Время нарастания замедления на снежной дороге. Тормозная динамичность автомобиля. Коэффициент сопротивления движению

"..."установившееся замедление" - среднее значение замедления за время торможения от момента окончания периода времени нарастания замедления до начала его спада в конце торможения;..."

Источник:

Постановление Правительства РФ от 10.09.2009 N 720 (ред. от 06.10.2011) "Об утверждении технического регламента о безопасности колесных транспортных средств"

  • - один из основных классификационных признаков транспортного средства, определяющих его назначение и общее конструктивное исполнение...

    Криминалистическая энциклопедия

  • - А. Отношение массы пассажиров и грузов, загруженных на транспортное средство, к нормативной массе пассажиров и грузов. Б. Масса пассажиров и грузов, загруженных в транспортное средство...

    Словарь бизнес терминов

  • - принудительное задержание транспортного средства на основании решения судебного органа, производимое, например, в порядке обеспечения гражданско-правового...

    Большой экономический словарь

  • - ".....

    Официальная терминология

  • - "...1) владелец транспортного средства - лицо, владеющее транспортным средством на праве собственности или на ином законном основании;..." Источник: Федеральный закон от 01.07...

    Официальная терминология

  • - "..."дефект" - каждое отдельное несоответствие транспортного средства установленным требованиям;..." Источник: Постановление Правительства РФ от 10.09...

    Официальная терминология

  • - мера обеспечения производства по делам о нарушении некоторых правил дорожного движения...

    Административное право. Словарь-справочник

  • - принудительное задержание транспортного средства по решению суда, производимое для обеспечения правового...

    Словарь бизнес терминов

  • - 1. масса пассажиров и грузов, находящихся в транспортном средстве и предназначенных для перевозки 2...

    Большой экономический словарь

  • - ".....

    Официальная терминология

  • - "..."база транспортного средства" - расстояние между вертикальной поперечной плоскостью, проходящей через ось передних колес, и вертикальной поперечной плоскостью, проходящей через ось задних колес;.....

    Официальная терминология

  • - "...Год выпуска: календарный год, в котором было произведено ТС..." Источник: "ТРАНСПОРТНЫЕ СРЕДСТВА. МАРКИРОВКА. ОБЩИЕ ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ...

    Официальная терминология

  • - "...ГРУЗОПОДЪЕМНОСТЬ ТРАНСПОРТНОГО СРЕДСТВА - масса груза, на перевозку которого рассчитано данное транспортное средство.....

    Официальная терминология

  • - ".....

    Официальная терминология

  • - ".....

    Официальная терминология

  • - "..."устойчивость транспортного средства при торможении" - способность транспортного средства двигаться при торможениях в пределах коридора движения;..." Источник: Постановление Правительства РФ от 10.09...

    Официальная терминология

"Установившееся замедление при торможении транспортного средства" в книгах

Из книги Пользование чужим имуществом автора Панченко Т М

Статья 637. Страхование транспортного средства Если иное не предусмотрено договором аренды транспортного средства с экипажем, обязанность страховать транспортное средство и (или) страховать ответственность за ущерб, который может быть причинен им или в связи с его

Аренда транспортного средства

Из книги Расходы организации: бухгалтерский и налоговый учет автора Уткина Светлана Анатольевна

Аренда транспортного средства Затраты на выплату компенсации работникам за использование ими личных автомобилей для служебных поездок включаются в состав прочих расходов, связанных с производством и реализацией. При этом нормы расходов на указанные цели установлены

2. 5. Выбор транспортного средства

Из книги Логистика автора Савенкова Татьяна Ивановна

2. 5. Выбор транспортного средства Выбор транспорта решается в о взаимной связи с другими задачами логистики: создание и поддержание оптимального уровня запасов, выбор вида упаковки и др. На выбор транспортных средств будут влиять: характер груза (вес, объем,

Из книги Гражданский кодекс РФ автора ГАРАНТ

Задержание транспортного средства

Из книги автора

Задержание транспортного средства Статья 27.13. Задержание транспортного средства 1. При нарушениях правил эксплуатации, использования транспортного средства и управления транспортным средством соответствующего вида, предусмотренных статьями 11.26, 11.29, частью 1 статьи

автора Дума Государственная

Из книги Кодекс Российской Федерации об административных правонарушениях (КоАП РФ) автора Дума Государственная

автора Законы РФ

Статья 11. 27. Управление транспортным средством без отличительного на нем и (или) прицепах к нему знака государства регистрации транспортного средства (прицепа) и нарушение других правил эксплуатации транспортного средства при осуществлении международной автомобильной

Из книги Кодекс РФ об административных правонарушениях автора Законы РФ

Статья 12. 25. Невыполнение требования о предоставлении транспортного средства или об остановке транспортного средства 1. Невыполнение требования о предоставлении транспортного средства сотрудникам милиции или иным лицам, которым в случаях, предусмотренных

автора Автор неизвестен

Статья 11.27. Управление транспортным средством без отличительного на нем и (или) прицепах к нему знака государства регистрации транспортного средства (прицепа) и нарушение других правил эксплуатации транспортного средства при осуществлении международной автомобильной

Из книги Кодекс Российской Федерации об административных правонарушениях. Текст с изменениями и дополнениями на 1 ноября 2009 г. автора Автор неизвестен

Статья 12.25. Невыполнение требования о предоставлении транспортного средства или об остановке транспортного средства 1. Невыполнение требования о предоставлении транспортного средства сотрудникам милиции или иным лицам, которым в случаях, предусмотренных

Из книги КоАП для автомобилистов с комментариями. С изменениями на 2015 год автора Федорова Екатерина Николаевна

Статья 12.25. Невыполнение требования о предоставлении транспортного средства или об остановке транспортного средства 1. Невыполнение требования о предоставлении транспортного средства сотрудникам полиции или иным лицам, которым в случаях, предусмотренных

4.4. Досмотр транспортного средства

Из книги Эй, инспектор, ты не прав! Все о том, как противостоять произволу ГИБДД на дорогах автора Нариньяни Алена

4.4. Досмотр транспортного средства Досмотр автомобиля - это обследование транспортного средства, проводимое без нарушения его конструктивной целостности. Для того, что бы произвести осмотр вашего автомобиля у сотрудника полиции должны быть основания. Кодексом об

2.2. Задержание транспортного средства

автора

2.2. Задержание транспортного средства Что представляет собой задержание транспортного средства?Это принудительное прекращение использования транспортного средства, включающее его помещение на специализированную стоянку. Специализированная стоянка в свою очередь –

2.4. Досмотр транспортного средства

Из книги ГИБДД. Как вести себя, что важно знать? автора Шалимова Наталия Александровна

2.4. Досмотр транспортного средства Досмотр транспортного средства любого вида – это обследование транспортного средства, проводимое без нарушения его конструктивной целостности. Для того, что бы произвести осмотр вашего автомобиля у сотрудника милиции должны быть

  • Туренко А.Н., Клименко В.И., Сараев А.В. Автотехническая экспертиза (Документ)
  • Кустарев В.П., Тюленев Л.В., Прохоров Ю.К., Абакумов В.В. Обоснование и проектирование организации по производству товаров (работ, услуг) (Документ)
  • Яковлева Е.В. Заболевания почек в практике участкового терапевта (Документ)
  • Скирковский С.В., Лукьянчук А.Д., Капский Д.В. Экспертиза ДТП (Документ)
  • Пупко Г.М. Ревизия и аудит (Документ)
  • (Документ)
  • Алгоритм проведения гемотрансфузии. Методические рекомендации (Документ)
  • Балакин В.Д. Экспертиза дорожно-транспортных происшествий (Документ)
  • Пучков Н.П., Ткач Л.И. Математика случайного. Методические рекомендации (Документ)
  • n1.doc

    ТЕХНИЧЕСКИЕ ВЕЛИЧИНЫ, ОПРЕДЕЛЯЕМЫЕ ЭКСПЕРТОМ

    Помимо исходных данных, принимаемых на основании постановления следователя и материалов дела, эксперт использует ряд технических величин (параметров), которые им определяются в соответствии с установленными исходными данными. К ним относятся: время реакции водителя, время запаздывания срабатывания тормозного привода, время нарастания замедления при экстренном торможении, коэффициент сцепления шин с дорогой, коэффициент сопротивления движению при качении колес или скольжении тела по поверхности и др. Принятые значения всех величин должны быть подробно обоснованы в исследовательской части экспертного заключения.

    Поскольку эти величины определяются, как правило, в соответствии с установленными исходными данными об обстоятельствах происшествия, они не могут быть отнесены к исходным (т.е. принятым без обоснования или исследования) независимо от того, каким путем эксперт определяет их (по таблицам, расчетным путем или в результате экспериментальных исследований). Эти величины могут быть приняты за исходные данные лишь в случае, если они определены следственными действиями, как правило, при участии специалиста и указаны в постановлении следователя.

    1. ЗАМЕДЛЕНИЕ ПРИ ЭКСТРЕННОМ ТОРМОЖЕНИИ ТРАНСПОРТНЫХ СРЕДСТВ

    Замедление J - одна из основных величин, необходимых при проведении расчетов для установления механизма происшествия и решения вопроса о технической возможности предотвратить происшествие путем торможения.

    Величина установившегося максимального замедления при экстренном торможении зависит от многих факторов. С наибольшей точностью она может быть установлена в результате эксперимента на месте происшествия. Если сделать это не представляется возможным, эту величину определяют с некоторым приближением по таблицам или расчетным путем.

    При торможении негруженого транспортного средства с исправными тормозами на сухой горизонтальной поверхности асфальтового покрытия минимально допустимые значения замедления при экстренном торможении определяются в соответствии с Правилами движения (ст. 124), а при торможении груженого транспортного средства по следующей формуле:


    где:



    -

    минимально допустимое значение замедления негруженого транспортного средства, м/сек,




    -

    коэффициент эффективности торможения негруженого транспортного средства;




    -

    коэффициент эффективности торможения груженого транспортного средства.

    Значения замедления при экстренном торможении всеми колесами в общем случае определяется по формуле:



    где

    ?

    -

    коэффициент сцепления на участке торможения;



    -

    коэффициент эффективности торможения транспортного средства;



    -

    угол уклона на участке торможения (если  ? 6-8°, Cos можно принимать равным 1).

    Знак (+) в формуле принимается при движении транспортного средства на подъем, знак (-) - при движении на спуске.

    2. КОЭФФИЦИЕНТ СЦЕПЛЕНИЯ ШИН С ДОРОГОЙ

    Коэффициент сцепления ? представляет собой отношение максимально возможного на данном участке дороги значения cилы сцепления между шинами транспортного средства и поверхностью дороги Р сц к весу этого транспортного средства G a :

    Необходимость в определении коэффициента сцепления возникает при расчете замедления при экстренном торможении транспортного средства, решении ряда вопросов, связанных с маневром и движением на участках с большими углами наклона. Величина его зависит главным образом от типа и состояния покрытия дороги, поэтому приближенное значение коэффициента для конкретного случая может быть определено по таблице 1 3 .

    Таблица 1


    Вид дорожного покрытия

    Состояние покрытия

    Коэффициент сцепления (? )

    Асфальт, бетон

    сухой

    0,7 - 0,8

    мокрый

    0,5 - 0,6

    грязный

    0,25 - 0,45

    Булыжник, брусчатка

    сухие

    0,6 - 0,7

    мокрые

    0,4 - 0,5

    Грунтовая дорога

    сухая

    0,5 - 0,6

    мокрая

    0,2 - 0,4

    грязная

    0,15 - 0,3

    Песок

    влажный

    0,4 - 0,5

    сухой

    0,2 - 0,3

    Асфальт, бетон

    обледенелые

    0,09 - 0,10

    Укатанный снег

    обледенелый

    0,12 - 0,15

    Укатанный снег

    без ледяной корки

    0,22 - 0,25

    Укатанный снег

    обледенелый, после россыпи песка

    0,17 - 0,26

    Укатанный снег

    без ледяной корки, после россыпи песка

    0,30 - 0,38

    Существенное влияние на величину коэффициента сцепления оказывают скорость движения транспортного средства, состояние протекторов шин, давление в шинах и ряд других неподдающихся учету факторов. Поэтому, чтобы выводы эксперта оставались справедливыми и при других возможных в данном случае его значениях, при проведении экспертиз следует принимать не средние, а предельно возможные значения коэффициента ? .

    Если необходимо точно определить значение коэффициента ? , следует провести эксперимент на месте происшествия.

    Значения коэффициента сцепления, наиболее приближенные к действительному, т. е. к бывшему в момент происшествия, можно установить путем буксировки заторможенного транспортного средства, причастного к происшествию (при соответствующем техническом состоянии этого транспортного средства), замеряя при этом с помощью динамометра силу сцепления.

    Определение коэффициента сцепления с помощью динамометрических тележек нецелесообразно, поскольку действительное значение коэффициента сцепления конкретного транспортного средства может существенно отличаться от значения коэффициента сцепления динамометрической тележки.

    При решении вопросов, связанных с эффективностью торможения, экспериментально определять коэффициент? нецелесообразно, поскольку значительно проще установить замедление транспортного средства, наиболее полно характеризующее эффективность торможения.

    Необходимость в экспериментальном определении коэффициента ? может возникнуть при исследовании вопросов, связанных с маневром, преодолением крутых подъемов и спусков, удержанием на них транспортных средств в заторможенном состоянии.

    3. КОЭФФИЦИЕНТ ЭФФЕКТИВНОСТИ ТОРМОЖЕНИЯ

    Коэффициент эффективности торможения есть отношение расчетного замедления (определенного с учетом величины коэффициента сцепления на данном участке) к действительному замедлению при движении заторможенного транспортного средства на этом участке:

    Следовательно, коэффициент К э учитывает степень использования сцепных качеств шин с поверхностью дороги.

    При производстве автотехнических экспертиз знать коэффициент эффективности торможения необходимо для расчета замедления при экстренном торможении транспортных средств.

    Величина коэффициента эффективности торможения прежде всего зависит от характера торможения, при торможении исправного транспортного средства с блокировкой колес (когда на проезжей части остаются следы юза) теоретически К э = 1.

    Однако при неодновременной блокировке коэффициент эффективности торможения может превышать единицу. В экспертной практике в этом случае рекомендуются следующие максимальные значения коэффициента эффективности торможения:


    К э = 1.2

    при? ? 0.7

    К э = 1.1

    при? = 0,5-0,6

    К э = 1.0

    при? ? 0.4

    Если торможение транспортного средства осуществлялось без блокировки колес, определить эффективность торможения транспортного средства без экспериментальных исследований невозможно, так как не исключено, что тормозная сила ограничивалась конструкцией и техническим состоянием тормозов.

    Таблица 2 4

    Вид транспортного средства

    К э в случае торможения негруженого и полностью груженного транспортных средств при следующих коэффициентах сцепления

    0,7

    0,6

    0,5

    0,4

    Легковые автомобили и другие на их базе









    Грузовые - грузоподъемностью до 4,5 т и автобусы длиной до 7,5 м









    Грузовые - грузоподъемностью свыше 4.5 т и автобусы длиной более 7,5 м









    Мотоциклы и мопеды без коляски









    Мотоциклы и мопеды с коляской









    Мотоциклы и мопеды с рабочим объемом двигателя 49,8 см 3

    1.6

    1.4

    1.1

    1.0

    В этом случае для исправного транспортного средства можно определить лишь минимально допустимую эффективность торможения (максимальное значение коэффициента эффективности; торможения).

    Максимально допустимые значения коэффициента эффективности торможения исправного транспортного средства в основном зависят от типа транспортного средства, его нагрузки и коэффициента сцепления на участке торможения. Располагая этими сведениями можно определить коэффициент эффективности торможения (см. табл. 2).

    Приведенные в таблице значения коэффициента эффективности торможения мотоциклов справедливы при одновременном торможении ножным и ручным тормозами.

    Если транспортное средство нагружено не полностью, коэффициент эффективности торможения может быть определен путем интерполяции.

    4. КОЭФФИЦИЕНТ СОПРОТИВЛЕНИЯ ДВИЖЕНИЮ

    В общем случае коэффициентом сопротивления движению тела по опорной поверхности называется отношение сил, препятствующих этому движению, к весу тела. Следовательно, коэффициент сопротивления движению позволяет учесть потери энергии при перемещении тела на данном участке.

    В зависимости от природы действующих сил в экспертной практике пользуются различными понятиями коэффициента сопротивления движению.

    Коэффициентом сопротивления качению - ѓ называют отношение силы сопротивления движению при свободном качении транспортного средства в горизонтальной плоскости к его весу.

    На величину коэффициента ѓ , помимо типа и состояния дорожного покрытия, оказывает влияние целый ряд других факторов (например, давление в шинах, рисунок протектора, конструкция подвески, скорость и др.), поэтому более точное значение коэффициента ѓ может быть определено в каждом случае экспериментальным путем.

    Потеря энергии при перемещении по поверхности дороги различных объектов, отброшенных при столкновении (наезде), определяется коэффициентом сопротивления движению ѓ g . Зная величину этого коэффициента и расстояние, на которое переместилось тело по поверхности дороги, можно установить его первоначальную скорость, после чего во многих случаях.

    Значение коэффициента ѓ можно приближенно определить по таблице 3 5 .

    Таблица 3


    Дорожное покрытие

    Коэффициент, ѓ

    Цемент и асфальтобетон в хорошем состоянии

    0,014-0,018

    Цемент и асфальтобетон в удовлетворительном состоянии

    0,018-0,022

    Щебенка, гравий с обработкой вяжущими материалами, в хорошем состоянии

    0,020-0,025

    Щебенка, гравий без обработки, с небольшими выбоинами

    0,030-0,040

    Брусчатка

    0,020-0,025

    Булыжник

    0,035-0,045

    Грунт плотный, ровный, сухой

    0,030-0,060

    Грунт неровный и грязный

    0,050-0,100

    Песок влажный

    0,080-0,100

    Песок сухой

    0,150-0,300

    Лед

    0,018-0,020

    Снежная дорога

    0,025-0,030

    Как правило, при перемещении отброшенных при столкновении (наезде) объектов движение их тормозится неровностями дороги, острые кромки их врезаются в поверхность покрытия и т.п. Учесть влияние всех этих факторов на величину силы сопротивления движению конкретного объекта не представляется возможным, поэтому значение коэффициента сопротивления движению ѓ g может быть найдено лишь экспериментальным путем.

    Следует помнить, что при падении тела с высоты в момент удара гасится часть кинетической энергии поступательного движения за счет прижатия тела к поверхности дороги вертикальной составляющей сил инерции. Поскольку потерянную при этом кинетическую энергию учесть не удается, нельзя определить и действительное значение скорости тела в момент падения, можно определить лишь нижний ее предел.

    Отношение силы сопротивления движению к весу транспортного средства при свободном качении его на участке с продольным уклоном дороги называется коэффициентом суммарного сопротивления дороги ? . Величина его может быть определена по формуле:


    Знак (+) берется при движении транспортного средства на подъем, знак (-) - при движении на спуске.

    При перемещении по наклонному участку дороги заторможенного транспортного средства коэффициент суммарного сопротивления движению выражается аналогичной формулой:


    5. ВРЕМЯ РЕАКЦИИ ВОДИТЕЛЯ

    Под временем реакции водителя в психологической практике понимается промежуток времени с момента поступления к водителю сигнала об опасности до начала воздействия водителя на органы управления транспортного средства (педаль тормоза, рулевое колесо).

    В экспертной практике под этим термином принято понимать промежуток времени t 1 , достаточный для того, чтобы любой водитель (психофизические возможности которого отвечают профессиональным требованиям) после того, как возникнет объективная возможность обнаружить опасность, успевал воздействовать на органы управления транспортного средства.

    Очевидно между этими двумя понятиями имеется существенная разница.

    Во-первых, не всегда сигнал об опасности совпадает с моментом, когда возникает объективная возможность обнаружить препятствие. В момент появления препятствия водитель может выполнять другие функции, отвлекающие его на какое-то время от наблюдения в направлении возникшего препятствия (например, наблюдение за показаниями контрольных приборов, поведением пассажиров, объектами, расположенными в стороне от направления движения, и т. п.).

    Следовательно, время реакции (в том смысле, какой вкладывается в этот термин в экспертной практике) включает в себя время, прошедшее с момента, когда водитель имел объективную возможность обнаружить препятствие, до момента, когда он фактически его обнаружил, и собственно время реакции с момента поступления к водителю сигнала об опасности.

    Во-вторых, время реакции водителя t 1 , которое принимается в расчетах экспертов, для данной дорожной обстановки величина постоянная, одинаковая для всех водителей. Она может значительно превышать фактическое время реакции водителя в конкретном случае дорожно-транспортного происшествия, однако фактическое время реакции водителя не должно быть больше этой величины, так как тогда его действия следует оценивать как несвоевременные. Фактическое время реакции водителя в течении короткого отрезка времени может меняться в широких пределах в зависимости от целого ряда случайных обстоятельств.

    Следовательно, время реакции водителя t 1 , которое принимается в экспертных расчетах, по существу является нормативным, как бы устанавливающим необходимую степень внимательности водителя.

    Если водитель реагирует на сигнал медленнее, чем другие водители, следовательно, он должен быть более внимательным при управлении транспортным средством, чтобы уложиться в этот норматив.

    Было бы правильнее, по нашему мнению, назвать величину t 1 не временем реакции водителя, а нормативным временем запаздывания действий водителя, такое название точнее отражает сущность этой величины. Однако поскольку термин «время реакции водителя» прочно укоренился в экспертной и следственной практике, мы сохраняем его и в настоящей работе.

    Так как необходимая степень внимательности водителя и возможность обнаружения им препятствия в различной дорожной обстановке неодинаковы, нормативное время реакции целесообразно дифференцировать. Чтобы сделать это, необходимы сложные эксперименты с целью выявления зависимости времени реакции водителей от различных обстоятельств.

    В экспертной практике в настоящее время рекомендуется принимать нормативное время реакции водителя t 1 равным 0,8 сек. Исключение составляют следующие случаи.

    Если водитель предупрежден о возможности возникновения опасности и о месте предполагаемого появления препятствия (например, при объезде автобуса, из которого выходят пассажиры, или при проезде с малым интервалом мимо пешехода), ему не требуется дополнительное время на обнаружение препятствия и принятие решения, он должен быть подготовлен к немедленному торможению в момент начала опасных действий пешехода. В подобных случаях нормативное время реакции t 1 рекомендуется принимать 0,4-0,6 сек (большее значение - в условиях ограниченной видимости).

    Когда водитель обнаруживает неисправность органов управления лишь в момент возникновения опасной обстановки, время реакции, естественно, возрастает, так как при этом необходимо дополнительное время для принятия водителем нового решения, t 1 в этом случае равно 2 сек.

    Правилами движения водителю запрещается управлять транспортным средством даже в состоянии самого легкого алкогольного опьянения, а также при такой степени утомления, которая может повлиять на безопасность движения. Поэтому влияние алкогольного опьянения на t 1 не учитывается, а при оценке степени утомляемости водителя и его влияния на безопасность движения следователь (суд) учитывает обстоятельства, которые вынудили водителя управлять транспортным средством в подобном состоянии.

    Полагаем, что эксперт в примечании к заключению может указать на возрастание t 1 в результате переутомления (после 16 час работы за рулем примерно на 0,4 сек).

    6.ВРЕМЯ ЗАПАЗДЫВАНИЯ СРАБАТЫВАНИЯ ТОРМОЗНОГО ПРИВОДА

    Время запаздывания срабатывания тормозного привода (t 2 ) зависит от типа и конструкции системы тормозов, их технического состояния и, в определенной степени, от характера нажатия водителем на педаль тормоза. При экстренном торможении исправного транспортного средства время t 2 сравнительно невелико: 0,1 сек для гидравлического и механического приводов и 0,3 сек - для пневматического.

    Если тормоза с гидравлическим приводом срабатывают со второго нажатия на педаль, время (t 2 ) не превышает 0,6 сек, при срабатывании с третьего нажатия на педаль t 2 = 1.0 сек (по данным экспериментальных исследований, проведенных в ЦНИИСЭ).

    Экспериментальное определение действительных значений времени запаздывания срабатывания тормозного привода транспортных средств с исправными тормозами в большинстве случаев излишне, поскольку возможные отклонения от средних значений не могут существенно повлиять на результаты расчетов и выводы эксперта.

    После каждого дорожно-транспортного происшествия обязательно определяется скорость транспортного средства до и в момент удара или наезда. Данная величина имеет столь большое значение по нескольким причинам:

    • Самый часто нарушаемый пункт правил дорожного движения именно превышение максимально допустимой скорости движения, и, таким образом, становиться возможным определить вероятного виновника ДТП.
    • Также скорость влияет на тормозной путь, а значит и на возможность избежать столкновения или наезда.

    Дорогой читатель! Наши статьи рассказывают о типовых способах решения юридических вопросов, но каждый случай носит уникальный характер.

    Если вы хотите узнать, как решить именно Вашу проблему - обращайтесь в форму онлайн-консультанта справа или звоните по телефону.

    Это быстро и бесплатно !

    Определение скорости автомобиля по тормозному пути

    Под тормозным путём обычно понимают расстояние, которое проходит то или иное транспортное средство от начала торможения (или, если быть более точным, с момента активации тормозной системы) и до полной остановки. Общая, недетализированная формула, из которой возможно вывести формулу для расчета скорости, выглядит так:

    Va = 0.5 х t3 х j + √2Sю х j = 0,5 0,3 5 + √2 х 21 х 5 = 0,75 +14,49 = 15,24м/с = 54,9 км/ч где: в выражении √2Sю х j, где:

    • Va начальная скорость автомобиля, измеряемая в метрах в секунду;
    • t3 – время нарастания замедления автомобиля в секундах;
    • j – установившееся замедление автомобиля при торможении, м/с2; обратите внимание, что для мокрого покрытия – 5м/с2 по ГОСТ 25478-91, а для сухого покрытия j=6,8 м/с2, отсюда начальная скорость автомобиля при “юзе” в 21 метр равна 17,92м/с, или 64,5км/ч.
    • – длина тормозного следа (юза), измеряемая так же в метрах.

    Более подробно процесс определения скорости во время ДТП рассказан в замечательной статье Учет потенциальной деформации при определении скорости автомобиля в момент ДТП . Вы можете ее в формте PDF. Авторы: А.И. Денега, О.В. Яксанов.

    Исходя из указанного выше уравнения, можно сделать вывод, что на тормозной путь влияет в первую очередь скорость автомобиля, которую при известных остальных величинах нетрудно вычислить. Наиболее сложной частью вычислений по этой формуле является точное определение коэффициента трения, так как на его значение влияет целый ряд факторов:

    • тип дорожного покрытия;
    • погодные условия (при смачивании поверхности водой коэффициент трения уменьшается);
    • тип шин;
    • состояние шин.

    Для точного результата расчётов также нужно принимать во внимание особенности тормозной системы конкретного транспортного средства, например:

    • материал, а также качество изготовления тормозных колодок;
    • диаметр тормозных дисков;
    • функционирование или нарушения в работе электронных устройств, управляющих тормозной системой.

    Тормозной след

    После достаточно быстрой активации тормозной системы на дорожном покрытии остаются отпечатки – тормозные следы. В случае если колесо во время торможения заблокировано полностью и не вращается, остаются сплошные следы, (которые иногда называют «след юза») которые многие авторы призывают считать следствием максимально возможного нажатия на педаль тормоза («тормоз в пол»). В случае же когда педаль нажата не до конца (или присутствует какой-либо дефект тормозной системы) на дорожном покрытии остаются как бы «смазанные» отпечатки протектора, которые образуются вследствие неполной блокировки колес, которые при таком торможении сохраняют возможность вращаться.

    Остановочный путь

    Остановочным путём считают то расстояние, которое проходит определённое транспортное средство начиная с обнаружения водителем угрозы и до остановки автомобиля. Именно в этом заключается главное отличие тормозного пути и остановочного пути – последний включает в себя и расстояние, которое преодолел автомобиль за время срабатывания тормозной системы, и расстояние, которое было преодолено за время, понадобившееся водителю на осознание опасности и реакции на нее. На время реакции водителя влияют такие факторы:

    • положение тела водителя;
    • психоэмоциональное состояние водителя;
    • утомление;
    • некоторые заболевания;
    • алкогольное или наркотическое опьянение.

    Определение скорости исходя из закона сохранения количества движения

    Возможно также и определение скорости движения автомобиля по характеру его перемещения после столкновения, а также, в случае столкновения с другим транспортным средством, по перемещению второй машины в результате передачи кинетической энергии от первой. Особенно часто данный метод используют при столкновениях с неподвижными транспортными средствами, или если столкновение случилось под углом, близким к прямому.

    Определение скорости автомобиля исходя из полученных деформаций

    Лишь очень незначительное количество экспертов определяют скорость движения автомобиля таким способом. Хотя зависимость повреждений автомобиля от его скорости и очевидна, но единой эффективной, точной и воспроизводимой методики определения скорости по полученным деформациям не существует.

    Это связано с огромным количеством факторов, влияющих на образование повреждений, а также с тем, что некоторые факторы попросту невозможно учесть. Оказывать влияние на образование деформаций могут:

    • конструкция каждого конкретного автомобиля;
    • особенности распределения грузов;
    • срок эксплуатации автомобиля;
    • количества и качества пройденных транспортным средством кузовных работ;
    • старение метала;
    • модификации конструкции автомобиля.

    Определение скорости в момент наезда (столкновения)

    Скорость в момент наезда обычно определяют по тормозному следу, но если это по ряду причин не представляется возможным, то приблизительные цифры скорости можно получить анализируя травмы, полученные пешеходом, и повреждения, образовавшиеся после наезда на транспортном средстве.

    К примеру, о скорости автомобиля можно судить по особенностям бампер-перелома – специфической для наезда автомобилем травмы, которая характеризуется наличием поперечно-осколочного перелома с крупным отломком кости неправильной ромбообразной формы на стороне удара. Локализация при ударе бампером легкового автомобиля – верхняя или средняя треть голени, для грузового автомобиля – в участке бедра.

    Принято считать, что если скорость транспортного средства в момент удара превышала 60 км/ч, то, как правило, возникает косопоперечный или поперечный перелом, если же скорость была ниже 50 км/ч, то чаще всего образуется поперечно-осколочный перелом. При столкновении с неподвижным автомобилем скорость в момент удара определяется исходя из закона сохранения количества движения.

    Анализ методов определения скорости автомобиля при ДТП

    По тормозному следу

    Достоинства:

    • относительная простота метода;
    • большое количество научных работ и составленных методических рекомендаций;
    • достаточно точный результат;
    • возможность быстрого получения результатов экспертизы.

    Недостатки:

    • при отсутствии следов шин (если автомобиль, к примеру, не тормозил перед столкновением, или особенности дорожного покрытия не позволяют с достаточной достоверностью измерить след юза) проведение данного метода невозможно;
    • не учитывается воздействие одного транспортного средства в ходе столкновения на другое, что может.

    По закону сохранения количества движения

    Преимущества:

    • возможность определения скорости транспортного средства даже при отсутствии следов торможения;
    • при тщательном учёте всех факторов метод имеет высокую достоверность результата;
    • удобство использования метода при перекрёстных столкновениях и столкновениях с неподвижными автомобилями.

    Недостатки:

    • отсутствие данных о режиме движения транспортного средства приводит к неточному результату;
    • по сравнению с предыдущим методом более сложные и громоздкие вычисления;
    • метод не учитывает энергию, затраченную на образование деформаций.

    Исходя из полученных демормаций

    Преимущества:

    • учитывает затраты энергии на образование деформаций;
    • не требует наличия следов торможения.

    Недостатки:

    • сомнительная точность получаемых результатов;
    • огромное количество учитываемых факторов;
    • зачастую невозможность определения многих факторов;
    • отсутствие стандартизированных воспроизводимых методик определения.

    На практике чаще всего используют два метода – определение скорости по следу торможения и исходя из закона сохранения количества движения. При использовании двух этих методов одновременно обеспечивается максимально точный результат, так как методики дополняют друг друга.

    Остальные способы определения скорости транспортного средства значительного распространения не получили по причине недостоверности получаемых результатов и/или необходимости громоздких и сложных вычислений. Также при оценке скорости автомобиля учитывают показания свидетелей происшествия, хотя в таком случае нужно помнить о субъективности восприятия скорости разными людьми.

    В некоторой мере помочь разобраться с обстоятельствами происшествия и в итоге получить более точный результат может помочь анализ видео из камер наблюдения и видеорегистраторов.

    Установившееся замедление , м/с 2 , рассчитывают по формуле

    . (7.11)

    =9,81*0,2=1,962 м/с 2 ;

    =9,81*0,4= 3,942 м/с 2 ;

    =9,81*0,6=5,886м/с 2 ;

    =9,81*0,8=7,848 м/с 2 .

    Результаты расчетов по формуле (7.10) сведены в таблицу 7.2

    Таблица 7.2 – Зависимость остановочного пути и установившегося замедления от начальной скорости торможения и коэффициента сцепления

    , км/ч

    По данным таблицы 7.2 строим зависимость остановочного пути и установившегося замедления от начальной скорости торможения и коэффициента сцепления (рисунок 7.2).

    7.9 Построение тормозной диаграммы атс

    Тормозной диаграммой (рисунок 7.3)называется зависимость замедления и скорости движения АТС от времени.

    7.9.1 Определение скорости и замедления на участке диаграммы, соответствующем времени запаздывания срабатывания привода

    Для этого этапа ==const,= 0 м/с 2 .

    В эксплуатации начальная скорость торможения = 40 км/ч для всех категорий АТС.

    7.9.2 Определение скорости АТС на участке диаграммы, соответствующем времени нарастания замедления

    Скорость
    , м/с, соответствующую концу времени нарастания замедления, определяют по формуле

    =11,11-0,5*9,81*0,7*0,1=10,76 м/с.

    Промежуточные значения скорости на данном участке определяют по формуле (7.12), при этом
    = 0; коэффициент сцепления для категории М 1
    = 0,7.

    7.9.3 Определение скорости и замедления на участке диаграммы, соответствующем времени установившегося замедления

    Время установившегося замедления
    , с, рассчитывают по формуле

    , (7.13)

    с.

    Скорость
    , м/с, на участке диаграммы, соответствующем времени установившегося замедления, определяют по формуле

    , (7.14)

    при
    = 0
    .

    Величину установившегося замедления для рабочей тормозной системы автомобилей категории М 1 принимают
    =7,0 м/с 2 .

    8 Определение параметров управляемости АТС

    Управляемость АТС – это его свойство сохранять в определенной дорожной обстановке заданное направление движения или изменять его в соответствии с воздействием водителя на рулевое управление.

    8.1 Определение максимальных углов поворота управляемых колес

    8.1.1 Определение максимального угла поворота наружного управляемого колеса

    Максимальный угол поворота наружного управляемого колеса

    , (8.1)

    где R н1 min – радиус поворота наружного колеса.

    Радиус поворота наружного колеса принимается равным соответствующему параметру прототипа –R н1 min = 6 м.

    ,

    =25,65.

    8.1.2 Определение максимального угла поворота внутреннего управляемого колеса

    Максимальный угол поворота внутреннего управляемого колеса можно определить, приняв колею шкворней равной колее колес. Предварительно необходимо определить расстояние от мгновенного центра поворота до наружного заднего колеса.

    Расстояние от мгновенного центра поворота до наружного заднего колеса
    , м, рассчитывают по формуле

    , (8.2)

    .

    Максимальный угол поворота внутреннего управляемого колеса
    , град, можно определить из выражения

    , (8.3)

    ,

    =33,34.

    8.1.3 Определение среднего максимального угла поворота управляемых колес

    Средний максимальный угол поворота управляемых колес
    , град, можно определить по формуле

    , (8.4)

    .

    8.2 Определение минимальной ширины проезжей части

    Минимальную ширину проезжей части
    , м, рассчитывают по формуле

    =5,6-(5,05-1,365)=1,915м.

    8.3 Определение критической по условиям увода скорости движения

    Критическую по условиям увода скорость движения
    , м/с, рассчитывают по формуле

    , (8.6)

    где
    ,
    – коэффициенты сопротивления уводу колес передней и задней оси соответственно, Н/град.

    Коэффициент сопротивления уводу одного колеса
    , Н/рад, ориентировочно определяют по эмпирической зависимости

    где
    – внутренний диаметр шины, м;
    – ширина профиля шины, м;
    – давление воздуха в шине, кПа.

    К δ1 =(780(0,33+2*0,175)0,175(0,17+98) *2)/57.32=317,94, Н/град

    К δ1 =(780(0,33+2*0,175)0,175(0,2+98)*2)/ 57.32=318,07,Н/град

    .

    Поворачиваемость проектируемого автомобиля – избыточная.

    Для обеспечения безопасности движения должно выполняться условие

    >
    . (***)

    Условие (***) не выполняется, так как при определении коэффициентов сопротивления уводу были учтены только параметры шин. В тоже время при определении критической по уводу скорости необходимо учитывать распределение массы автомобиля, конструкцию подвески и другие факторы.

    Расчетом движения называют определение основных параметров движения автомобиля и пешехода: скорости, пути, времени и траектории движения.

    При расчете равномерного движения автомобиля используют элементарное соотношение

    где S а , V а и t à - соответственно: путь, скорость и время движения автомобиля.

    Торможение при постоянном коэффициенте сцепления

    Если водитель в ходе ДТП тормозил, то начальную скорость автомобиля можно достаточно точно определить по длине следа скольжения (следа хода) шины на дороге, возникающего при полной блокировке колес.

    Экспериментальное исследование процесса торможения показывает, что вследствие изменения коэффициента сцепления шин с дорогой и колебаний, вызванных наличием упругих шин и элементов подвески, замедление j в процессе торможения носит сложный характер.

    Рис. 5.1. Диаграмма торможения

    Для упрощения расчетов полагаем, что за время tн (время нарастания замедления) замедление нарастает по закону прямой (участок АВ), а в течение времени (время tу установившегося замедления) остается постоянным (участок ВС) и по окончании периода полного торможения мгновенно уменьшается до нуля (точка С).

    Замедление автомобиля рассчитывают исходя из условий полного использования сцепления всеми шинами автомобиля,

    , м/с 2 (5.2)

    где g = 9,81 м/с 2 ;

    ч - коэффициент продольного сцепления шин с дорогой, который принимают постоянным.

    Так как полное и одновременное использование сцепления всеми шинами автомобиля наблюдается относительно редко, в формулу вводят поправочный коэффициент эффективности торможения Кэ, и формула приобретает следующий вид:

    , м/с 2 , (5.3)

    Величина К э учитывает соответствие тормозных сил силам сцепления и зависит от условий торможения. Если при торможении были заблокированы все колеса, то К э выбирают в зависимости от х .

    Таблица 5. 1

    Значение к при наличии следов юза

    Самый распространенный способ определения скорости движения транспортного средства перед началом торможения представлен по формуле, имеющейся во всех литературных источниках,

    где: j а - замедление автомобиля, развиваемое при его торможении, зависящее от типа транспортного средства, степени его загрузки, состояния покрытия проезжей части, м/с 2 ;

    t н - время нарастания замедления автомобиля при его затормаживании, зависящее также от всех вышеперечисленных факторов, как и замедление, и практически изменяющиеся пропорционально изменению загрузки автомобиля и величине коэффициента сцепления, с;

    S - протяженность следа торможения автомобиля, считая до оси задних колес; если след остался от колес обеих осей автомобиля, то из величины следа «юза» вычитается база автомобиля L , м.

    Тормозной и остановочный пути автомобиля

    Тормозной путь, остановочный путь, след торможения, замедление транспортного средства и т. д. - к значениям этих терминов часто приходится обращаться, чтобы объективно оценить действия водителя в конкретной дорожной ситуации.

    Остановочный путь транспортного средства - расстояние, которое преодолевает автомобиль с момента начала реакции водителя на опасность до его полной остановки:

    , м (5.5)

    Тормозной путь транспортного средства - расстояние, которое преодолевает автомобиль с момента начала нажатия на педаль тормоза до его полной остановки:

    , м. (5.6)

    Таким образом, остановочный путь автомобиля больше его тормозного пути на величину расстояния, которое преодолевает автомобиль за время реакции водителя t 1 .

    Время реакции водителя t 1 . Значение времени реакции водителя (в автотехнической экспертизе) представляет собой промежуток времени с момента появления сигнала опасности в поле зрения водителя до начала воздействия на органы управления транспортного средства (тормозная педаль, рулевое колесо, педаль акселератора).

    На время реакции водителя влияют все элементы системы «водитель - автомобиль - дорога - среда» (ВАДС), поэтому целесообразно дифференцировать значения времени реакции в зависимости от типичных дорожно-транспортных ситуаций, характеризующихся определенными сочетаниями взаимосвязанных факторов системы ВАДС. Время реакции колеблется в значительных пределах - от 0,3 до 1,4 и более секунд.

    Так, при расчете максимально допустимой скорости по условиям видимости дороги минимальное время простой сенсомоторной реакции следует принимать равным 0,3 с. Такое же время реакции следует принимать при определении минимально допустимой дистанции между попутно движущимися транспортными средствами.

    В случае же проявления при движении каких-либо неисправностей транспортного средства, влияющих на безопасность движения, а также при физическом вмешательстве пассажира в процесс управления транспортным средством время реакции водителя можно принять равным 1,2 с.

    При дорожно-транспортных происшествиях в темное время суток, когда препятствие было малозаметно, допускается увеличение времени реакции водителя на 0,6 с.

    Время запаздывания срабатывания действия тормозного привода t 2 . В течение этого времени выбирается свободный ход педали тормоза и зазоры привода тормозной системы. Величина зависит от типа привода тормозов и его технического состояния.

    Гидравлический привод тормозов срабатывает быстрее пневматического. Время запаздывания срабатывания гидравлического при­вода принимается t 2 = 0,2 - 0,4 с . У легковых автомобилей при экстренном торможении t 2 = 0,2 с , а у грузовых t 2 = 0,4 с. Время запаздывания срабатывания неисправного гидравлического привода (при наличии воздуха в системе или неисправности клапанов в главном тормозном цилиндре) увеличивается. Если тормоза срабатывают со второго нажатия на педаль, то оно повышается в среднем до 0,6 с, а при трех нажатиях - до 1,0 с.

    Время запаздывания срабатывания пневматического привода тормозов колеблется в пределах t 2 = 0,4-0,6 с , а среднее его значение t 2 = 0,4 с. У автопоездов, имеющих пневматический привод, это время увеличивается: при одном прицепе t 2 = 0,6 с, а при двух - t 2 = до 1 с .

    Время нарастания замедления t н. Временем нарастания замедления считается время от начала появления замедления или от момента соприкосновения накладок с тормозными барабанами до начала момента движения транспортного средства с установившимся максимальным замедлением или до момента полного прижатия накладок к тормозным барабанам, а при образовании следов торможения - до начала образования последних на проезжей части.

    При экстренном торможении до момента блокировки колес это время практически изменяется пропорционально изменению загрузки автомобиля и величине коэффициента сцепления.

    Время нарастания замедления зависит, главным образом, от типа тормозного привода, типа и состояния дорожного покрытия, массы транспортного средства.

    Так, если известна начальная скорость автомобиля V a , то скорость V ю , соответствующую началу полного торможения, можно найти, считая, что в течение t у автомобиль движется равномерно замедленно с постоянным замедлением 0,5 j .

    , м/с. (5.7)

    Техническая возможность предотвращения ДТП

    При анализе обстоятельств дорожно-транспортного происшествия после определения величины остановочного пути автомобиля S о необходимо определить:

    Удаление автомобиля (S a ) от места наезда в момент, когда возникла опасность для движения;

    Время, необходимое на остановку автомобиля, т. е. время на остановочный путь (t o );

    Время пешехода (t п ), которое он затрачивает на движение от места возникновения опасности до места наезда;

    Время (), в течение которого заторможенный автомобиль перемещался до наезда.

    Время движения пешехода к месту соударения определяется:

    , с, (5.8)

    где: S n - путь пешехода от места возникновения опасной обстановки до места наезда, м ;

    V n - скорость движения пешехода, определенная либо по табличным данным, либо экспериментальным путем, км/ч.

    Если время движения пешехода к месту соударения меньше или равно суммарному времени реакции водителя и времени срабатывания тормозного привода (t n t 1 + t 2 + 0,5t н = Т ), то пешеход окажется в полосе движения автомобиля, тогда как торможение еще не наступило. В таком случае технической возможности предотвратить наезд нет, независимо от значения скорости движения транспортного средства.

    Если t a > Т, то анализ осуществляют в следующей последовательности:

    Определяют расстояние S a между автомобилем и местом наезда в момент возникновения опасности для движения;

    Сравнивают расстояние S а с остановочным путем транспортного средства S o .

    Если остановочный путь автомобиля (S о ) меньше расстояния (S a ), то следует вывод о технической возможности избежания ДТП, в противном случае таковая у водителя отсутствует.

    Для определения расстояния S a ВНИИСЭ рекомендует следующие формулы:

    В случае наезда до начала торможения

    , м, (5.9)

    где L уд - расстояние от места удара автомобиля до его передней части, м;

    В случае, если заторможенный автомобиль после наезда продолжал движение до остановки,

    , м (5.10)

    , м, (5.11)

    где - расстояние, которое преодолевает автомобиль после наезда до полной остановки.