Ультразвуковой мотор. Миниатюрные линейные пьезоэлектрические двигатели. Приводы для криогенного оборудования

Области применения миниатюрных двигателей и приводов довольно обширны - это и приводы для измерительных устройств, таких как электронные и туннельные микроскопы, приводы манипуляторов различных сборочных роботов, а также исполнительные механизмы в технологическом оборудовании и бытовой технике. В качестве микромоторов могут использоваться коллекторные и бесколлекторные электромагнитные микродвигатели, пьезомоторы и интегральные приводы MEMS. В статье пойдет речь о пьезоэлектрических двигателях.

Взависимости от степени миниатюризации используются различные типы микромоторов. Для макроуровня, где требуется большая мощность при относительно малых размерах, применяются миниатюрные электромагнитные двигатели и соленоиды. Для микроустройств в настоящее время широко используются интегральные приводы, созданные по MEMS-технологии.

Пьезоприводы проигрывают электромагнитным двигателям по мощности, а MEMS микромоторам - по степени микроминиатюризации. Однако основное преимущество микропьезомоторов - возможность прямого позиционирования с субмикронной точностью. Кроме того, эти приводы имеют и множество других преимуществ перед своими электромагнитными конкурентами.

Электромагнитные микроэлектродвигатели (коллекторные, шаговые и бесколлекторные) в настоящее время достигли предела миниатюризации. Например, серийно выпускаемый шаговый электродвигатель типа А0820 имеет диаметр 8 мм, весит 3,3 грамма и стоит около $10. Двигатели этого типа довольно сложны и содержат сотни деталей. При дальнейшем уменьшении размеров усложняется процесс сборки, а также теряется эффективность двигателя. Для намотки катушек статора приходится использовать более тонкий провод, который имеет более высокое сопротивление. Так, при уменьшении размеров коллекторного микроэлектродвигателя до 6 мм гораздо большая часть подводимой электрической энергии преобразуется в тепло, нежели в механическую энергию. В большинстве случаев для получения линейных приводов на базе электродвигателей необходимо применение дополнительных механических передач и редукторов, которые преобразуют вращательное движение в поступательное и обеспечивают нужную точность позиционирования. При этом возрастают размеры всего устройства в целом, а значительная часть энергии тратится на преодоление трения в механической передаче. Диаграмма, приведенная на рис. 1, показывает, что при размерах менее 7 мм (диаметр корпуса двигателя) выгоднее применять пьезокерамические двигатели, а не электромагнитные.

Рис. 1. При размерах менее 7 мм пьезоэлектродвигатели более эффективны, чем электромагнитные двигатели

В настоящее время многими фирмами освоено серийное производство пьезомоторов. В статье рассматривается продукция двух производителей пьезоприводов: немецкого Physik Instrumente (PI) и американского New Scale Technologies. Выбор фирм не случаен. Американская фирма на данный момент производит самые маленькие в мире пьезодвигатели, а немецкая является одним из лидеров в секторе пьезоприводов для прецизионного оборудования. Производимые ею пьезомоторы имеют уникальные функциональные характеристики и пользуются заслуженной репутацией среди производителей прецизионного технологического и измерительного оборудования. Обе фирмы используют свои патентованные решения. Принцип работы двигателей обеих фирм, а также их конструкция различны.

Конструкция и принцип работы пьезоэлектродигателя SQUIGGLE

На рис. 2 показаны конструкция и принцип работы пьезопривода SQUIGGLE фирмы New Scale Technologies.

Рис. 2. Конструкция и принцип работы микропривода SQUIGGLE

Основа привода - муфта прямоугольного сечения с внутренней резьбой и ходовой винт (червяк). На гранях металлической муфты смонтированы пьезокерамические пластины актуаторов. При подаче двухфазных сигналов на пары пьезоэлектрических актуаторов создаются вибрационные колебания, которые передаются в массу муфты. Для более эффективного преобразования электрической энергии в механическую актуаторы работают в резонансном режиме. Частота возбуждения зависит от размеров пьезопривода и находится в диапазоне от 40 до 200 кГц. Механические колебания, действующие на границе двух рабочих поверхностей муфты и винта, вызывают появление сил сдавливания с поворотом (типа вращения хула-хупа). Результирующая сила обеспечивает вращение червяка относительно неподвижного основания - муфты. При движении винта и происходит преобразование вращательного движения в линейное перемещение. В зависимости от сдвига фаз управляющих сигналов можно получать вращение винта как по часовой, так и против часовой стрелки.

В качестве материалов винта и муфты используются немагнитные материалы, такие как бронза, нержавеющая сталь, титан. Резьбовая пара муфта–червяк не требует смазки для работы.

Пьезоприводы практически безынерционные, обеспечивают отличную приемистость (движение с ускорением до 10 g), практически бесшумны в звуковом диапазоне (30 Гц - 15 кГц). Точность позиционирования может достигаться без использования датчиков положения - благодаря тому, что движение происходит без проскальзывания (при условии, что нагрузка на рабочий винт находится в рабочих пределах), и перемещение прямо пропорционально числу импульсных сигналов, приложенных к пластинам актуатора. Пьезоприводы имеют практически неограниченный срок службы, разве что со временем за счет износа винтовой передачи может быть частично потеряна точность позиционирования. Пьезопривод может выдерживать режим блокировки движения за счет приложения сил торможения, превосходящих усилие тяги привода. В этом случае будет происходить проскальзывание без разрушения винтовой передачи.

Сегодня микромоторы серии SQL признаны самыми маленькими электродвигателями в мире, которые производятся серийно.

Рис. 3. Рабочий чертеж промышленного пьезомотора серии SQL

Основные характеристики пьезопривода SQUIGGLE:

  • масштабируемые размеры (можно получать заказные приводы с заданными размерами);
  • минимальные габариты привода 1,55×1,55×6 мм;
  • простота конструкции (7 составных частей);
  • низкая цена;
  • высокая технологичность изготовления составных компонентов и сборки привода;
  • прямой линейный привод, не требующий применения дополнительных механических передач;
  • субмикронная точность позиционирования привода;
  • бесшумность работы;
  • широкий рабочий температурный диапазон (–30...+70 °С).

Параметры микромоторов серии SQL:

  • мощность потребления - 500 мВт (только в процессе перемещения штока);
  • разрешение - 0,5 мкм;
  • вес - 1,7 г;
  • скорость перемещения - 5 мм/с (под нагрузкой 100 г);
  • усилие перемещения - более 200 г;
  • частота возбуждения пьезоактуаторов - 116 кГц;
  • электрическая емкость каждой из четырех фаз пьезопривода - 1,35 нФ;
  • коннектор (кабель) - печатный шлейф (6 проводников - 4 фазы и 2 общих);
  • рабочий ресурс - 300 тыс. циклов (при длине хода якоря 5 мм);
  • диапазон линейных перемещений якоря:
  • – модель SQL-3.4 - 10–40 = 30 мм (40 мм - длина ходового винта);

    – модель SQL-3.4 - 10–30 = 20 мм (30 мм - длина ходового винта);

    – модель SQL-3.4 - 10–15 = 5 мм (15 мм - длина ходового винта).

  • крепление привода - фланцевое соединение или опрессовка.

По заказу фирмы New Scale Technologies разработан интегральный драйвер для пьезоприводов серии SQL (рис. 4). Таким образом, потребитель имеет возможность использовать набор готовых компонентов для получения своего OEM электромеханического модуля.

Рис. 4. Серия SQL микропьезоприводов для портативной аппаратуры

Микросхема драйвера привода (рис. 5) содержит преобразователь напряжения и выходные драйверы, работающие на емкостную нагрузку. Входное напряжение 3 В. Уровни выходных напряжений формирователей - до 40 В.

Рис. 5. Микросхема драйвера пьезопривода

Области применения пьезоприводов SQUIGGLE

Привод для объективов фото- и видеокамер

Один из самых больших секторов применения микроэлектроприводов - цифровые фотокамеры и видеокамеры (рис. 6). Микропривод используется в них для управления фокусировкой объектива и оптическим зумом.

Рис. 6. Прототип привода оптического зума для цифровой фотокамеры

На рис. 7 показан пьезопривод SQUIGGLE для применения во встроенных фотокамерах сотовых телефонов. Привод производит смещение двух линз вдоль направляющих вверх–вниз и обеспечивает автофокусировку (длина хода оптики 2 мм) и зум (ход перемещения линз до 8 мм).

Рис. 7. Модель объектива с приводом SQUIGGLE для камеры, встроенной в сотовый телефон

Медицинский шприц-дозатор

Во всем мире насчитывается сотни миллионов людей, нуждающихся в периодических дозированных инъекциях медицинских препаратов. В этом случае следить за временем, дозами, а также проводить процедуру инъекции должен сам пациент. Этот процесс можно значительно упростить и тем самым облегчить жизнь пациента, если создать программируемый шприц-дозатор (рис. 8). На базе пьезопривода SQL уже реализован программируемый насос-шприц для инъекций инсулина. Дозатор состоит из микроконтроллерного модуля управления, емкости с препаратом, шприца и управляемого привода. Управление дозатором осуществляется встроенным микроконтроллерным модулем с батарейным питанием. Элемент питания - литиевая батарея. Модуль дозатора может быть встроен в одежду больного и размещен, например, в области рукава. Временные интервалы между инъекциями и дозы медикамента программируются под конкретного клиента.

Рис. 8. Использование привода в программируемом шприце-дозаторе

Величина дозы прямо пропорциональна длине перемещения штока привода.

Предполагается использование микрошприцев с противошоковым препаратом, вмонтированных в «интеллектальную броню» военнослужащего. Защитная одежда, кроме армированных силовых элементов, содержит также интегрированные датчики пульса, температуры, датчики механических повреждений текстильной «брони». Активация шприцев происходит как по инициативе самого бойца, так и по команде из блока носимой электроники или же по радиоканалу из командного терминала на основании показаний датчиков при потере бойцом сознания, например, после ранения или в результате контузии.

Немагнитные двигатели

Поскольку в пьезоприводах SQL не используются ферросплавные материалы, а также электромагнитные поля, двигатели этого типа могут использоваться для создания носимых медицинских диагностических устройств, совместимых с методом магниторезонасной томографии. Данные приводы также не будут вносить помехи при размещении в рабочих зонах оборудования, использующего ядерный магнитный резонанс, а также вблизи электронных сканирующих микроскопов, микроскопов с фокусированием ионных потоков и т. п.

Лабораторный микронасос

На базе пьезопривода могут быть созданы микронасосы для дозированной подачи жидкостей в лабораторном исследовательском оборудовании. Основные достоинства микронасоса такой конструкции - высокая точность дозирования и надежность работы.

Двигатель для вакуумного оборудования

Пьезопривод подходит для создания механических устройств, работающих в условиях как высокого, так и сверхвысокого вакуума, и обеспечивающих высокую точность позиционирования (рис. 9). Материалы привода обладают малым газовыделением в вакууме. При работе привода в режиме микроперемещений выделяется мало тепла.

Рис. 9. Привод для вакуумного оборудования на базе микромотора серии SQL

В частности, такие двигатели найдут широкое применение при создании новых поколений сканирующих электронных микроскопов, ионных сканирующих масс-спектрометров, а также в технологическом и тестирующем оборудовании для электронной промышленности, в оборудовании, применяемом в ускорителях частиц, таких как синхротроны.

Приводы для криогенного оборудования

Уникальные параметры пьезопривода позволяют использовать его при очень низких температурах. Фирмой уже выпускаются варианты исполнений приводов для коммерческих и космических применений при низких температурах.

В настоящее время на базе микромоторов SQL созданы приводы для различных функциональных узлов в криогенном лабораторном оборудовании, а также механические приводы для подстройки параметров космических телескопов.

На рис. 10 показан пьезопривод для работы при температурах жидкого гелия.

Рис. 10. Исполнение пьезопривода для работы при температурах от комнатной до 4 К (жидкий гелий)

Работа при низких температурах требует других частот и амплитуд сигналов для возбуждения пьезоактуаторов.

Оценочный набор

Фирма New Scale Technologies выпускает оценочный набор, который содержит: пьезодвигатель SQL (рис. 11), плату привода, программное обеспечение, интерфейс с компьютером, а также дополнительный пользовательский пульт управления приводом.

Рис. 11. Оценочный набор для пьезопривода SQL

В качестве интерфейса с ПК может использоваться USB или RS-232.

Пьезоприводы фирмы PI

Немецкая фирма Physik Instrumente (PI) (www.physikinstrumente.com/en) была образована в 1970 году. В настоящее время имеет подразделения в США, Великобритании, Японии, Китае, Италии и Франции. Основной сектор - оборудование для нанопозиционирования и обеспечения контроля движения с высокой точностью. Фирма является одним из ведущих производителей оборудования данного профиля. Используются уникальные запатентованные решения. Так, в отличие от большинства пьезоприводов, в том числе и SQUIGGLE, в приводах PI обеспечивается принудительная фиксация каретки после останова. За счет отсутствия смещения эти устройства обладают высокой точностью позиционирования.

Конструкция и принцип работы пьезприводов PI

На рис. 12 показана конструкция пьезодвигателя фирмы PI.

PILine - патентованная конструкция пьезопривода, разработанная фирмой PI. Сердцем системы является прямоугольная монолитная керамическая плата - статор, которая разделена с одной стороны на два электрода. В зависимости от направления движения, левый или правый электрод керамической платы возбуждается импульсами с частотой в десятки и сотни килогерц. Алюминиевый фрикционный наконечник (толкатель) прикреплен к керамической плате. Он обеспечивает передачу движения от колеблющейся пластины статора к фрикциону каретки. Материал фрикционной полоски обеспечивает оптимальную силу трения при работе в паре с алюминиевым наконечником.

Благодаря контакту с полоской фрикциона обеспечивается сдвиг подвижной части привода (каретки, платформы, поворотного столика микроскопа) вперед или назад. С каждым периодом колебаний керамического статора выполняется сдвиг каретки на несколько нанометров. Движущая сила возникает из продольных колебаний пластины актуатора. В настоящее время ультразвуковые пьезоприводы могут обеспечивать движение с ускорением до 20 g и скорость движения до 800 мм/с! Усилие привода пьезодвигателя может достигать 50 Н. Приводы PILine могут работать без обратной связи и обеспечивать разрешение 50 нм.

На рис. 13 показана конструкция пьезокерамического статора PILine.

Рис. 13. Конструкция керамического статора пьезопривода PILine

При отсутствии сигнала наконечник толкателя прижат к полоске фрикциона и сила трения, действующая на границе между наконечником и фрикционом, обеспечивает фиксацию каретки.

PILine - серия пьезоприводов с линейным перемещением

Фирма PI выпускает серию линейных пьезоприводов по технологии PILine с различными функциональными параметрами. В качестве примера рассмотрим характеристики конкретной модели P-652 (рис. 14).

Рис. 14. Вариант реализации пьезопривода PILine P-652 (рядом для сравнения мяч для гольфа)

Пьезопривод PILine P-652 может использоваться в OEM приложениях, для которых важны малые габариты и масса. Модуль привода P-652 может заменить классический привод на основе двигателя с вращающимся валом и механической передачей, а также другие линейные электромагнитные приводы. Самофиксация каретки при останове не требует дополнительной энергии. Привод предназначен для перемещения малых объектов с высокой скоростью и точностью.

Компактный пьезомотор с интегрированной схемой управления может обеспечивать движение с ускорением до 2,5 g и скоростью до 80 мм/с. При этом выдерживается высокая точность позиционирования каретки и достаточно высокий уровень силы фиксации в неподвижном состоянии. Наличие фиксации каретки обеспечивает возможность работы привода в любых положениях и гарантирует фиксацию положения каретки после останова даже под действием нагрузки. В схеме драйвера для возбуждения пьезоактуаторов используются короткие импульсы амплитудой всего 3 В. Схема обеспечивает автоподстройку резонансного режима под конкретные размеры керамических актуаторов.

Основные характеристики линейного пьезомотора P-652 PILine:

  • низкая стоимость серийного производства;
  • размер пьезомотора - 9,0×6,5×2,4 мм;
  • рабочий ход перемещения каретки 3,2 мм;
  • скорость движения до 80 мм/с;
  • самофиксация при останове;
  • MTBF - 20 тыс. часов.

Модули приводов со встроенным контроллером

Фирма PI производит модули управления (контроллеры) для своих пьезоприводов. Плата управления содержит интерфейс управления, преобразователь напряжения и выходной драйвер для возбуждения пьезокерамического актуатора. В контроллерах приводов используется традиционная схема пропорционального управления. В зависимости от условий применения приводов в контроллере может использоваться цифровой или аналоговый тип пропорционального управления. Для управления самими актуаторами применяются синусоидальные сигналы, а также может использоваться обратная связь по датчикам положения. Фирма PI выпускает готовые модули с датчиками положения. Фирма PI разработала и производит емкостные датчики положений для своих интегральных модулей (рис. 15).

Рис. 15. Модуль пьезопривода со встроенной платой управления

Цифровой (импульсный) режим управления

Импульсный режим управления движением подходит для приложений, требующих малых перемещений с большой скоростью, таких как микроскопия или автоматика. Двигатель управляется 5-вольтовыми TTL-импульсами. Ширина импульса определяет длину шага двигателя. Шаг перемещения в таком режиме - до 50 нм. Для реализации одного такого шага подается импульс напряжения длительностью около 10 мкс. Длительность и скважность импульсов управления зависит от скорости движения и величины выполняемого перемещения каретки.

Режим аналогового управления

В данном режиме в качестве входных сигналов управления положением используются аналоговые сигналы амплитудой ±10 В. Величина перемещения каретки в этом случае прямо пропорциональна амплитуде управляющего сигнала.

Области применения прецизионных пьезоприводов:

  • биотехнологии;
  • микроманипуляторы;
  • микроскопия;
  • лабораторное оборудование контроля качества;
  • тестовое оборудование для полупроводниковой промышленности;
  • метрология;
  • тестирование дисковых накопительных устройств;
  • НИР и ОКР.

Преимущества ультразвуковых пьезодвигателей PILine:

  • Малые габариты . Например, модель M-662 обеспечивает рабочий ход 20 мм при габаритах корпуса 28×28×8 мм.
  • Малая инерция . За счет этого достигается перемещение с большими скоростями, высокими ускорениями и сохраняется высокое разрешение. PILine обеспечивает скорости движения до 800 мм/с и ускорение до 20 g. Жесткость конструкции обеспечивает очень малое время продвижения за один шаг и высокую точность позиционирования - 50 нм.
  • Отличный показатель удельной мощности . Привод PILine обеспечивает высокие характеристики в минимальных габаритах. Никакой другой двигатель не может обеспечить такую же комбинацию ускорений, скоростей и точности.
  • Безопасность . Минимальный момент инерции наряду с фрикционной муфтой обеспечивает безопасность при работе. Такой привод не может разрушиться и повредить окружающие предметы в результате нарушения режима работы. Использование фрикционной муфты предпочтительнее, чем червячная передача в двигателе SQUIGGLE. Несмотря на большие скорости перемещения каретки, риск повреждения, например, пальца оператора гораздо меньше, чем при использовании любого другого привода. Это означает, что пользователь может прикладывать меньше усилий, чтобы обеспечить безопасность работы привода.
  • Автофиксация каретки .
  • Возможность работы привода в вакууме .
  • Незначительный уровень ЭМИ . Приводы PILine при работе не создают магнитных полей и не имеют в конструкции ферромагнитных материалов.
  • Гибкость решений для OEM . Приводы PILine могут поставляться как с датчиками, так и без датчиков положения. Кроме того, могут поставляться и отдельные компоненты привода.

Линейные пьезоприводы типа NEXLINE

Пьезоприводы NEXLINE обеспечивают более высокую точность позиционирования. Конструкция привода содержит несколько актуаторов, работающих согласованно. В отличие от приводов PILine, в этих устройствах актуаторы работают не в резонансном режиме. В этом случае получается многотактная схема перемещения подвижной каретки несколькими толкателями актуаторов. Тем самым не только повышается точность позиционирования, но и увеличиваются моменты сил движения и удержания каретки. Приводы этого типа, так же как и приводы PILine, могут поставляться как с датчиками положения каретки, так и без них.

Основные преимущества серии пьезоприводов NEXLINE:

  • Очень высокое разрешение, ограниченное только чувствительностью датчиков положения. В режиме аналогового перемещения с использованием датчиков положения достигается точность позиционирования 50 нм (0,05 мкм).
  • Работа с высокой нагрузкой и большой силой фиксации каретки. Приводы NEXLINE могут обеспечивать усилия до 600 Н. Жесткая конструкция и применение резонансных частот возбуждения в диапазоне сотен герц позволяют конструкции подавлять вибрацию от внешних воздействий. Аналоговый режим работы может активно применяться для сглаживания вибрации и дрожания основания привода.
  • Может работать как в режиме с открытым контуром обратной связи, так и с обратной связью по датчикам положения. Цифровой контроллер NEXLINE может использовать сигналы положения от линейных энкодеров или же от лазерных интерферометров, а для очень высокой точности позиционирования использовать сигналы абсолютного положения от емкостных датчиков.
  • Сохраняет стабильное положение каретки при выключении питания.
  • Длительный срок службы - более 10 лет.
  • Привод NEXLINE не содержит ферроманитных деталей, не подвержен действию магнитных полей, не является источником электромагнитного излучения.
  • Устройства работать в очень тяжелых условиях внешней среды. Активные части приводов NEXLINE выполнены из вакуумной керамики. NEXLINE также может работать без нарушений при облучении жестким ультрафиолетом.
  • Очень прочная конструкция. Приводы NEXLINE в процессе транспортировки могут выдерживать удары и вибрации до нескольких g.

Гибкость дизайна для OEM

Приводы NEXLINE выпускаются в трех вариантах интеграции. Пользователь может заказать готовый OEM двигатель, только пьезоактуаторы для двигателя своей конструкции, либо комплексную систему под ключ, например такую, как многоосный поворотный столик или же сборочный микроробот с шестью степенями свободы. На рис. 16–19 показаны различные варианты реализации многокоординатных устройств позиционирования на базе пьезоприводов фирмы PI.

Фирма специализируется на разработке и производстве керамических микроэлектродвигателей для применения в миниатюрных устройствах. Компания New Scale Technologies Inc. (www.NewScaleTech.com) была основана в 2002 году группой специалистов, имеющих десятилетний опыт в области проектирования пьезоэлектрических приводов. Первый коммерческий образец привода SQUIGGLE был создан уже в 2004 году. Созданы специальные исполнения привода для работы в экстремальных условиях, для работы в вакууме, в криогенных установках при сверхнизкой температуре, а также для работы в зоне сильных электромагнитных полей.

За короткое время пьезодвигатели SQUIGGLE нашли широкое применение в лабораторном оборудовании для нанотехнологий, в технологическом оборудовании микроэлектроники, устройствах лазерной техники, медицинском оборудовании, приборах аэрокосмического назначения, установках оборонного назначения, а также в промышленных и бытовых устройствах, например, таких как цифровые камеры и сотовые телефоны.

Пьезодвигатели бывают с пьезоэлектрически активным статором и пассивным ротором, активным ротором и пассивным статором, активными статором и ротором. В них могут быть возбуждены колебания сжатия-растяжения, изгиба, сдвига, крутильные и радиальные; возможно сочетание колебаний двух типов. Все это приводит к большому разнообразию теоретически возможных конструкций двигателей. Ниже рассмотрены конструкция и принцип действия двух характерных и получивших практическое применение типов двигателей.

Принцип действия вращающегося пьезодвигателя удобно рассмотреть на примере конструктивной схемы двигателя с пьезоэлементом, совершающим продольные и изгибные колебания (рис.6.2). На активном статоре 1 установлен пьезоэлемент, представляющий собой керамическую пластину 3 с помещенными на её боковых поверхностях электродами 4. Один конец керамической пластины закреплен в статоре с помощью эластичной прокладки 2, изготовленной из фторопласта или резины и обеспечивающей акустическую изоляцию осциллятора от статора. На другом конце пластины, обращенном к ротору, установлена износостойкая прокладка 8. Пассивный ротор 9 выполнен в виде гладкого цилиндра из стали или твердых сплавов. Вал ротора 10 закреплен в подшипниках 11. Вибратор прижимается к ротору в поперечном направлении стальной пружиной 5, усилие регулируется винтом 6, упирающимся в эластичную прокладку 7.

Электроды вибратора расположены таким образом, что при подаче на них напряжения переменного тока требуемой частоты, близкой к резонансной частоте продольных колебаний вибратора, пластина вибратора совершает продольные колебания. При продольном смещении свободного конца пластины в сторону ротора пластина давит на ротор в точке А и заставляет его поворачиваться с угловой скоростью ω р. Контактная точка А перемещается вместе с поверхностью ротора, т. е. смещается и в поперечном направлении. Поперечная составляющая силы, действующей на вибратор в зоне контакта, возбуждает изгибные колебания вибратора. При обратном продольном смещении пластины её конец отходит от ротора, и ротор движется по инерции. В результате установившихся продольных и изгибных колебаний происходит устойчивое преобразование электрической энергии, потребляемой вибратором, в механическую энергию вращения ротора.

Следует отметить, что у двигателей рассматриваемого типа в контактной точке происходит фактически соударение двух поверхностей, поэтому их иногда называют пьезодвигателями ударного типа. Двигатель, представленный на рис. 6.2, является нереверсивным, однако при определенном усложнении конструкции возможно создание реверсивного двигателя.

Угловая скорость ротора ω р может быть определена через линейную скорость ротора ν р и его диаметр D р по формуле ω р =ν р /(D р /2).

Линейная скорость ротора зависит от амплитуды и частоты смещения свободного конца вибратора. При увеличении напряжения питания двигателя в довольно широком диапазоне возрастает амплитуда смещения вибратора, соответственно увеличивается линейная и угловая скорость ротора. Максимум амплитуды смещения ограничивается пределом прочности материала пьезоэлемента или его перегревом.

Выполняя двигатели с ротором большого диаметра D р, можно получать низкую частоту вращения ротора ω р без применения механических редукторов при сохранении достаточно высокой мощности на валу на единицу массы.

У современных двигателей номинальное напряжение питания лежит в диапазоне от десятков вольт до 400 вольт; регулирование напряжения позволяет получать частоты вращения в диапазоне от 20 до 10.000 об/мин. Частота напряжения питания обычно выбирается из условия резонанса колебаний; у современных вращающихся двигателей номинальная частота порядка 50-80 кГц.

Двигатель аналогичной конструкции может работать и в шаговом режиме при рабочей частоте вращения 0,2-6 об/сек. При подаче одиночного импульса на обкладки пьезоэлемента выполняется дискретный шаг порядка 0,1– 4 угловых секунд.

Конструктивная схема двигателя второго типа с активным статором, совершающим радиальные колебания, представлена на рис.6.3.

Внешний пассивный ротор 1 выполнен в виде тонкостенного цилиндра. Внутри него находится кольцевой цилиндричесий статорный пьезоэлемент 2, на торцевых поверхностях которого нанесены электроды, а внутренняя поверхность покрыта акустически изолирующим материалом. По внешней образующей статора закреплены упругие стальные пластины – толкатели 3, установленные под определенным углом к внутренней поверхности ротора и прижатые к нему с некоторым усилием.

Если внешний диаметр пьезоэлемента значительно больше его толщины и высоты, то при подаче переменного напряжения на торцевые электроды внешняя поверхность пьезоэлемента начинает совершать радиальные колебания. При положительной полуволне сигнала диаметр статора увеличивается и толкатели, увеличивая нажатие на ротор, поворачивают его на некоторый угол. Отрицательная полуволна сигнала вызывает уменьшение диаметра статора, и толкатели проскальзывают по внутренней стороне поворачивающегося ротора.

Рассмотренный пьезодвигатель является нереверсивным. Однако совмещение в одном корпусе двух таких комплектов с разворотом толкателей в противоположные стороны позволяет получить реверсивный двигатель. В таблице 6.1 приведены технические данные таких двигателей, выпущенных в виде опытной серии.

Таблица 6.1

Самые массовые китовые объективы 18-55 у кэнона, никона, сони и других.
С этих объективов все начинают.
И потом они ломаются. Ломаются, когда уже приходит пора переходить на более продвинутые.
Они и сделаны на год не больше и то, если бережно к ним относиться.
Даже прибережном отношении со временем пластиковые детали начинают затирать.
Прилагается больше усилий, направляющие гнутся и зум ломается.
У меня на сайте есть статьи по ремонту механики.
Эта статья про ремонт ультразвукового мотора, который изнашивается со временем.

Как извлечь мотор, я не пишу, нет ничего проще.



В моторе нечему ломаться, три детали.




Для усложнения задачи возьмём мотор со сломаным шлейфом.

Ремонтируется прсто, всего три провода, средний земля.
Немного о работе самого двигателя, может, кто не знает.
На металлическое кольцо с ножками наклеены пъезопластины.
Когда к ним подается напряжение с частотой резонанса детали,это статор, он начинает колебаться.
Частота примерно 30 кГц, поэтому ультразвуковой мотор.
Ножки толкают ротор, он вращается и через редуктор двигает линзоблок вдоль оптической оси. Так происходит фокусировка объектива.




Плата мотора выглядит так. DC-DC блок питания и 2 фазоинвертора, три провода к мотору.

Для сравнения просто электромотор не ультразвуковой, у кэнона выглядит так.




Разводка большого USM мотора имеет ещё один немаловажный контакт.
Это четвёртый контакт подстройки частоты блока питания.
Дело в том, что резонансная частота статора меняется в зависимости от температуры.
Если частота питания отличается от резонансной частоты, двигатель работает медленнее.
Нужно сказать, что с подстройкой частоты заморачивается только кэнон, сигма не особо.




Три контакта у сигмы.


Это кэноновский в процессе ремонта, имеет 4 провода.

По большому счёту при сборке объектива на заводе частота блока питания должна подстраиваться до резонансной частоты статора.
В таком случае тупая замена мотора при ремонте невозможна. Нужно подстраивать частоту.

Вернемся к нашему мотору.
Поверхность статора очень чувствительна ко всяким инородным предметам, типа песчинок и нужна хорошая чистота поверхности ножек.
На работу двигателя влияет чистота поверхности и усилие прижимной пружины.
Будем считать, что усилие пружины не изменяется со временем, а вот поверхность истирается.
Я пробую шлифовать поверхность несколькими способами.
Для начала наждачкой 2500, результат плохой.
Ротор сразу нарабатывает задиры и двигатель клинит.
Пробую шлифовать в зеркало на войлочном круге.




Поверхность красивая, но ротор, как бы прилипает, пищит и двигатель плохо вращается.

Последний способ и самый результативный шлифовка с пастой гои на зеркале.

Оказалось важно даже не чистота поверхности а её плоскостность, она даёт наибольшую площадь соприкосновения ротора и статора.




Нет предела совершенству.

Шлейф меняется просто




Провода напаиваются и покрываются поксиполом.




Здесь одна тонкость, прижим деталей усиливается за счёт увеличения толщины статора и двигатель может не пойти.
Лишний клей убираем.




Пружину можно укоротить, но тогда прижим будет совсем непонятный.
В сборе, как то так.

И испытания прошу прощения за ссылки, я не знаю, как вставить медиафайлы, а гифки получаются большие

7. ПЬЕЗОЭЛЕКТРИЧЕСКИЕ МИКРОДВИГАТЕЛИ

Пьезоэлектрическими микродвигателями (ПМД) называются двигатели, в которых механическое перемещение ротора осуществляется за счет пьезоэлектрического или пьезомагнитного эффекта .

Отсутствие обмоток и простота технологии изготовления не являются единственными преимуществами пьезоэлектрических двигателей. Высокая удельная мощность (123 Вт/кг у ПМД и 19 Вт/кг у обычных электромагнитных микродвигателей), большой КПД (получен рекордный до настоящего времени КПД = 85%), широкий диапазон частот вращения и моментов на валу, отличные механические характеристики, отсутствие излучаемых магнитных полей и ряд других преимуществ пьезоэлектрических двигателей позволяют рассматривать их как двигатели, которые в широких масштабах заменят применяемые в настоящее время электрические микромашины.

§ 7.1. Пьезоэлектрический эффект

Известно, что некоторые твердые материалы, например, кварц способны в электрическом поле изменять свои линейные размеры. Железо, никель, их сплавы или окислы при изменении окружающего магнитного поля также могут изменять свои размеры. Первые из них относятся к пьезоэлектрическим материалам, а вторые - к пьезомагнитным. Соответственно различают пьезоэлектрический и пьезомагнитный эффекты.

Пьезоэлектрический двигатель может быть выполнен как из тех, так и из других материалов. Однако наиболее эффективными в настоящее время являются пьезоэлектрические, а не пьезомагнитные двигатели.

Существует прямой и обратный пьезоэффекты. Прямой - это появление электрического заряда при деформации пьезоэлемента. Обратный - линейное изменение размеров пьезоэлемента при изменении электрического поля. Впервые пьезоэффект обнаружили Жанна и Поль Кюри в 1880 году на кристаллах кварца. В дальнейшем эти свойства были открыты более чем у 1500 веществ, из которых широко используются сегнетова соль, титанат бария и др. Ясно, что пьезоэлектрические двигатели"работают" на обратном пьезоэффекте.

§ 7.2. Конструкция и принцип действия пьезоэлектрических микродвигателей

В настоящее время известно более 50 различных конструкций ПМД. Рассмотрим некоторые из них.

К неподвижному пьезоэлементу (ПЭ)- статору - прикладывается переменное трехфазное напряжение (рис. 7.1). Под действием электрического поля конец ПЭ последовательно изгибаясь в трех плоскостях, описывает круговую траекторию. Штырь, расположенный на подвижном конце ПЭ, фрикционно взаимодействует с ротором и приводит его во вращение.


Большое практическое значение получили шаговые ПМД (рис. 7.2.). Электромеханический преобразователь, например, в виде камертона 1 передает колебательные движения стержню 2, который перемещает ротор 3 на один зубец. При движении стержня назад собачка 4 фиксирует ротор в заданном положении.

Мощность описанных выше конструкций не превышает сотые доли ватта, поэтому использование их в качестве силовых приводов весьма проблематично. Наиболее перспективными оказались конструкции, в основе которых лежит принцип весла (рис. 7.3).

Вспомним, как движется лодка. За время, пока весло находится в воде, его движение преобразуется в линейное перемещение лодки. В паузах между гребками лодка движется по инерции.

Основными элементами конструкции рассматриваемого двигателя являются статор и ротор (рис.7.4). На основании 1 установлен подшипник 2. Ротор 3, выполненный из твердого материала (сталь, чугун, керамика и пр.) представляет собой гладкий цилиндр. Неотъемлемой частьюПМД является акустически изолированная от основания и оси ротораэлектромеханическая колебательная система - осциллятор (вибратор). В простейшем случае он состоит из пьезопластины 4 вместе с износостойкой прокладкой 5. Второй конец пластины закреплен в основании с помощью эластичной прокладки 6 из фторопласта, резины или другого подобного материала. Осцилятор прижимается к ротору стальной пружиной7, конец которой через эластичную прокладку 8 давит на вибратор. Длярегулирования степени прижатия служит винт 9.

Чтобы объяснить механизм образования вращающего момента, вспомниммаятник. Если маятнику сообщить колебания в двух взаимно перпендикулярных плоскостях, то в зависимости от амплитуд, частоты и фаз возмущающих сил его конец будет описывать траекторию от круга до сильновытянутого эллипса. Так и в нашем случае. Если подвести к пьезопластине переменное напряжение определенной частоты, ее линейный размербудет периодически изменяться: то увеличиваться, то уменьшаться, т.е. пластина будет совершать продольные колебания (рис. 7.5,а).


При увеличении длины пластины ее конец вместе с ротором переместится и впоперечном направлении (рис. 7.5,б). Это эквивалентно действию поперечной изгибающей силы, которая вызывает поперечные колебания. Сдвигфаз продольных и поперечных колебаний зависит от размеров пластины,рода материала, частоты питающего напряжения и в общем случае можетизменяться от 0 о до 180 о. При сдвиге фаз, отличном от 0 о и 180 о,контактная точка движется по эллипсу. В момент соприкосновения с роторомпластина передает ему импульс движения (рис. 7.5,в).

Линейная скорость вращения ротора зависит от амплитуды и частотысмещения конца осциллятора. Следовательно,чем больше напряжение питания и длина пьезоэлемента, тем больше должна быть линейная скоростьвращения ротора. Однако не следует забывать, что с увеличением длинывибратора, уменьшается частота его колебаний.

Максимальная амплитуда смещения осциллятора ограничивается пределом прочности материала или перегревом пьезоэлемента. Перегревматериала свыше критической температуры - температуры Кюри,приводит кпотере пьезоэлектрических свойств. Для многих материалов температураКюри превышает 250 0 С, поэтому максимальная амплитуда смещенияпрактически ограничивается пределом прочности материала. С учетом двукратного запаса по прочности принимают V P = 0,75 м/с.

Угловая скорость ротора


где D P - диаметр ротора.

Отсюда частота вращения в оборотах в минуту


Если диаметр ротора D P = 0,5 - 5 см, то n = 3000 - 300 об/мин.Таким образом, изменяя только диаметр ротора, можно в широких пределах изменять частоту вращения машины.

Уменьшение напряжения питания позволяет снизить частоту вращениядо 30 об/мин при сохранении достаточно высокой мощности на единицумассы двигателя. Армируя вибратор высокопрочными сапфировымипластинами, удается поднять частоту вращения до 10000 об/мин. Этопозволяет в широкой области практических задач выполнять привод безиспользования механических редукторов.

§ 7.3. Применение пьезоэлектрических микродвигателей

Надо отметить, что применение ПМД пока весьма ограничено. В настоящее время к серийному производству рекомендован пьезопривод дляпроигрывателя, разработанного конструкторами объединения "Эльфа" (г. Вильнюс), и пьезоэлектрический привод ведущего вала видеомагнитофона,созданного в объединении "Позитрон" .

Применение ПМД в аппаратах звуко- и видеозаписи позволяет по новому подойти к проектированию механизмов транспортирования ленты,поскольку элементы этого узла органически вписываются в двигатель,становясь его корпусом, подшипниками, прижимом и т.п. Указанные свойства пьезодвигателя позволяют осуществить непосредственный приводдиска проигрывателя путем установки на его валу ротора, к поверхностикоторого постоянно прижат осциллятор. Мощность на валу проигрывателяне превышает 0,2 Вт, поэтому ротор ПМД может быть изготовлен как изметалла, так и из пластмассы, например карболита.

Изготовлен опытный образец электробритвы "Харьков-6М" с двумя ПМДобщей мощностью 15Вт. На базе механизма настольных часов "Слава" выполнен вариант с шаговым пьезодвигателем. Напряжение питания 1,2 В;потребляемый ток 150 мкА. Малая потребляемая мощность позволяетпитать их от фотоэлементов.

Присоединение к ротору ПМД стрелки и возвратной пружины позволяетиспользовать двигатель в качестве малогабаритного и дешевого электроизмерительного прибора с круглой шкалой.

На основе линейных пьезодвигателей изготавливают электрическиереле с потребляемой мощностью от нескольких десятков микроватт донескольких ватт. Такие реле в рабочем состоянии не потребляют энергии.После срабатывания сила трения надежно удерживает контакты взамкнутом состоянии.

Рассмотрены далеко не все примеры использования ПМД. Пьезодвигатели могут найти широкое применение в различных автоматах, роботах,протезах, детских игрушках и в других устройствах.

Изучение пьезодвигателей только началось, поэтому не все ихвозможности раскрыты. Предельная мощность МПД принципиально неограничена. Однако конкурировать с другими двигателями они могут покав диапазоне мощностей до 10 ватт. Это связано не только сконструктивными особенностями ПМД, но и с уровнем развития науки итехники, в частности с совершенствованием пьезоэлектрических, сверхтвердых и износостойких материалов. По этой причине цель данной лекциизаключается прежде всего в подготовке будущих инженеров к восприятиюновой для них области техники перед началом промышленного выпускапьезоэлектрических микродвигателей.