД наблюдаются при 110.125 %.

Изменение только длины сердечника и, как следствие, уменьшение потерь в стали, несмотря на некоторое увеличение КПД, не является наиболее эффективным путем совершенствования асинхронного двигателя. Более рациональным будет изменение длины и обмоточных данных двигателя (число витков обмотки и сечение провода обмотки статора). При рассмотрении данного варианта значения длины сердечника статора для расчетов принимались в диапазоне /=100.130 % . Диапазон изменения витков обмотки статора принимался равным №=60.110 %. У базового двигателя значение №=108 витков и п»=0,875. На рис. 2 представлен график изменения значения КПД при изменении обмоточных данных и активной длины двигателя. При изменении количества витков обмотки статора в сторону уменьшения, происходит резкое падение значений КПД до 0,805 и 0,819 у двигателей с длиной 100 и 105 % соответственно.

Двигатели в диапазоне изменения длины /=110.130 % имеют значения КПД выше, чем у базового двигателя, например №=96 ^»=0,876.0,885 и №=84 при 1=125.130 % имеют п»=0,879.0,885. Целесообразно рассматривать двигатели с длиной в диапазоне 110.130 %, и при снижении количества витков обмотки статора на 10 %, что соответствует №=96 витков. Экстремум функции (рис. 2), выделенный темным цветом, соответствует данным значениям длины и витков. Значение КПД при этом возрастает на 0,7.1,7 % и составляет

Третий путь обеспечения энергосбережения мы видим в том, что можно применять асинхронный двигатель общепромышленного исполнения большей мощности . Значения длины сердечника статора для расчетов принимались в диапазоне /=100.170 %. Анализ полученных данных показывает, что у исследуемого двигателя АИР112М2 мощностью 7,5 кВт при увеличении его длины до 115 % максимальное значение КПД п,шх=0,885 соответствует мощности Р2ш„=5,5 кВт. Этот факт указывает на то, что можно использовать в регулируемом электроприводе двигатели серии АИР112М2 с увеличенной длиной мощностью 7,5 кВт, вместо базового двигателя мощностью 5,5 кВт серии АИР90М2. У двигателя мощностью 5,5 кВт стои-

мость потребляемой электроэнергии за год составляет 71950 р., что значительно выше аналогичного показателя у двигателя увеличенной длины (115 % от базового) мощностью 7,5 кВт при С=62570 р. Одной из причин этого факта является сокращение доли электроэнергии на покрытие потерь в АД за счет работы двигателя в области повышенных значений КПД.

Повышение мощности двигателя должно быть обосновано как технической, так и экономической необходимостью . При исследовании двигателей повышенной мощности взят ряд АД общепромышленного применения серии АИР в диапазоне мощностей 3.75 кВт. В качестве примера рассмотрим АД с частотой вращения 3000 об/мин, которые чаще всего применяются в насосных агрегатах ЖКХ, что связано со спецификой регулирования насосного агрегата.

Рис. 3. Зависимость экономии за средний срок службы от полезной мощности двигателя: волнистая линия построена по результатам расчета, сплошная - аппроксимирована

Для обоснования экономической выгоды применения двигателей повышенной мощности были проведены расчеты и сравнение двигателей требуемой для данной задачи мощности и двигателей, имеющих мощность на ступень выше. На рис. 3 представлены графики экономии за средний срок службы (Э10) от полезной мощности на валу двигателя. Анализ полученной зависимости показывает

экономическую эффективность использования двигателей повышенной мощности, несмотря на увеличение стоимости самого двигателя. Экономия электроэнергии за средний срок службы составляет для двигателей со скоростью вращения 3000 об/мин 33.235 тыс. р.

Заключение

Огромный потенциал энергосбережения в России определяется большими затратами электрической энергии в народном хозяйстве. Системный подход при разработке асинхронных регулируемых электроприводов и организация их серийного производства может обеспечить эффективное энергосбережение, в частности, в жилищно-коммунальном хозяйстве. При решении проблемы энергосбережения следует применять асинхронный регулируемый электропривод, альтернативы которому в настоящее время нет.

1. Задачу создания энергоэффективных асинхронных двигателей, отвечающих конкретным условиям эксплуатации и энергосбережения, необходимо решать для конкретного регулируемого электропривода, используя системный подход. В настоящее время применяется новый подход к проектированию асинхронных двигателей. Определяющим фактором является повышение энергетических характеристик.

2. Рассмотрена возможность создания энергоэффективных асинхронных двигателей без изменения геометрии поперечного сечения при увеличении длины сердечника статора до 130 % и снижении числа витков обмотки статора до 90 % для регулируемых электроприводов, что позволяет обеспечить реальное энергосбережение.

3. Показаны пути обеспечения энергосбережения за счет использования асинхронных двигателей повышенной мощности в насосных агрегатах сферы жилищно-коммунального хозяйства. Например, при замене двигателя АИР90М2 мощностью 5,5 кВт двигателем АИР112М2 экономия электроэнергии составляет до 15 %.

4. Проведенные экономические расчеты и анализ результатов показывают экономическую эффективность использования двигателей повышенной мощности, несмотря на увеличение стоимости самого двигателя. Экономия электроэнергии за средний срок службы выражается в десятках и сотнях тыс. р. в зависимости от мощности двигателя и составляет 33.325 тыс. р. для асинхронных двигателей с частотой вращения 3000 об/мин.

СПИСОК ЛИТЕРАТУРЫ

1. Энергетическая стратегия России на период до 2020 г. // ТЭК.

2003. - № 2. - С. 5-37.

2. Андронов А.Л. Энергосбережение в системах водоснабжения средствами частотного регулирования электропривода // Электроэнергия и будущее цивилизации: Матер. научн.-техн. конф. - Томск, 2004. - С. 251-253.

3. Сидельников Б.В. Перспективы развития и применения бесконтактных регулируемых электродвигателей // Энергосбережение. - 2005. - № 2. - С. 14-20.

4. Петрушин В.С. Системный подход при проектировании регулируемых асинхронных двигателей // Электромеханика, электротехнологии и электроматериаловедение: Труды 5-ой Меж-дунар. конф. МКЭЭЭ-2003. - Крым, Алушта, 2003. - Ч. 1. -С. 357-360.

5. ГОСТ Р 51677-2000 Машины электрические асинхронные мощностью от 1 до 400 кВт включительно. Двигатели. Показатели эффективности. - М.: Изд-во стандартов, 2001. - 4 с.

6. Muraviev O.P., Muravieva O.O. Induction variable speed drive as the basis of efficient energy saving // The 8th Russian-Korean Intern. Symp. Science and Technology KORUS 2004. - Tomsk: TPU, 2004.

V. 1. - P. 264-267.

7. Muraviev O.P., Muravieva O.O., Vekhter E.V. Energetic Parameters of Induction Motors as the Basis of Energy Saving in a Variable Speed Drive // The 4th Intern. Workshop Compatibility in Power Electronics Cp 2005. - June 1-3, 2005, Gdynia, Poland, 2005. -P. 61-63.

8. Muravlev O.P., Muravleva O.O. Power Effective Induction Motors for Energy Saving // The 9th Russian-Korean Intern. Symp. Science and Technology KORUS 2005. - Novosibirsk: Novosibirsk State Technical University, 2005. - V. 2. - P. 56-60.

9. Вехтер Е.В. Выбор асинхронных двигателей повышенной мощности для обеспечения энергосбережения насосных агрегатов в ЖКХ // Современная техника и технологии: Труды 11-ой Междунар. научн.-практ. конф. молодежи и студентов. -Томск: Изд-во ТПУ, 2005. - Т. 1. - С. 239-241.

УДК 621.313.333:536.24

МОДЕЛИРОВАНИЕ РАБОТЫ МНОГОФАЗНЫХ АСИНХРОННЫХ ДВИГАТЕЛЕЙ В АВАРИЙНЫХ РЕЖИМАХ ЭКСПЛУАТАЦИИ

Д.М. Глухов, О.О. Муравлёва

Томский политехнический университет E-mail: [email protected]

Предложена математическая модель тепловых процессов в многофазном асинхронном двигателе, которая позволяет рассчитать превышение температурыы обмотки при аварийных режимах. Адекватность модели проверена экспериментально.

Введение

Интенсивное развитие электроники и микропроцессорной техники приводит к созданию качественных регулируемых электроприводов переменного тока для замены электроприводов постоянного тока и нерегулируемого электропривода переменного тока благодаря большей надёжности электродвигателей переменного тока по сравнению с машинами постоянного тока .

Регулируемые электроприводы завоевывают области применения нерегулируемых как для обеспечения технологических характеристик, так и с целью энергосбережения. Причем предпочтение отдается именно машинам переменного тока, асинхронным (АД) и синхронным (СД), так как они имеют лучшие массогабаритные показатели, более высокую надежность и срок службы, проще в обслуживании и ремонте по сравнению с коллекторными машинами постоянного тока. Даже в такой традиционно «коллекторной» области, как электрический транспорт, машины постоянного тока уступают место частотно-регулируемым двигателям переменного тока . Все большее место в продукции электромашиностроительных заводов занимают модификации и специализированные исполнения электродвигателей.

Создать универсальный, подходящий для всех случаев жизни частотно-регулируемый двигатель нельзя. Оптимальным он может быть только для каждого конкретного сочетания закона и способа управления, диапазона регулирования частоты и характера нагрузки. Многофазный асинхронный двигатель (МАД) может являться альтернативой трёхфазным машинам при питании от преобразователя частоты.

Целью настоящей работы является разработка математической модели для исследования тепловых полей многофазных асинхронных двигателей как в установившихся, так и в аварийных режимах работы, которые сопровождаются отключением (обрывом) фаз (или одной фазы) для того, чтобы показать возможность работы асинхронных машин в составе регулируемого электропривода без применения дополнительных средств охлаждения.

Моделирование теплового поля

Особенности эксплуатации электрических машин в регулируемом электроприводе, а также высокие вибрации и шум, накладывая определённые требования к конструкции, требуют иные подходы при проектировании. Вместе с тем, особенности многофазных двигателей делают такие машины пригодными для применения в регулируемых при-