Принцип работы электронного зажигания CDI. Устройство системы зажигания скутеров Зажигание cdi своими руками

Дизельные двигатели CDI по всем показателям в настоящее время заняли лидирующие позиции на мировом рынке.

Что такое CDI двигатель

Производство двигателя впервые было налажено немецким концерном «Мерседес». Сокращение CDI расшифровывается, как Common rail Diesel Injection, что означает система впрыска дизельного топлива.

Данная система спроектирована высококвалифицированными работниками в 2001 году. Система подачи топлива дизеля Common Rail была взята за основу при разработке CDI двигателей. Предъявляемые повышенные требования к дизельным двигателям, стали фундаментом зарождения системы CR, а в будущем и CDI. Система Common Rail установленная на дизельный мотор впервые запущена в 1997 году компанией «Bosch».

Уменьшение потребления топлива на 15%, увеличение мощности мотора CDI на 40%, связано с использованием системы Common Rail, но значительно затрудняет их ремонт. Поскольку «Мерседес» является передовым концерном, то он незамедлительно внедрил на новые автомобили данную систему.

Ко всему прочему владельцы автомобилей со старыми двигателями получили возможность замены на мотор CDI нового образца и получение фирменных комплектующих к ним.

Компания «Мерседес» стала первой из компаний, которые смогли предложить такую услугу. Тем самым еще более прочно укрепив свой статус лидера на рынке.

Работа и обслуживание моторов

Работает Common Rail за счет большого давления, которое присутствует постоянно в единой магистрали и через управляемые электроникой впрыскиваются в цилиндры. Зачастую клапаны устанавливают пьезоэлектрические, такие установлены на двигателях Mercedes.

Естественно техническое обслуживание и ремонт CDI увеличиваются в цене, по сравнению с традиционными. Зато повышается экономичность, увеличивается крутящий момент, мощность, повышается срок эксплуатации деталей.

Присутствуют в CDI также такие неоспоримые качества как снижение уровня шума, токсичности, вибрации. Еще в конструкцию был внедрен блок управления, который повышает качество работы системы питания за счет многочисленных программ.

Независимо от оборотов двигателя и нагрузки при любой последовательности впрыска по цилиндрам, данный блок управления всегда поддерживает высокое давление. За счет этого даже при самых маленьких оборотах коленчатого вала топливная смесь впрыскивается в цилиндр.

«Предварительный» впрыск — это ноу-хау компании «Мерседес» специалисты, которой внедрили дополнительно к системе Common Rail в 2001 году. Принцип его работы основан на впрыске топлива за доли секунды до основной порции топливной смеси. Это позволяет основной порции топлива попадать в камеру сгорания уже предварительно разогретую.

Воспламенение топлива за счет этого естественно улучшается, что позволяет снизить расход и . За счет такого принципа функционирования дизельные моторы CDI обрели свое наименование. Каждый второй автомобиль Европы на данный момент имеет в своей комплектации дизельный двигатель CDI.

Изначально такие движки естественно были установлены на автомобили компании «Мерседес». Это были автомобили серий ML и Vito.

В 2002 году один из основных французских производителей Peugeot и Итальянская компания-производитель Fiat стали применять аналогичную систему. Но лидирующей компанией по вопросам технологий, сервиса и разработок остается Mercedes. Компания не сдает своих убеждений не при каких обстоятельствах.

Поэтому при настоятельной потребности ремонта двигателя CDI, правильным решением будет обращение в специализированный сервис компании, где будет произведена высококвалифицированная работа специалистов.

Технически компания «Мерседес» безостановочно развивается. Единые нормативы обслуживания своих автомобилей принадлежат именно разработчикам автогиганта Mercedes.

На основании разработанных стандартов клиентам концерна рекомендуется использовать оригинальные автозапчасти и обращаться к дилерам. Если же на автомобиле установлены не оригинальные запчасти, то компания все гарантийные обязательства аннулирует.

Обслуживание моторов требует высокой квалификации и необходимость применения оригинальных фирменных автозапчастей. Срок службы двигателей CDI имеет значительную цифру. По факту поломок выходят из строя навесное или вспомогательное оборудование.

Превосходное обслуживание, передовые технологии, качество — все эти достойные выражения в автомобильной среде принадлежат компании, разработавшей двигатели марки CDI, а именно великому автоконцерну «Мерседес-Бенц».

Современный автомобиль трудно представить без зажигания. Основные преимущества, которые дает система электронного зажигания общеизвестны, они следующие:
более полное сгорание топлива и связанное с этим повышение мощности и экономичности;
снижение токсичности отработавших газов;
облегчение холодного пуска;
увеличение ресурса свечей зажигания;
снижение энергопотребления;
возможность микропроцессорного управления зажиганием.
Но всё это в основном относится к системе CDI
На данный момент, в автомобильной промышленности практически отсутствуют системы зажигания, основанные на накоплении энергии в конденсаторе: CDI (Capacitor Discharge Ignition) - она же тиристорная (конденсаторная) (кроме 2-х тактных импортных двигателей). А системы зажигания основанные на накоплении энергии в индуктивности: ICI (ignition coil inductor) пережили момент перехода с контактов на коммутаторы, где контакты прерывателя были банально заменены транзисторным ключом и датчиком Холла не претерпев принципиальных изменений (пример зажигания в ВАЗ 2101…07 и в интегральные системы зажигания ВАЗ 2108…2115 и далее). Основная причина доминирующего распространения систем зажигания ICI - это возможность интегрального исполнения, что влечёт удешевление производства, упрощение сборки и монтажа, за которое расплачивается конечный пользователь.
При этой, так сказать, системы ICI все недостатки, основным из которых является относительно низкая скорость перемагничивания сердечника и как следствие резкий рост тока первичной обмотки с ростом оборотов двигателя, и потеря энергии. Что приводит к тому, что с ростом оборотов, ухудшается воспламенение смеси, как следствие сбивается фаза начального момента роста давления вспышки, ухудшается экономичность.

Частичное, но далеко не лучшее решение этой проблемы, является применение сдвоенных и счетверённых катушек зажигания (т.н.) этим самым производитель распределил нагрузку по частоте перемагничивания с одной катушки зажигания на две или четыре, тем самым, снижая частоту перемагничивания сердечника для одной катушки зажигания.
Хочу заметить, что на машинах с схемой зажигания (ВАЗ 2101…2107), где искра формируется за счет прерывания тока в достаточно высокоомной катушке механическим прерывателем, что замена на электронный коммутатор от или ему подобный в автомобилях с высокоомной катушкой не дает ничего, кроме снижения токовой нагрузки на контакт.
Дело в том, что RL-параметры катушки должны удовлетворять противоречивым требованиям. Во-первых, активное сопротивление R должно ограничивать ток на уровне, достаточном для накопления необходимого количества энергии при пуске, когда напряжение аккумулятора может упасть в 1,5 раза. С другой стороны, слишком большой ток приводит к преждевременному выходу из строя контактной группы, поэтому ограничен вариатором или длительностью импульса накачки в. Во-вторых, для увеличения количества запасенной энергии необходимо увеличивать индуктивность катушки. При этом с ростом оборотов сердечник не успевает перемагнититься (о чём писалось выше). Как следствие вторичное напряжение в катушке не успевает достигнуть номинального значения, и энергия искры, пропорциональная квадрату тока, резко снижается на высоких (более ~3000) оборотах двигателя.
Наиболее полно преимущества электронной системы зажигания проявляются в конденсаторной системе зажигания с накоплением энергии в ёмкости, а не в сердечнике. Один из вариантов конденсаторной системы зажигания и описан в данной статье. Подобные устройства отвечают большинству требований, предъявляемых к системе зажигания. Однако их массовому распространению препятствует наличие в схеме высоковольтного импульсного трансформатора, изготовление которого представляет известную сложность (об этом ниже).
В данной схеме высоковольтный конденсатор заряжается от DC/DC преобразователя, на транзисторах П210, при поступлении сигнала управления тиристор подключает заряженный конденсатор к первичной обмотке катушки зажигания, при этом DC-DC работающий в режиме блокинг-генератора останавливается. Катушка зажигания используется только как трансформатор (ударный LC контур).
Обычно напряжение на первичной обмотке нормируется на уровне 450…500В. Наличие высокочастотного генератора и стабилизация напряжения делает величину запасаемой энергии практически независимой от напряжения аккумулятора и частоты вращения вала. Такая структура получается гораздо более экономичной, чем при накоплении энергии в индуктивности, так как ток через катушку зажигания течет только в момент искрообразования. Применение 2-х тактного автогенераторного преобразователя позволило поднять КПД до 0,85. Нижеприведенная схема имеет свои преимущества и недостатки. К достоинствам надо отнести:
нормирование вторичного напряжения, независимо от частоты вращения коленчатого вала в рабочем диапазоне оборотов.
простота конструкции и как следствие – высокая надежность;
высокий КПД.
К недостаткам:
сильный нагрев и, как следствие, - нежелательно размещать в месте моторного отсека. Самое, на мой взгляд, удачное место расположения – бампер автомобиля.
По сравнению с системой зажигания ICI с накоплением энергии в катушке зажигания, конденсаторная (CDI) имеет следующие преимущества:
высокая скорость нарастания высоковольтного напряжения;
и достаточное (0,8мс) время горения дугового разряда и, как следствие, - роста давления вспышки топливной смеси в цилиндре, из-за этого повышается стойкость двигателя к детонации;
энергия вторичной цепи выше, т.к. нормирована по времени горения дуги от момента зажигания (МЗ) до верхней мёртвой точки (ВМТ) и не ограничена сердечником катушки. Как следствие – лучшая воспламеняемость топлива;
более полное сгорание топлива;
лучшую самоочистку свечей зажигания, камер сгорания;
отсутствие калильного зажигания.
меньший эрозионный износ контактов свечей зажигания, распределителя. Как следствие - больший срок службы;
уверенный запуск в любую погоду, даже на подсевшей АКБ. Блок начинает уверенно работать от 7 В;
мягкая работа двигателя, по причине только одного фронта горения.

Следует тщательно подойти к технологии изготовления трансформатора, т.к. 99% неудачных попыток повторения похожих и этой схемы были связаны именно с неправильной намоткой трансформатора, монтажа и несоблюдением правил подключения нагрузок.
Для трансформатора применяется кольцо магнитной проницаемостью ч=2000, сечением >=1,5см 2 (например, неплохие результаты показал: «сердечник М2000НМ1-36 45х28х12»).

Намоточные данные:

Технология сборки:
Обмотка накладывается виток к витку по свеже-пропитанной эпоксидной смолой прокладке.
После окончания слоя или обмотки в одном слое - обмотка покрывается эпоксидной смолой до заполнения межвитковых пустот.
Обмотка закрывается прокладкой по свежей эпоксидной смоле с выдавливанием избытка. (из-за отсутствия вакуумной пропитки)
Так же следует обратить внимание на заделку выводов:
на одевается фторопластовая трубка и фиксируется капроновой ниткой. На повышающей обмотке выводы гибкие, выполненные проводом: МГТФ-0,2…0,35.
После пропитки и изоляции первого ряда (обмотки 1-2-3, 4-5-6) по всему кольцу наматывается повышающая обмотка (7-8) послойно, виток к витку. , оголение слоёв, «барашки» - не допускаются.
От качества изготовления трансформатора практически зависти надёжность и долговечность работы блока.
Расположение обмоток показано на рисунке 3.

Сборка электронного блока
Для лучшего теплоотвода блок рекомендуется собирать в дюралевом оребреном корпусе, приблизительный размер – 120 x 100 x 60 мм, толщина материала – 4...5 мм.
На стенку корпуса через изоляционную теплопроводную прокладку ставятся транзисторы П210.
Монтаж выполняется навесным монтажом с учетом правил монтажа высоковольтных, импульсных устройств.
Плату управления допустимо выполнять на печатной либо на макетной плате.
Готовое устройство налаживания не требует, необходимо лишь уточнить включение обмоток 1, 3 в базовой цепи транзисторов, и если генератор не запускается – поменять местами.
Конденсатор, установленный на трамблёре при использовании CDI отключают.

Детали
Практика показала, что попытка заменить транзисторы П210 на современные кремниевые приводит к значительному усложнению электрической схемы (см. 2 нижние схемы на КТ819 и TL494), необходимостью тщательной настройки, которую после одного - двух лет эксплуатации в тяжелых режимах (нагрев, вибрация) приходится выполнять повторно.
Личная практика с 1968 года показала, что применение транзисторов П210 позволяет забыть об электронном блоке на 5...10 лет, а применение высококачественных компонентов (особенно накопительного конденсатора (МБГЧ) с долго нестареющим диэлектриком) и аккуратное изготовление трансформатора – и на более долгий срок.

1969-2006 Все права на это схемное решение принадлежат В.В.Алексееву. При перепечатке ссылка обязательна.
Задать вопрос можно по адресу, указанному в правом нижнем углу.

Литература

Проблема с дизельным двигателем CDI.

Частые проблемы с двигателем и их причины.

1) Двигатель не развивает полной мощности. Нет тяги, стрелка тахометра не превышает 3000 об\мин.

Вероятнее всего двигатель перешел в аварийный режим. Отключается турбина. Нет тяги.

Нужно в первую очередь сделать компютерную диагностику и определиться, в каком направлении идти дальше.

Если диагностику сделать нет возможности, или она не показывает ошибки - стоит проверить турбину на предмет работоспособности и форсунки "по обратнму сливу".

Турбину проверить проще всего так: пережмите пальцами рук резиновый патрубок который идет от турбины к двигателю, так, как проверяют давление в велосипедном колесе, в это время другой человек пусть нажмет на педаль акселератора до упора на 3-4 секунды. Если турбина в хорошем состоянии вы не удержите патрубок в сжатом состоянии. А вот если патрубок не расширяется от давления или расширяется слабо и его можно удержать в полусжатом состоянии - надо разбираться что с турбиной не так.

Причин нерабочей турбины много: неработают датчики давления турбины, неисправен расходомер воздуха, негерметичен канал подачи воздуха, забит интеркуллер, или даже забита выхлопная труба.

Проверить форсунки можно так, как это указано в соседнем разделе. Высокий уровень обратки отрицательно влияет на работу двигателя. Черный дым, при разгоне троит, тупит, двигатель может плохо заводиться.

2) Временами двигатель троит, пропуски зажигания, постукивает и может заглохнуть в любой момент. В остальное время работает нормально. Нередко бывали случаи, когда провода идущие к форсункам с годами высыхали, ломалась изоляция и происходило замыкание на корпус двигателя.

3) Кстати, у кого машина моложе 2007 года и оснащена пьезо форсунками может получиться так, что машина заводится с пол оборота, но тут же глохнет. Скорее всего вышел из строя пьезоэлемент форсунки. В этом случае снимайте поочередно фишки с форсунок и пробуйте завести машину.

Без замкнутой форсунки машина заведется на трех цилиндрах и не будет глохнуть.

4) Двигатель на горячую не заводится. С эфиром или с буксира заводится без проблем (по началу). Это явный признак выхода одной или нескольких форсунок из строя. Требуется капитальный ремонт форсунок или покупка новых.

5) Идет белый дым. Основные причины: распылители форсунок вышли из строя или забит сажевый фильтр, турбина "гонит" масло. В первом случае если у вас пьезо форсунки - необходимо проверить форсунки на стенде. Во втором случае может повышаться уровень масла в двигателе и повышается расход топлива. Машина запускает процесс регенерации сажевого фильтра. Происходит впрыск дополнительной порции топлива для повышения температуры отработавших газов. При частой регенерации часть топлива просачивается через поршневую в картер двигателя. Отсюда и повышенный уровень масла.

Кстати, если после удаления сажевого фильтра неправильно сделать прошивку - может возникнуть множество проблем, которые диагностический сканер просто не увидит.

В таком случае процесс диагностики заметно усложняется.

Впервые конструкция двигателя, функционирующего на основании принципа самовоспламенения топлива под действием разогретого при сжатии воздуха, была запатентована Рудольфом Дизелем в 1892 году. Дебютные двигатели были приспособлены для работы на растительных маслах и легких продуктах нефти, а в 1898 году они уже могли работать на сырой нефти. Производители пассажирских автомобилей обратили внимание на дизельные двигатели только в 70-е годы 20 века, когда значительно выросли цены на топливо.

Преимущества дизельного двигателя

С тех времен дизельные двигатели значительно усовершенствовались и удачно используются в различных комплектациях автомобилей. Многие автолюбители предпочитают «дизели» обычным бензиновым двигателям, поскольку первые более экономичны (расходуют до 30 % меньше топлива, которое в разы дешевле различных видов бензинов) и обладают более высоким крутящим моментом. И это даже при том, что автомобили, оснащаемые «дизелями» имеют гораздо большую стоимость. Да и сами двигатели обладают увеличенным весом и размером за счет того, что призваны выдерживать колоссальные нагрузки.

Характеристики дизельных двигателей TDI и CDI

На сегодняшний момент известна масса видов дизельных двигателей. Однако если вы намерены сделать выбор между такими агрегатами, как TDI и CDI, заранее следует сравнить их характеристики, чтобы принять правильное решение и получить в итоге именно то, что нужно.

Двигатель TDI (Turbocharged Direct Injection) был разработан немецкой компанией Volkswagen. Его основной отличительной чертой, помимо непосредственного впрыска, является наличие турбонагнетателя с изменяемой геометрией турбин. Система в целом гарантирует оптимизированное наполнение цилиндров, высокоэффективное сжигание топлива, экономичность и экологическую безопасность. Турбонаддув TDI-мотора координирует энергию потока отработавших газов и тем самым обеспечивает необходимое давление воздуха в обширном диапазоне частоты вращения двигателя.

Такие моторы считаются в достаточной мере надежными и непритязательными в использовании. При этом они обладают одной неприятной особенностью. Дело в том, что турбина TDI при высокой температуре эксплуатации (а она у потока отработавших газов составляет до 1000°C) и внушительной частоте вращения (примерно 200 тыс. оборотов в минуту) имеет небольшой ресурс, всего около 150 тыс. км пробега автомобиля. А вот сам двигатель может выдержать и до 1 млн. км.

«Дизель» CDI (Common Rail Diesel Injection) – результат работы концерна Mercedes-Benz. В нем впервые была применена инновационная система впрыска Common Rail. Она позволила значительно уменьшить расход топлива, а мощность была увеличена практически на 40 %. Стоит отметить, что CDI-моторы требуют значительных затрат в сервисном обслуживании, однако при достигнутом низком уровне износа деталей ремонт необходим гораздо реже. Казалось бы, система совершенна, но этот двигатель может быть чувствителен к некачественному топливу.

Впрочем, современные дизельные двигатели на самом деле мало чем отличаются, за исключением некоторых незначительных моментов. Так что однозначно ответить на вопрос, какой же в действительности двигатель лучше, нельзя. Необходимо руководствоваться собственными потребностями, вкусами и предпочтениями. Но сам по себе выбор дизельного двигателя – это уже однозначно правильное решение.

Продолжаем цикл статей в разделе "Копилка знаний", сегодня мы рассказываем об электронном зажигании CDI (Capacitive Discharge Ignition).

ФУНКЦИЯ - ВОСПЛАМЕНЯТЬ
УСТРОЙСТВО СИСТЕМ ЗАЖИГАНИЯ ИМПОРТНОЙ ТЕХНИКИ

КОРОТКИЙ И ДЛИННЫЙ
Кроме зажиганий CDI и DC-CDI, существуют еще и батарейные системы. Возникает вопрос: если конденсаторные схемы прославились надежностью, то зачем применять еще что-то? А вот зачем.

Один из факторов, от которых зависят мощность и другие показатели двигателя, -длительность разряда на свече. Поясню почему. Электрическая дуга, или искра, как мы ее привыкли называть, стабильно воспламеняет смесь, если в той на 14,5 кг воздуха содержится один килограмм топлива. Такую смесь называют нормальной. Но сами подумайте, в смеси, поступающей в цилиндр, есть зоны с большим или меньшим содержанием топлива в воздухе. Окажись такой состав подле свечи в момент образования искры - и смесь в цилиндре будет гореть вяло. Последствия понятны: мощность двигателя в этот конкретный момент снизится, может возникнуть и пропуск в воспламенении. Так вот, CDI вырабатывают искру супермалой длительности -0,1-0,3 миллисекунды: в системе такой конденсатор, что большей длительности искры дать и не способен. Батарейное же зажигание выдает искру на порядок "длиннее" - до 1-1,5 миллисекунды. Она, понятное дело, скорее воспламенит смесь с отклонениями от нормального состава. Такое зажигание как большая и толстая охотничья спичка: в сравнении с обычной она пылает долго, от нее костер разгорится быстрее. Иными словами, батарейная система менее требовательна к точности настройки карбюратора, чем CDI.
Секрет же "длинной" искры в том, что ее создает не короткий "выстрел" энергии конденсатора, а накопленная катушкой зажигания солидная "порция" электромагнитной индукции.

МОЗГИ-ТО ЖЕЛЕЗНЫЕ...
Работу системы поясню на примере схемы с механическим прерывателем - она не сложна. В цепи катушки зажигания, ведущей к "минусу", два контакта - подвижный и неподвижный. Когда они замкнуты, ток протекает через катушку, и электрическое поле первичной обмотки намагничивает сердечник. Стоит кулачку вала разомкнуть контакты, ток в первичной обмотке прервется, и сердечник начнет размагничиваться. По законам физики, появление и исчезновение магнита, помещенного в катушку, создает (индуцирует) в ее обмотках импульс напряжения. Во вторичной цепи это пара десятков тысяч Вольт, образующих искру между электродами свечи. А так как магнитная индукция сердечника катушки сохраняется несколько миллисекунд, то и время горения искры почти такое же.

Однако простота контактной схемы скрывает кучу недостатков. Мотоциклисты, поездившие на старых мотоциклах, помнят, что "железные мозги" вечно приходилось чинить: очищать окислившиеся контакты, регулировать зазор между ними и сбивающееся опережение зажигания. Это не просто занудство, оно еще требует и опытного настройщика.

Батарейное зажигание с контактным прерывателем (в 2-цилиндровом моторе): Р1 - аккумулятор; 2 - замок зажигания; 3 - кнопка выключения мотора; 4 - катушка зажигания; 5 - свеча зажигания; 6 - контактная пара (прерыватель); 7 - конденсатор. Размыкание контактов сопровождается искрением между ними - ток стремится пробить воздушный промежуток. Конденсатор, включенный параллельно прерывателю, частично поглощает искру увеличивая срок службы контактов.

ТРАНЗИСТОРНЕ КИСНЕТ
Транзисторное батарейное зажигание TCI избавило пилота от этих забот - из системы исчезли подвижные детали. "Transistor Controlled Ignition" дословно означает: зажигание, контролируемое транзистором. Место механики занял электромагнитный датчик - катушка на магнитном сердечнике. Появление сигнала в ней вызывает прохождение выступа на вращаемой коленвалом стальной пластине-модуляторе. Он и датчик расположены так, что импульс в обмотке возникает в момент, когда пора воспламенять смесь в цилиндре.
Но датчик - лишь "командующий" зажиганием, а основные исполнители -транзисторы, катушка зажигания и, естественно, свеча.
Происходит это так. При включенном зажигании электрический ток, вырабатываемый АКБ (после пуска мотора генератором) через открытый силовой транзистор, проходит через первичную обмотку катушки и сердечник намагничивается. Когда датчик дает "команду" к искрообразованию, импульс напряжения поступает на управляющий электрод (базу) управляющего транзистора и он, транзистор, открывается. Теперь ток потечет на массу через него, а силовой транзистор закроется - его база обесточится. Катушка лишится питания, сердечник начнет размагничиваться, и на свече появится разряд. Затем управляющий транзистор вернется в закрытое состояние (до получения следующего сигнала от датчика) и его силовой "собрат" снова откроется и начнет заряжать катушку. Конечно, это упрощенное объяснение, но вполне отражает основы работы транзисторной системы.


1 - модулятор; 2 - индуктивный датчик; 3 - управляющий транзистор; 4 - силовой транзистор; 5 - катушка зажигания; б - свеча зажигания. Красным цветом указано течение тока, когда силовой транзистор открыт (катушка накапливает магнитное поле), синим -
через управляющий транзистор, в условиях, если появляется сигнал отдатчика. Транзистор пропускает через себя ток только при наличии напряжения на управляющем электроде (базе).

ДАТЧИК, ПРОЦЕССОРИ ПАМЯТЬ
Зажигание должно выдавать разряд в момент, "согласованный" с режимом работы мотора. Напомню характер его изменения: запуску мотора и холостому ходу соответствует наименьший угол, по мере роста оборотов или снижения нагрузки на двигатель (дроссель карбюратора прикрыт) угол увеличивается. Естественно, что в батарейных системах есть устройства коррекции опережения. Помимо транзисторов, "руководящих" катушками, в блоке управления встроены память (ПЗУ - постоянное запоминающее устройство) и микропроцессор, схожие с теми, что работают в портативных компьютерах. В память записана информация о том, при каких оборотах и нагрузках мотора, в какой момент надо подать искру. Процессор, получив от датчиков данные о режиме работы мотора, сравнивает показания с записями в ПЗУ и выбирает нужное значение угла опережения.

Рдо серийной установки на технику двигатель испытывается при разных режимах оборотов и нагрузок, оптимальное значение угла опережения зажигания фиксируется и записывается в ПЗУ (или ОЗУ). Объединенные воедино эти данные выглядят как трехмерная диаграмма, ее еще называют "картой".

Параметры работы мотора могут считываться разными способами. В некоторых системах используется только индуктивный датчик ("командующий" зажиганием). В этом случае его модулятор имеет несколько выступов. По скорости перемещения одних процессор распознает обороты коленвала, по другим определяет цилиндр, на свечу которого пора подать разряд.
Более продвинутые системы снабжены датчиком положения дроссельной заслонки TPS (Throttle Position Sensor). Он информирует процессор о нагрузке на мотор.

Рпо значению сопротивления процессор определяет угол открытия дросселя, по скорости изменения напряжения в цепи - интенсивность открытия дроссельной заслонки.

Иногда считывается и скорость открытия заслонки. Зачем? Разгон и детонация часто идут "рука об руку". Например: резко открыв газ, вы, оказалось, требуете от мотора невозможного - динамики, неизбежно вызывающей детонацию (взрывное горение топлива). TPS передает эту информацию процессору (скорость открытия дросселя), тот сравнит ее с записями в ПЗУ, "поймет", что ситуация близка к аварийной, и сдвинет угол опережения в сторону запаздывания. Взрывов в цилиндре и повреждений поршневой группы не произойдет.
Помимо ПЗУ, в которых корректировать записанные данные невозможно, ряд фирм (например, Ducati и Harley-Davidson) используют "гибкую" память. Ее называют "оперативное запоминающее устройство" (сокращенно - ОЗУ). Она перепрограммируется с помощью специального электронного блока. Однако на практике лишь немногие специалисты способны улучшить заводскую настройку зажигания. Еще меньше пилотов почувствуют положительный эффект при движении экипажа. Зато расход топлива и количество вредных компонентов в выхлопных газах значительно возрастут.
Процессорные зажигания часто именуют "цифровыми", так как в них есть специальный блок, преобразующий сигналы датчиков в цифровой ряд. Другой информации компьютер не распознает.

РУказаны различные способы управления искрообразованием:
А - используется маковичный генератор с двумя датчиками и одним выступом на роторе (он же модулятор); Б - генератор такой же, но датчик -один, используется модулятор с несколькими выступами; В - модулятор имеет форму многолучевой звезды, датчик - один (подобную схему чаще используют в составе систем впрыска топлива, чем с карбюраторами).