Контрольно-измерительные приборы, автоматика (КИПиА), системы и оборудование для контроля и регулирования уровня. Измерение уровня. Методы, способы измерения уровня. Выбор уровнемера

В данном разделе представлены следующие виды поставляемых приборов и оборудования для контроля и регулирования уровня (для просмотра подробной информации о КИПиА выберете вид продукции и перейдите по ссылке на соответствующую страницу):

Дополнительное оборудование (монтажная и установочная арматура, вспомогательные узлы, блоки и прочее).


Информация о методах и приборах контроля и регулирования уровня (определения, описания, назначения и пр.)

Перепад уровня – это разность измеряемых высот (между верхней и нижней контрольными отметками столба жидкости или сыпучего материала) в резервуаре. Единицы измерения – мм, см, м.

Наибольшее применение для измерения уровня жидкости получили ПОПЛАВКОВЫЙ и ГИДРОСТАТИЧЕСКИЙ методы измерений. Для первого используют поплавковые уровнемеры, действие которых основано на следящем положении поплавка, а у второго – на измерении гидростатического давления жидкости, зависящего от высоты её уровня в резервуаре.
Для измерения уровня жидкости, также широко используют буйковые, пьезометрические, емкостные, акустические, высокочастотные и другие уровнемеры.
Также, существуют методы и специальные приборы для измерения уровня сыпучих материалов (зерна, муки, комбикорма, песка, гравия, химикатов, порошков и пр.).

Уровнемер (У.) – это прибор для промышленного измерения или контроля уровня жидкости и сыпучих веществ в резервуарах, хранилищах, технологических аппаратах и т.п.
Различают Уровнемеры – указатели (для непрерывного измерения, в т.ч. преобразователи (датчики) уровня) и Уровнемеры - сигнализаторы (для дискретного контроля одного или нескольких фиксированных положений уровня (датчики-реле)).
У. служат датчиками уровня в автоматических системах управления и регулирования технологических процессов.

По принципу действия Уровнемеры для жидкостей разделяются на механические, гидростатические, электрические, акустические, радиоактивные.

Простейший визуальный У. – водомерное стекло, в котором использован принцип сообщающихся сосудов, служит для непосредственного наблюдения за уровнем жидкости в закрытом сосуде.
Механические У. бывают поплавковые , с чувствительным элементом (поплавком), плавающим на поверхности жидкости, и буйковые , действие которых основано на измерении выталкивающей силы, действующей на буёк. Перемещение поплавка или буйка через механические связи или систему дистанционной (электрической или пневматической) передачи сообщается измерительной системе прибора.

Измерение уровня гидростатическими У. основано на уравновешивании давления столба жидкости в резервуаре давлением столба жидкости, заполняющей измерительный прибор, или реакцией пружинного механизма прибора (см. также Дифманометры -У.).

Электрические У. бывают ёмкостные и кондуктометрические . В ёмкостных У. чувствительным элементом служит конденсатор, ёмкость которого изменяется пропорционально изменению уровня жидкости. Действие кондуктометрического У. основано на измерении сопротивления между электродами, помещенными в измеряемую среду (одним из электродов может быть токопроводящая стенка резервуара или аппарата).

В акустических, или ультразвуковых , У. используется явление отражения ультразвуковых колебаний от плоскости раздела сред жидкость – газ.
В радиоактивных У. используют просвечивание объекта измерения гамма-лучами радиоактивных элементов, интенсивность которых зависит от объёма измеряемого вещества.

Конструктивно все У. для жидкостей выполняются для открытых резервуаров и для аппаратов, находящихся под давлением.

Простейшие У. для сыпучих веществ выполняются с чувствительными элементами в виде пластин, соприкасающихся с поверхностью вещества (в.т.ч. мембранные У.). Изменение уровня дистанционно передаётся на вторичный измерительный прибор. Для измерения уровня сыпучих веществ применяют также электрические ёмкостные и радиоактивные У.

На рынке средств измерений представлены приборы, реализующие разнообразные методы измерения уровня, у каждого из которых есть как преимущества, так и недостатки. Нет универсального решения для всех случаев, но в некоторых процессах могут быть работоспособны несколько методов измерения. В текущем разделе описаны наиболее распространенные методы измерения уровня, их достоинства и недостатки.

1. Волноводные уровнемеры


1.1 Принцип измерения


Волноводный уровнемер (Guided wave radar - GWR) также называют радаром с временным разрешением (TDR), микроимпульсным радаром (MIR).


Волноводный уровнемер устнавливается на крыше резервуара или в выносной камере, при этом зонд имеет длину, равную глубине емкости/камеры.


Микроволновый импульс малой мощности распространяется со скоростью света вниз по зонду. В точке контакта зонда и жидкости (границы раздела воздух/вода) значительная часть энергии отражается и возвращается в обратном направлении по зонду в приемник.


Уровнемер измеряет временную задержку между излучением и приемом излученного и отраженного сигналов, после чего встроенный -микропроцессор рассчитывает расстояние до поверхности измеряемой среды по формуле:



Если при настройке уровнемера было указано расстояние до опорной точки - обычно это днище резервуара или камеры, то микропроцессор рассчитает уровень жидкости.


Часть микроволнового импульса продолжает распространяться через жидкость с низкой диэлектрической постоянной, уровнемер может зарегистрировать второй эхосигнал от границы раздела жидкостей.


Благодаря этой особенности волноводные уровнемеры успешно применяются для измерения уровня границы раздела жидкость/жидкость, таких как нефть и вода, а так же для измерения уровня жидкости через слой пены.


Волноводные уровнемеры можно применять в резервуарах со сложной геометрией, выносных камерах и емкостях с высокими патрубками. Они подходят для измерения уровня жидкостей с малыми значениями диэлектрической постоянной, в условиях неспокойной поверхности. Поскольку работа волноводного уровнемера не зависит от того, насколько "плоской" является поверхность, его можно применять для измерения уровня порошковых, гранулированных материалов с наклонной поверхностью или жидкостей, поверхность которых представляет собой воронку.



Рис. 1.1. Волноводный уровнемер может работать вблизи объектов, создающих помехи, и в жестких условиях процесса

1.2 Преимущества


Волноводные уровнемеры способны одновремено измерять уровень и уровень границы раздела сред, обеспечивая надежные измерения в различных технологических процессах. Волноводные уровнемеры реализуют метод измерения "сверху" и обеспечивают прямое измерение расстояния до поверхности среды. Возможно измерения уровня жидкостей, шлама и сыпучих материалов. Ключевым преимуществом таких уровнемеров является отсутствие необходимости корректировки настроек при изменении плотности, диэлектрической постоянной или электропроводности жидкости. Изменения давления, температуры и состояния парогазового пространства над жидкостью практически не влияют на погрешность измерения.


В дополнение, волноводные уровнемеры не имеют подвижных частей, что сводит к минимуму потребность в техническом обслуживании. Волноводный уровнемер прост в монтаже, и может заменять приборы других принципов измерения уровня, такие как емкостные и буйковые уровнемеры, монтаж возможен даже при начличии продукта в резервуаре.


1.3 Ограничения


Несмотря на то, что волноводные радары могут работать в самых разнообразных условиях, следует уделить особое внимание выбору зонда. Доступно несколько вариантов зондов, выбор производится исходя из условий технологического процесса, требуемой длины и ограничений по монтажу. Зонды не должны соприкасаться с металлическими объектами (кроме коаксиальных зондов), так как это влияет на измерительный сигнал. Если измеряемая среда имеет тенденцию к налипанию или образованию отложений, то следует применять одинарные зонды. Некоторые волноводные уровнемеры оснащены расширенными возможностями диагностики, которые позволяют обнаруживать осаждения на зонде. Камеры диаметром до 75 мм более восприимчивы к осаждениям и в них сложнее избежать контакта зонда и стенок камеры.

Непрерывное измерение уровня


2.1 Принцип измерения


Бесконтакные радарные уровнемеры реализуют два основных способа излучения радиоволн - импульсный и частотно-модулированный (FMCW).


Импульсный бесконтактный радар излучает радиоволны, которые отразившись от поверхности измеряемой среды возвращаются обратно в приемник. Уровнемер измеряет временную задержку между излучением и приемом излученного и отраженного сигналов, после чего встроенный микропроцессор рассчитывает расстояние до поверхности измеряемой среды по формуле:


Расстояние = (Скорость света x время задержки) / 2


При настройке уровнемера указывается расстояние до опорной точки - обычно это дно резервуара или камеры, микропроцессор рассчитывает уровень жидкости.


Радарный уровнемер с частотной модуляцией также излучает радиоволны к поверхности продукта, но частота радиоволн постоянно изменяется. Когда радиоизлучение отразилось от поверхности жидкости и вернулось обратно в уровнемер, оно сравнивается с радиоизлучением, которое передается в резервуар в текущий момент. Разница частот между передаваемым и принятым радиосигналом прямо пропорциональна расстоянию до поверхности жидкости.


Поскольку измерения осуществляются бесконтактно и части уровнемера практически не подвергаются коррозии, такие уровнемеры являются идеальным выбором для измерений вязких, клейких сред и жидкостей с абразивными включениями. Довольно часто бесконтактные уровнемеры применяются в резервуарах с мешалками. При необходимости радарный уровнемер с высокой рабочей частотой может быть изолирован от технологического процесса шаровым клапаном. Большинство изготовителей предлагают бесконтактные радары для диапазонов измерений от 1 до 30 или 40 метров.


Рабочая частота бесконтактного радарного уровнемера влияет на его характеристики. Низкая частота уменьшает восприимчивость уровнемера к парам, пене и загрязнениям антенны, а более высокие частоты способствует большей концентрации радиоизлучения, что позволяет свести к минимуму влияние патрубков, стенок и внутренних конструкций резервуара. Угол излучения обратно пропорционален размеру антенны, это значит, что при одинаковой рабочей частоте ширина измерительного луча уменьшается по мере увеличения размера антенны.


2.2 Преимущества


Бесконтактные радарные уровнемеры реализуют метод измерения "сверху" и обеспечивают прямое измерение расстояния до поверхности среды. Возможно измерения уровня жидкостей, шлама и сыпучих материалов. Ключевым преимуществом таких уровнемеров является


отсутствие необходимости корректировки настроек при изменении плотности, диэлектрической постоянной или электропроводности жидкости. Изменения давления, температуры и состояния парогазового пространства над жидкостью практически не влияют на погрешность измерения. В дополнение, бесконтактные радарные уровнемеры не имеют подвижных частей, что сводит к минимуму потребность в техническом обслуживании. При необходимости, радарные уровнемеры могут быть изолированы от технологического процесса диафрагмами из политетрафторэтилена (PTFE), или шаровых клапанов. Так как прибор не соприкасается с измеряемой средой, его с успехом можно применять для работы с агрессивными и загрязненными средами.



Рис. 2.1. Бесконтактные радары с антеннами различных типов для применения в различных условиях.

2.3 Ограничения


Ключевым условием успешной работы бесконтактного радара является его правильная установка на резервуаре. Поверхность измеряемой среды должна беспрепятственно просматриваться с места планируемой установки и монтажный патрубок должен иметь гладкие стенки без выступающих сварных швов.


Внутренние конструкции резервуара: трубы, усилители, перемешивающие устройства могут вызвать эхосигналы помех, но большинство уровнемеров снабжены сложными программными алгоритмами, которые позволяют уровнемеру маскировать и игнорировать подобные помехи.


Бесконтактный радар может использоваться в условиях турбулентности и перемешивания, но успешность и качество измерений будет зависеть от диэлектрической постоянной жидкости и интенсивности возмущений на поверхности. На измерение может оказывать влияние пена. Легкая и насыщенная воздухом пена, как правило, не отражает микроволны, а плотная и тяжелая пена может отражать микроволны.


Жидкости с низкой диэлектрической постоянной поглощают большую часть излучаемой энергии, к уровнемеру отражается сравнительно небольшая ее часть. Вода и большинство водных растворов обладают высокой диэлектрической постоянной, нефтепродукты, масла и некоторые сыпучие материалы обладают низкой диэлектрической постоянной.


Если поверхность среды турбулентна из-за перемешивания, смешивания продуктов, всплесков на поверхности, то значительная часть микроволнового сигнала рассеивается. Таким образом, сочетание низкой диэлектрической постоянной и неспокойной поверхности может существенно ограничить часть микроволнового сигнала, которая возвращается к радарному уровнемеру. Эта проблема может быть решена путем установки успокоительной трубы или выносной камеры для обеспечения спокойной поверхности в поле зрения уровнемера.

Непрерывное измерение уровня


3.1 Принцип измерения


Ультразвуковой уровнемер монтируется на крыше резервуара и посылает ультразвуковые импульсы к измеряемой среде. Ультразвуковой импульс, который распространяется в пространстве со скоростью звука, отражается от поверхности жидкости. Уровнемер измеряет время задержки между моментом излучения и приема отраженного импульса, встроенный микропроцессор вычисляет расстояние до поверхности жидкости по формуле:


Расстояние = (Скорость звука x время задержки) / 2




Рис. 3.1. Пример установки ультразвукового уровнемера


При настройке уровнемера указывается значение опорной высоты - обычно это расстояние от дна резервуара до уровнемера, прибор вычисляет уровень в резервуаре.


3.2 Преимущества


Ультразвуковые уровнемеры могут быть установлены как на пустой, так и на заполненный резервуар. Как правило, запуск в эксплуатацию очень прост благодаря встроенным средствам настройки, позволяющим обеспечить ввод в эксплуатацию за считанные минуты.


Благодаря отсутствию подвижных частей и контакта с измеряемой средой, ультразвуковые уровнемеры практически не нуждаются в обслуживании. Смачиваемые части обычно изготовлены из инертных фторуглеродных материалов, устойчивых к воздействию конденсата технологических сред.


Поскольку уровнемер является бесконтактным, результаты измерений не зависят от изменений плотности, диэлектрических свойств или вязкости среды; ультразвуковые уровнемеры хорошо подходят для измерения уровня различных водных растворов и химикатов. Изменения температуры процесса вызывают изменения скорости распространения ультразвукового импульса через парогазовое пространство над жидкостью, эти отклонения, как правило, автоматически корректируется по показаниям встроенного или выносного датчика температуры. Изменения давления процесса на результат измерений не влияют.


3.3 Ограничения


Работа ультразвуковых уровнемеров основывается на допущении, что ультразвуковой импульс не изменяет скорость распространения. Следует избегать таких применений, где над поверхностью жидкостей образуются испарения или плотные пары. В подобных случаях рекомендуется использовать радарные уровнемеры.


Так как ультразвуковой импульс распространяется в воздушной среде, ультразвуковые уровнемеры нельзя применять в процессах со значительным вакуумметрическим давлением.


Применяемые конструкционные материалы ограничивают рабочие температуры до 70° C и рабочее давление до 3 бар.


Состояние поверхности жидкости также имеет большое значение. Некоторая турбулентность допустима, но пена зачастую ослабляет отраженный эхосигнал.


Внутренние конструкции резервуаров, например, трубы, перегородки, перемешивающие устройства и т.д., вызывают ложные отражения, но в большинство уровнемеров заложены специальные программные алгоритмы, которые позволяют отслеживать или игнорировать эти отражения.


Ультразвуковые уровнемеры могут использоваться в силосах, содержащих сыпучие материалы в виде гранул, зерен или порошков, но запуск в эксплуатацию в таких применениях затруднен из-за таких факторов, как угол наклона поверхности, запыленность пространства и большие диапазоны измерений. Для работы с сыпучими материалами лучше применять волноводные уровнемеры.

4. Ультразвуковые методы измерения и сигнализации уровня осадка в жидкости

Непрерывное измерение уровня


4.1 Принцип действия


Мониторинг содержания твердых частиц



Пара излучатель/приемник ультразвукового сигнала погружаются в резервуар, либо могут бытьустановлены в трубе. Ультразвуковой сигнал, который передается от излучателя к приемнику, ослабляется твердыми частицами в суспензии. Мощность полученного сигнала обратно пропорциональна содержанию твердых частиц в суспензии (плотности суспензии).




Рис 4.1 Принцип измерения содержания твердого осадка


Измерение уровня осадка


Ультразвуковой уровнемер может быть применен для обнаружения присутствия слоя осадка в жидкости и измерения его уровня в осветлителе или сгустителе.


Чувствительный элемент ультразвукового уровнемера погружается в надостаточную жидкость и ультразвуковые импульсы направляются вертикально вниз к слою осадка. Слой осадка отражает импульсы, которые улавливаются чувствительным элементом уровнемера.


Измерительная система измеряет время распространения импульса от уровнемера до слоя осадка. Если задать в уровнемере опорную высоту и скорость звука в жидкости, блок электроники вычислит уровень осадка.




Рис. 4.2


4.2 Преимущества


Ультразвуковые уровнемеры просты в монтаже, часто имеют встроенные средства настройки, и таким образом могут быть быстро запущены в эксплуатацию.


Так как чувствиельный элемент уровнемера погружной, измерение не зависит от состояния поверхности, наличия испарений и пены на поверхности.


Принцип измерения не зависит от оптических свойств жидкости, обеспечивает отсутствие подвижных частей, таким образом подобные измерительные системы практически не нуждаются в техническом обслуживании.


4.3 Ограничения


Погружные ультразвуковые уровнемеры разработаны для работы в жидкостях, содержание взеси в которых находится в пределах 0,5 .. 15%. Если в надосадочной жидкости содержится большее количество взеси, то измерительный ультразвуковой сигнал может быть полностью рассеян.


Ультразвуковой сигнал также может ослабляться пузырьками воздуха/газа в надосадосной жидкости. Пузырьки газа/воздуха могут увеличить погрешность измерения.


Дополнительное ограничение - необходимо обеспечить постоянное погружение чувствительного элемента.

5. Датчики давления

Непрерывное измерение уровня


5.1 Принцип измерений


Датчики давления - это наиболее распространенная технология измерения уровня жидкости. Они имеют несложную конструкцию, отличаются простотой монтажа и эксплуатации, и работают в самых разных применениях и в широком диапазоне условий технологических процессов.


Если измерение уровня осуществляется в открытом/вентилируемом резервуаре, то может использоваться один датчик избыточного гидростатического давления (GP) или датчик дифференциального (перепада) давления (DP). Если резервуар закрыт или находится под давлением, то для компенсации давления в резервуаре должен измеряться перепад давления.


В дополнение к основным измерениям уровня датчики перепада давления могут быть настроены для измерения плотности или уровня границы раздела сред.


Измерение уровня в открытом резервуаре


Для того, чтобы получить значение уровня в открытом резервуаре, необходимо измерить гидростатическое давление жидкости. Столб жидкости оказывает воздействие на основание столба, обусловленное весом жидкости. Это воздействие, называемое гидростатическим давлением или давлением столба жидкости, может быть измерено в единицах давления. Гидростатическое давление определяется следующим уравнением:


Гидростатическое давление = Высота x Удельный вес


При изменении уровня (высоты столба) жидкости пропорционально изменяется и гидростатическое давление. Поэтому простейшим способом измерения уровня в резервуаре является установка датчика давления на самом нижнем уровне. Уровень жидкости над точкой измерения может быть получен из величины гидростатического давления, если формулу, указанную выше, преобразовать для расчта высоты. Если единицы измерения давления не соответствуют единицам измерения длины, то необходимо провести преобразование единиц измерения (1 м вд.ст. = 0,1 кг/см2).


Измерение уровня в закрытом резервуаре


Если резервуар находится под давлением, то показаний одного датчика избыточного давления недостаточно, так как датчик не может распознать, вызвано ли изменение общего давления изменением уровня жидкости или изменением давления в резервуаре. Для решения этой задачи в закрытых резервуарах должен применяться датчик перепада давления, чтобы скомпенсировать давление в резервуаре.


При измерении перепада давления изменение суммарного давления в резервуаре в равной степени воздействует на верхний и нижний отбор, поэтому влияние внутреннего давления полностью исключается.




Рис. 5.1. Датчик перепада давления (DP)


На нижнем отборе вблизи дна резервуара, измеряется сумма гидростатического давления и давления в парогазовом пространстве. На верхнем отборе измеряется только давление в парогазовом пространстве. Разность далений на отборах (дифференциальное давление) используется для определения уровня.


Уровень = Дифференциальное давление / Удельный вес


5.2 Преимущества


В целом, датчики давления являются экономичным, простым в эксплуатации и хорошо изученным решением. В дополнение к этому, датчики давления могут применяться практически в любых резервуарах и любыми жидкостями, включая суспензии, и могут работать в широком диапазоне давлений и температур, а так же при наличии пены и неспокойной поверхности.


5.3 Ограничения


На погрешность измерения уровня датчиками давления может повлиять изменение плотности жидкости. При работе с вязкими, коррозионно активными или иными агрессивными жидкостями необходимо соблюдать особые меры предосторожности. Кроме того, некоторые среды (например, целлюлозная масса) имеют тенденцию к затвердеванию по мере роста концентрации. Датчики давления не работают со средами, находящимися в твердом состоянии. Если датчики давления установлены с импульсными трубками (сухие и мокрые колена), тогда на их работу будет влиять изменение температуры окружающей среды из-за изменения плотности заполняющей жидкости в мокром колене или накопления конденсата в сухом колене Закрытые каппилярные системы смягчают воздействие некоторых из этих факторов и могут быть выбраны для снижения дополнительной погрешности.


Измерительные системы с электронными выностными мембранами могут еще больше снизить погрешность, связанную с изменением температуры, так как импульсные линии в них заменены на цифровые линии связи. Но системы с электронными выносными мембранами разработанны для применения на высоких резервуарах с низкми и средними значениями статического давления.

6. Емкостные уровнемеры


6.1 Принцип измерения


При установке электрода для измерения уровня в резервуаре образуется конденсатор. Металлический стержень электрода выступает в качестве одной из пластин конденсатора, а стенка резервуара (или опорным электрод в неметаллических резервуарах) действует как другая пластина. При повышении уровня воздух или газ, окружающий электрод, вытесняется материалом, имеющим другое значение диэлектрической постоянной. Изменение емкости конденсатора происходит из-за изменения диэлектрических свойств среды между пластинами. Это изменение регистрируется электронными цепями для измерения емкости и преобразуется в команду для исполнительного реле или в пропорциональный выходной сигнал.


Зависимость для емкости конденсатора выражается следующим уравнением:




С = емкость в фарадах;


К = диэлектрическая постоянная материала; A = площадь пластин в квадратных метрах;


D = расстояние между пластинами в метрах;




Рис. 6.1.


Диэлектрическая постоянная - это численное значение по шкале от 1 до 100, которая характеризует способность диэлектрика (среды между пластинами) удерживать электростатический заряд. Диэлектрическая постоянная материала определяется на испытательном стенде. В реальных условиях изменение емкости происходит различным образом, в зависимости от свойств измеряемой среды и выбора электрода для измерения уровня. Однако, основной принцип всегда остается в силе. Если среда с низкой диэлектрической постоянной вытесняется средой с высокой диэлектрической постоянной, то суммарная емкость системы возрастает.


При увеличении размеров электрода (возрастании эффективной площади поверхности) емкость возрастает; при увеличении расстояния между измерительным и опорным электродами емкость уменьшается.


6.2 Преимущества


Емкостной уровнемер может применяться в широком диапазоне технологических параметров, в частности, в условиях переменной плотности, повышенных температур (до 540 °C), высоких давлений (до 345 бар), при наличии вязких/клейких продуктов, пены и паст. Он может применяться для непрерывного или точечного измерения уровня жидкостей и сыпучих материалов, и пригоден для измерения уровня границы раздела сред. Кроме того, емкостные уровнемеры отличаются невысокой стоимостью.


6.3 Ограничения


Изменение диэлектрических свойств среды, а также осаждение продукта на зонде, приводят к ошибкам измерений емкостного уровнемера. Существуют различные варианты компенсации влияния отложений продукта на емкостных зондах. В неметаллических резервуарах или в резервуарах, не имеющих вертикальных стенок, требуется применение дополнительного опорного электрода. Калибровка емкостного уровнемера может вызывать затруднения, особенно в случае невозможности "калибровки на стенде", а изменение характеристик парогазового пространства может повлиять на выходной сигнал. Кроме того, работа емкостных уровнемеров сильно затруднена в условиях сильного пенообразования.

Непрерывное измерение уровня


7.1 Принцип измерения


Буйковый уровнемер устанавливается на крыше резервуара или чаще, в выносной камере, сообщающейся с резервуаром через отборы с отсечными вентилями. Конструктивно уровнемер состоит из буйка, установленного на подвесе, соединенного с торсионным валом или подвешенного на подпружиненный подвес, который соединяется с электронным преобразователем уровнемера или сигнализатора. Буек выполнен таким образом, чтобы быть тяжелее жидкости, в которой он будет работать, таким образом, даже при полном погружении буйка в жидкость, на подвес воздействует сила тяжести.


При повышении уровня жидкости в резервуаре, буек глубже погружается в среду. На буек воздействует выталкивающая сила, пропорциональная весу жидкости, вытесненной буйком (закон Архимеда). Уменьшение веса буйка воспринимается электронным преобразователем уровнемера, и, поскольку вес буйка пропорционален уровню жидкости, блок электроники уровнемера может рассчитать уровень жидкости.



Рис. 7.1. Общий вид буйкового уровнемера


7.2 Преимущества


Парк установленных буйковых уровнемеров и сигнализаторов огромен, и они, при условии, что техническое обслуживание и калибровка выполняются регулярно, безотказно работают в течение многих лет. Эти приборы получили широкое распространение благодаря способности работать при выскоих значениях давления и температуры процесса, а также возможности измерения уровня границы раздела жидкостей даже при наличии эмульсионных слоев между ними, что позволяет осуществлять измерение уровня в тяжелых условиях эксплуатации.


7.3 Ограничения


Погрешность измерения уровня зависит от правильности калибровки прибора для рабочих условиий эксплуатации. Если рабочие параметры изменятся, то измерение уровня будет проводиться с повышенной погрешностью.


Буйковые уровнемеры с торсионным подвесом особенно требовательны к периодическому техническому обслуживанию и к корректной калибровке. Кроме того подобные уровнемеры могут быть повреждены в условиях резких перепадов уровня.


Применение буйковых уровнемеров на диапазонах измерений более 5 м считается нецелесообразным, в основном из-за сложности монтажа

Непрерывное измерение и дискретный контроль уровня


8.1 Принцип измерения


Радиоизотопные уровнемеры состоят из экранированного радиоизотопного источника, размещаемого с одной стороны резервуара или трубы, и приемника, размещаемого на противоположной стороне. Гамма-лучи излучаются источником и направляются через стенку


резервуара, через находящуюся в нем среду, в сторону противоположной стенки резервуара, где находится приемник. В радиоизотопных сигнализаторах уровня применяются источники определенного размера, обеспечивающие уровень радиации который обнаруживается при отсутствии материала между источником и приемником.



Рис. 8.1. Общий вид радиоизотопного уровнемера


В радиоизотопных уровнемерах используются аналогичные источники, но они определяют величину поглощения гамма-излучения, проходящего от источника к детектору через толщу измеряемого продукта. Доза облучения, регистрируемого приемником, обратно пропорциональна количеству продукта в резервуаре.


Несмотря на то, что слово "радиоизотопные" иногда вызывает опасения, имеется документально подтвержденный опыт безопасного применения данного метода в течение более 30 лет.


8.2 Преимущества


Самым большим преимуществом радиоизотопного метода измерений является то, что он абсолютно не требует контакта с процессом, то есть технологических присоединений для установки прибора на резервуаре не требуется. Кроме того, радиоизотопные уровнемеры являются бесконтактными и не подвергаются воздействию высоких температур, давлений, агресивных, абразивных и вязких материалов, нечувствительны к перемешиванию, засорению или заиливанию. Они могут применяться для непрерывного измерения уровня или сигнализации уровня жидкостей, сыпучих сред, а также для определения уровня границы раздела сред.


8.3 Ограничения


Значительные колебания плотности, особенно изменения концентрации водорода в продукте, могут вызывать ошибки измерений. Отложения материала на стенках резервуара также могут влиять на результаты измерений. Для использования радиоизотопного метода требуется разрешение на использование и обязательный контроль отсутствия утечек радиации, а также соблюдение жестких требований по охране труда и технике безопасности при обращении с источниками излучения и их утилизации. К тому же радиоизотопные уровнемеры имеют довольно высокую стоимость.

9. Лазерные уровнемеры

Непрерывное измерение уровня




Рис. 9.1


9.1 Принцип измерения


В лазерном уровнемере применяется источник сфокусированного инфракрасного излучения, которое посылается к поверхности среды. Лазерное излучение отражается от большинства жидких и сыпучих сред. Для измерения расстояния от уровнемера до поверхности измеряется с высокой точностью время распространения инфракрасного излучения.


9.2 Преимущества


Узкий сфокусированный лазерный луч делает эти уровнемеры подходящими для применения в резервуарах с ограниченным внутренним пространством.


Это бесконтактный уровнемер, без подвижных частей, требующий техничекого обслуживания в небольшом объеме. Лазерные уровнемеры хорошо работают в непрозрачных, хорошо отражающих жидкостях или сыпучих средах. Лазерные уровнемеры могут отрабатывать быстрые изменения уровня и могут обеспечивать измерение уровня на больших диапазонах.


9.3 Ограничения


Для нормальной работы лазерного уровнемера защитное стекло лазерного излучателя должно оставаться чистым. Поэтому уровнемеры этого типа не могут работать в условиях запыленности или при наличии тумана.


В дополнение, лазерный луч может не отразиться от поверхности спокойных, прозразных жидкостей. При монтаже крайне важно выдержать перпендикулярность оси уровнемера к поверхности жидкости.

Непрерывное измерение уровня




Рис. 10.1. Возникновение магнитострикции при взаимодействии магнитных полей


10.1 Принцип измерения


Магнитострикционные уровнемеры определяют момент пересечения двух магнитных полей, одно из которых создается магнитом поплавка, а другое - волноводом. Электроника генерирует токовый импульс малой мощности, распространяющийся по волноводу, и, когда магнитное поле импульса взаимодействует с полем, создаваемым магнитом поплавка, возникает "скручивание" чувствительного элемента. При этом создается ультразвуковая волна, время распространения которой измеряется электроникой уровнемера.


10.2 Преимущества


Магнитострикционные уровнемеры отличаются низкой погрешностью измерений (±1 мм). Одним уровнемером можно измерять как уровень, так и уровень границы раздела сред, а также измерять температуру процесса в одной или нескольких точках.


10.3 Ограничения


Магнитострикционный уровнемер измеряет положение поплавка, таким образом, изменение плотности измеряемой среды вызовет повышенную погрешность измерения. Поскольку поплавки соприкасаются с измеряемой средой, они могут потерять подвижность, и подвергаются коррозии. Уровнемеры для больших диапазонов измерения (более 3 м) могут быть выведены из строя турбулентной поверхностью или из-за ошибок в монтаже. Кроме того, магнит поплавка притягивает все металлические частицы, содержащиеся в жидкости, что изменяет свойства поплавка.

11. Магнитные указатели уровня

Непрерывное измерение уровня


11.1 Принцип измерения


Магнитный указатель - это вертикальный индикатор, состоящий из камеры, установленной на технологическом резервуаре, и колонки с визуальными указателями для индикации уровня.


В камере размещены магнитные поплавки, которые движутся вверх и вниз вместе с поверхностью среды и переключают или перемещают указатели в колонке. Поплавки могут также управлять переключением магнитострикционных датчиков, чувствительных к магнитному полю.


Камера указателя изготовлена из немагнитного материала, стойкого к технологическим средам и способного противостоять воздействию температуры и давления. Камера устанавливается на технологическом резервуаре таким образом, что уровень жидкости в камере совпадает с уровнем жидкости в резервуаре, но поверхность среды в камере более спокойная. Камера присоединяется к резервуару чрез отборные трубы и может иметь несколько присоединений. В ней содержатся те же жидкости и границы раздела сред, что и в технологическом резервуаре, при условии, что присоединения обеспечивают надлежащее сообщение камеры и резервуара.


Магнитный поплавок или поплавки, находящиеся в камере, рассчитаны таким образом, чтобы находиться на уровне верхней жидкости и/или на границе раздела двух жидкостей с учетом их удельного веса. Указатели обычно состоят из корпуса, в котором помещается колонка с флажками или роликами. Линии силового поля от намагниченного поплавка проходят сквозь стенки камеры и воздействуют на флажки или ролики, в результате чего они разворачиваются обратной стороной, окрашенной в контрастный цвет.


Таким образом осуществляется индикация положения поплавка (поплавков) в камере. Уровень жидкости или границы раздела сред в камере поднимается и опускается; соответственно поднимается и опускается поплавок (поплавки), и положение уровня отображается на указателе. Линии магнитного силового поля могут воздействовать также на магнитострикционные датчики или магнитные реле любого типа, например, герконовые, установленные на колонке.




Рис. 11.1

11.2 Преимущества


Магнитные индикаторы уровня обычно применяются, как средство визуальной индикации уровня жидкости в резервуаре и предназначены для технологического персонала. Их преимущество перед обычным смотровым стеклом состоит в том, что в самом указателе не содержится технологическая жидкость, чем устраняется опасность выброса жидкости в окружающую среду в случае разрушения стекла или из-за нарушенного уплотнения. Кроме того, возможно наблюдение за уровнем с расстояния, возможен контроль бесцветных жидкостей, и уровень отчетливо виден даже для жидкостей, которые вызывают загрязнение или травление смотрового стекла. Магнитные индикаторы обычно находятся в эксплуатации десятилетиями.


11.3 Ограничения


В магнитных индикаторах уровня используются поплавки, которые подвержены загрязнению и заклиниванию. Если в среде присутствуют железные опилки, они могут захватываться магнитами и вызывать застревание поплавка. Кроме того, липкая среда, содержащая вещества, подобные парафину, может стать причиной застревания или зависания поплавка, если температура камеры опустится ниже температуры технологического процесса. Поплавки могут повредиться во время гидравлических испытаний, при очистке паром, а также в ходе запуска и остановки технологического процесса.


В магнитных индикаторах иногда применяется поплавок-спутник, который магнитно связан с основным поплавком и перемещается вместе с ним. Известны случаи, когда связь основного поплавка с поплавком-указателем нарушается, и в этом случае возникает необходимость возврата индикатора в исходное состояние. Конструкция индикаторов "флажкового" типа сравнительно устойчива к подобным явлениям. В определенных обстоятельствах правилами котлонадзора предусматривается непосредственный контроль уровня технологической среды. В таких случаях магнитные индикаторы не применяются.


Конструкция поплавка зависит от давления в резервуаре и удельного веса технологической жидкости во всем диапазоне рабочих температур. Наиболее сложными являются процессы, в которых сочетаются высокая температура, высокое давление и низкий удельный вес, магнитные индикаторы могут применяться при температурах до 538 °C, при давлении свыше 275 бар и в жидкостях с удельным весом 0,4 и ниже.





Рис. 1.1 Схема сервоуровнемера


12.1 Принцип работы


В уровнемере, оснащенном сервоприводом, используется реверсивный двигатель, к которому присоединяются трос и буек. Трос, к которому крепится буек, намотан на измерительный барабан. Серводвигатель управляется электронными весами, которые постоянно отслеживают плавучесть частично погруженного буйка. В состоянии равновесия вес частично погруженного буйка компенсируется усилием уравновешивающих пружин.


Подъем или опускание уровня вызывает изменение выталкивающей силы. Детектор равновесия воздействует на интегрирующую схему в двигателе, который, в свою очередь, вращает измерительный барабан, и буек поднимается или опускается до восстановления равновесного положения.





К факторам, влияющим на погрешность системы, относятся: удлинение троса из-за изменений температуры, место установки, деформация резервуара под действием жидкости, что вызывает смещение опорной точки, колебания плотности продукта, а также допуски при изготовлении троса и барабана.


12.2 Преимущества


В уровнемере, оснащенном сервоприводом, используется реверсивный двигатель, к которому присоединяются трос и буек. Трос, к которому крепится буек, намотан на измерительный барабан. Серводвигатель управляется электронными весами, которые постоянно отслеживают плавучесть частично погруженного буйка. В состоянии равновесия вес частично погруженного буйка компенсируется усилием уравновешивающих пружин. Подъем или опускание уровня вызывает изменение выталкивающей силы. Детектор равновесия воздействует на интегрирующую схему в двигателе, который, в свою очередь, вращает измерительный барабан, и буек поднимается или опускается до восстановления равновесного положения.


Сервоуровнемер обеспечивает непосредственное измерение уровня с малой абслоютной погрешностью (±0,5 мм). Некоторые сервоуровнемеры позволяют дистанционно включать подъем и опускание измерительного буйка в целях контроля воспроизводимости и технических характеристик или для калибровки. Опускание буйка дает также возможность измерить плотность и/или обнаружить границу слоя воды на дне резервуара под поверхностью продукта.


Для обеспечения минимальной погрешности измерений буек должен устанавливаться в успокоительной трубе, чтобы ограничить его перемещение по горизонтали.


В уровнемере имеется много подвижных частей, которые подвержены механическому износу, а также чувствительны к загрязнению и налипанию.


Изменение плотности измеряемого продукта может повлиять на осадку чувствительного элемента в состоянии равновесия.


Несмотря на то, что с помощью сервоуровнемера можно измерять плотность и/или обнаружить границу слоя воды, это достигается погружением троса и буйка, в результате чего на них могут оставаться отложения продукта. Это может привести к повышенному объему технического обслуживания для поддержания минимальной погрешности измерений. Во время измерения плотности и положения границы слоя воды измерение уровня продукта невозможно.


Обычно сервоуровнемеры монтируются на крыше резервуара в успокоительной трубе. Труба необходима для обеспечения минимальной погрешности измерений и для устранения смещения буйка по горизонтали.


Если буек не будет находиться в успокоительной трубе, то на его работу могут повлиять ошибки монтажа.


Сервоуровнемеры можно применять и для измерения границы раздела сред. В этом случае буек будет рассчитан для того, чтобы плавать в более плотной среде и тонуть в слое верхней среды.


К факторам, влияющим на погрешность системы, относятся: удлинение троса из-за изменений температуры, место установки, деформация резервуара под действием жидкости, что вызывает смещение опорной точки, колебания плотности продукта, а также допуски при изготовлении троса и барабана. 

Дискретный контроль уровня


13.1 Принцип действия


Вибрационный сигнализатор состоит из вилки с двумя лепестками, который вибрирует на собственной частоте под воздействием пьезоэлемента. Сигнализатор монтируется сверху или сбоку резервуара на фланцевое или резьбовое технологическое присоединение таким образом, чтобы вилка находилась внутри резервуара.



Рис. 13.1. Примеры монтажа вибрационных сигнализаторов уровня в резервуаре


В воздухе вилка вибрирует на собственной резонансной частоте, которая постоянно контролируется электроникой. В момент, когда вилка погружается в жидкость, частота вибрации изменяется. Изменение частоты обнаруживается электроникой сигнализатора, которая в свою очередь, изменяет выходное состояние сигнализатора для оповещения оператора, управления насосом, клапаном. Рабочая частота сигнализатора выбирается таким образом, чтобы избежать влияния вибрации, котрая может присутствовать при работе технологической установки, и возможных ложных срабатываний.


Конструкция сигнализатора не содержит каких-либо внешних уплотнений и обычно выполняется из нержавеющей стали, что позволяет применять его при высоких давлениях и температурах. Также доступны варианты с покрытием смачиваемых частей или из специальных материалов для работы в агрессивных средах.


13.2 Преимущества


На работу вибрационных сигнализаторов практически не оказывают воздействия: потоки жидкости, турбулентность, пузырьки, пена, вибрации, твердые включения, налипания, отложения, а также изменение свойств / характеристик жидкости. После установки на объекте дополнительной калибровки не требуется. Сигнализаторы имеют минимальные требования к монтажу, отсутствие подвижных частей и зазоров практически полностью исключает потребность в техническом обслуживании.


13.3 Ограничения


Вибрационные сигнализаторы уровня непригодны для работы в очень вязких средах. Отложения между элементами вилки приводят к ложным срабатываниям.

Дискретный контроль уровня


14.1 Принцип действия


Поплавковый сигнализатор уровня обычно монтируется на боковой стенке резервуара или в выносной камере и срабатывает, когда поплавок всплывает под действием жидкости, достигающей заданного уровня сигнализации. С поплавком конструктивно связан постоянный магнит, который взаимодействует со вторым постоянным магнитом в корпусе сигнализатора. Конструкция не содержит уплотнений, так как магниты взаимодействуют через стенку корпуса сигнализатора.


Эти простые электромеханические приборы практически безотказны и обеспечивают надежное срабатывание при контроле верхнего или нижнего уровня. Такие сигнализаторы имеют множество исполнений и можно подобрать модель, подходящую к практически любому технологическому присоединению, любому технологическому процессу и любой прикладной задаче.


В тех случаях, когда контролируемые уровни находятся значительно ниже точки монтажа сигнализатора, можно использовать буйковый сигнализатор, принцип действия которого аналогичен принципу действия буйкового уровнемера. Подпружиненный буек на тросе размещается на требуемом уровне.


Буек оказывает нагрузку определённой величины на подвес и пружину. Когда буек погружается в жидкость, сила, действующая на пружину уменьшается, рабочий постоянный магнит поднимается, взаимодействуя со вторым постоянным магнитом в корпусе сигнализатора. Буйковые сигнализаторы часто используются в процессах с очень высокими давлениями и с жидкостями, имеющими низкую плотность.



Рис. 14.1. Примеры монтажа поплавковых сигнализаторов


14.2 Преимущества


Благодаря простой конструкции с небольшим количеством элементов, поплавковые и буйковые сигнализаторы очень надежны и просты в обслуживании. Они выдерживают условия процессов с высокими давлениями и температурами, а разнообразие материалов смачиваемых частей позволяет применять сигнализаторы практически в любых жидкостях.


14.3 Ограничения


Поплавковые и буйковые сигнализаторы являются простыми пассивными устройствами, не имеющими функций самодиагностики, поэтому рекомендуется осуществлять регулярный контроль их состояния и техническое обслуживание. Подвижные части таких сигнализаторов подвержены загрязнению липкими или вязкими жидкостями.

15. Кондуктометрические системы контроля раздела пар/вода

Непрерывное измерение и дискретный контроль уровня


15.1 Принцип измерения


Измеряя сопротивление среды в выносной камере или трубопроводе, возможно обнаруживать воду (ее сопротивление как правило составляет от 2 Ом до 100 кОм) и пар (сопротивление как правило составляет более 10 МОм).


Для измерения уровня воды в барабане котла можно установить набор электродов, смонтированных в выносной камере, присоединенной к барабану. Электроды размещаются над и под нормальным уровнем воды в барабане. Измеряется сопротивление среды на каждом электроде, и ступенчатое изменение сопротивления двух соседних электродов воспринимается как уровень раздела пар/вода.


Различное сопротивление воды и пара может быть задействовано в системах предотвращения попадания воды в турбоагрегаты. Измеряя сопротивление среды на электродах, установленных в паропроводах, можно организовать сигнализацию наличия воды и принять соответсвующие меры безопасности.


15.2 Преимущества


Кондуктометрический метод обнаружения пара и воды - проверенный метод измерения. Разница в сопротивлении воды и пара очень большая, что обеспечивает простоту и надежность измерений.


Применение электронного метода измерения уровня воды, обнаружения воды/пара обеспечивает высокий уровень самодиагностики и достоверности измерений по сравнению с механическими уровнемерами из-за отсутсвия подвижных частей. Благодаря этому значительно сокращается потребность в техническом обслуживании.


15.3 Ограничения


Надежность измерения зависит от качества воды. Обычно она очень чистая, но в загрязненной воде электроды могут давать ложные срабатывания. Тем не менее, передовые модели таких уровнемеров позволят избежать ложных срабатываний даже в таких случаях.


Предел рабочей темпертуры ограничивается применяемыми материалами и составляет 500 °C.





Рис. 15.1 Кондуктометрический уровнемер на барабане котла

16. Сравнительный обзор методов измерения уровня

Таблица 16.1. Сравнительная таблица методов измерения уровня с учетом их работоспособности в различных условиях процесса.

Условия процесса

Перепад давления

Емкостной

Ультразвуковой

Волноводный

Бесконтактный радарный

Радиоизотопный

Лазерный

Буйковый

Магнитострикционный

Магнитные указатели уровня

Перемешивание

Коррозия

Изменения плотности

Изменения диэлектрической постоянной среды

Эмульсия

Высокая температура процесса

Высокое давление в резервуаре

Низкие температуры процесса (-40°С)

Помехи (ЭМП, двигатели)

Осаждения

Суспензии

Сыпучие материалы

Вязкие, липкие среды





* Изменения диэлектрической постоянной влияет на погрешность измерения уровня границы раздела сред.


** Общий уровень хорошо, уровень поверхности раздела - удовлетворительно.

17. Сравнительный обзор методов сигнализации уровня

Таблица 17.1. Сравнительная таблица и оценка методов сигнализации уровня с учетом их работоспособности в различных условиях процесса.

Условия процесса

Емкостной

Радиоизотопный

Поплавковый

Вибрационная вилка

Перемешивание

Изменения температуры окружающей среды

Коррозия

Изменения плотности

Изменения диэлектрической постоянной среды*

Эмульсия

Высокая температура процесса

Высокое давление в резервуаре

Внутренние конструкции в резервуаре

Низкая температура процесса

Вакууметрическое давление в резервуаре (разрежение)

Помехи (ЭМП, двигатели)

Отложения, налипания продукта

Суспензии

Сыпучие материалы

Вязкие, липкие среды


1 = Хорошо: это условие слабо влияет или не оказывает воздействия на эффективность данного метода.


2 = Удовлетворительно: этот метод может работать в данных условиях, но надежность измерений может быть снижена или может потребоваться специальный монтаж.


3 = Плохо: этот метод не подходит для данных условий.

Уровнемер – устройство предназначенное для контроля или измерения в промышленных условиях уровня сыпучих или жидких веществ в технологических апаратах, хранилищах, емкостях и т.п.

Перепад уровня – это разность измеряемых высот между верхней и нижней контрольными точками столба жидкости или сыпучего материала в резервуаре. Единицы измерения – мм, см, м.

Различают уровнемеры и сигнализаторы предельного уровня. Измерение уровня может производиться бесконтактным и контактным способом.

Механические уровнемеры

Механические уровнемеры существуют поплавковые (чувствительный элемент поплавок, плавающий на поверхности жидкости(см.рис 1)), и буйковые (см.рис 2), их действие основано на измерении выталкивающей силы, которая действует на буй. Перемещение поплавка или буя через механические связи или систему дистанционной (пневматической или электрической) передачи передается измерительному прибору.

Гидростатические уровнемеры

Измерение уровня этим методом определяется гидростатическим давлением, оказанным жидкостью на место установки датчика давления. Измерение уровня методом гидростатического давления может осуществляться:

  • Дифференциальным манометром, подключаемым к резервуару на высотах, соответствующих нижнему предельному значению уровня и газовому пространству над жидкостью;
  • Датчиком избыточного давления, который подключается на высоте, соответствующей нижнему предельному значению уровня;
  • Измерением давления газа (воздуха), подкачиваемого по трубке, опущенной в заполняющую резервуар жидкость на фиксированное расстояние (пьезометрический метод).

На рис.3 приведена схема измерения уровня датчиком избыточного давления. Необходимый для этого датчик ДИ может быть любого типа с соответствующими пределами измерений. При измерении уровня датчиком избыточного давления присутствуют погрешности измерения, возникающие из за класса точности измерительного прибора, изменения плотности жидкости, а также колебаний атмосферного давления. В случае когда емкость находится под избыточным давлением, данная измерительная схема не применима, т.к. к давлению столба жидкости прибавляется избыточное давление над поверхностью жидкости, не учитываемое данной измерительной схемой.

В связи с этим, более универсальными являются схемы измерения уровня с использованием дифференциальных датчиков давления (дифманометров). С помощью дифференциальных датчиков давления можно также измерять уровень жидкости в открытых резервуарах. Плюсовая камера дифманометра через импульсную трубку соединена с резервуаром в его нижней точке, минусовая камера сообщается с атмосферой (см.рис 4). Такая измерительная схема может использоваться тогда, когда дифманометр расположен на одном уровне с нижней плоскостью резервуара. Если это условие соблюсти невозможно и дифманометр располагается ниже, то используют уравнительные сосуды. В такой схеме устраняется погрешность, связанная с колебаниями атмосферного давления.

При измерении уровня в аппаратах, находящихся под давлением, применяют схему, приведенную на рис.5.1 и 5.2. Уравнительный сосуд в этом случае устанавливают на высоту, соответствующую максимальному значению уровня, и соединяют с аппаратом. Статическое давление Р в аппарате поступает в обе импульсные трубки, поэтому измеряемый перепад давления P можно представить в виде:

P = gРH max - gh.

При h=0 P=P max , а при h = h max P=0.

Плотность жидкости;

g = 9,81 м/с2 – ускорение свободного падения

В промышленности для измерения уровня агрессивных средств применяются так же пьезометрические (барботажные) гидростатические уровнемеры. Они представляют собой открытую с одного конца измерительную трубку, опускаемую в резервуар с жидкостью, уровень которой измеряется. Через эту трубку продувается воздух, который барботирует через жидкость в виде пузырьков. Давление воздуха в трубке Р является мерой уровня жидкости (см.рис 6). При этом следует учитывать влияние плотности жидкости, так как Р = gH.

В рассмотренных схемах могут быть использованы дифманометры с унифицированным токовым или пневматическим сигналом. Если жидкость, заполняющая резервуар, агрессивна, то подключение дифманометра к резервуару осуществляется через разделительные сосуды или разделительные мембраны.

Электрические уровнемеры

Электрические уровнемеры бывают ёмкостные и кондуктометрические.

Принцип действия емкостных уровнемеров основан на различии диэлектрической проницаемости контролируемой среды (водных растворов солей, кислот, щелочей) и диэлектрической проницаемости воздуха либо водяных паров. Преобразователи бывают пластинчатыми, цилиндрическими или в виде стержня. При измерении уровня агрессивных жидкостей обкладки преобразователя выполняют из химически стойких сплавов или покрывают тонкой антикоррозионной пленкой, диэлектрические свойства которой учитывают при расчете. Покрытие обкладок тонкими пленками применяют также при измерении уровня электропроводных жидкостей(см.рис 7).

Рис7. Емкостной уровнемер.

Кондуктометрические (омические) уровнемеры используют главным образом для сигнализации и поддержания в заданных пределах уровня электропроводных жидкостей. Принцип их действия основан на замыкании электрической цепи источника питания через контролируемую среду, представляющую собой участок электрической цепи с определенным омическим сопротивлением. Прибор представляет собой электромагнитное реле, включаемое в цепь между электродом и контролируемым материалом. Схемы включения релейного сигнализатора уровня могут быть различны в зависимости от типа объекта и числа контролируемых уровней. На рис. 8,а показана схема включения прибора в токопроводящий объект. В этом случае для контроля одного уровня h можно использовать один электрод, одно реле и один провод. При контроле двух уровней (рис. 8, б) их требуется уже по два. В качестве электродов применяют металлические стержни или трубы и угольные электроды (агрессивные жидкости). Основной недостаток всех электродных приборов – невозможность их применения в средах вязких, кристаллизующихся, образующих твердые осадки и налипающих на электроды преобразователей.



Рис8. Кондуктометрический уровнемер.

Акустические, или ультразвуковые уровнемеры

Принцип действия всех известных акустических уровнемеров основан на излучении ряда ультразвуковых импульсов, которые распространяются в направлении к поверхности (см.рис 11). Отраженная акустическая волна снова принимается измерителем уровня и обрабатывается микропроцессором. Далее производится температурная компенсация и преобразование на выходной ток (рис. 9).

Применение: жидкости и свободно сыпучие продукты; измерение уровня, объёма и расхода в открытых каналах; слабо парящие, дымящие, перемешивающиеся жидкости, пенящиеся среды, возможность применения при сильном пыление при загрузке сыпучих материалов.

Cигнализаторы уровня

Сигнализаторы уровня - это датчики уровня для контроля граничных/предельных значений уровня.Выходной сигнал сигнализатора уровня изменяется в момент заполнения или освобождения чувствительного элемента измеряемой средой.

Концевые выключатели предельного уровня формируют электрический сигнал в тех случаях, когда уровень контролируемого материала поднимается выше или опускается ниже определенного уровня, заданного относительно высоты установки датчика. Примерами могут служить: защита от переполнения, защита оборудования от режима «сухого хода», проверка минимального и максимального уровней заполнения резервуаров. Для определения предельного уровня предлагаются следующие средства контроля: поплавковые выключатели, концевые выключатели с вибрирующим чувствительным элементом, кондуктометрические выключатели, ёмкостные зонды, погружные магнитные зонды, выключатели на основе гидростатического давления жидкости.

Поплавковый выключатель

Поплавковый выключатель состоит из корпуса поплавка со встроенным микро выключателем и присоединительного кабеля.

Достоинства:

Недостатки:

  • непригодны для клейких жидкостей;
  • проблемы с плещущимися жидкостями;
  • плавучесть зависит от размеров поплавка;
  • точка срабатывания зависит от изменений (колебаний) плотности вещества.

Концевые выключатели с вибрирующим чувствительным элементом

Концевые выключатели с вибрирующим чувствительным элементом- устройства с резонатором камертонного типа (из за формы его часто называют колебательной вилкой), в которых пьезоэлектрическим способом возбуждаются сильные механические колебания в диапазоне резонансных частот. Благодаря высоким механическим качествам вибрирующей системы вполне достаточна весьма малая мощность возбуждения. Размещение чувствительного элемента внутри контролируемой среды вызывает резкое уменьшение амплитуды колебаний вплоть до их полного гашения. Смена состояния колебания состоянием покоя или наоборот в виде электрического сигнала предельного уровня поступает на индикатор. Вибрационные концевые выключатели можно использовать для определения предельного уровня практически всех жидкостей и сыпучих материалов.

Достоинства:
  • простота;
  • не требуется регулировка в месте;установки;
  • отсутствуют движущиеся части;
  • нечувствительны к турбулентности, образованию пены и внешней вибрации;
  • допускают любую пространственную ориентацию;
  • нечувствительны к большинству физических свойств измеряемого вещества (исключение плотность);
  • проверка функционирования может проводиться на месте монтажа.
  • Недостатки:
  • клейкие вещества и твёрдые частицы в жидкостях могут служить причиной отказов;
  • твёрдые частицы могут заклинивать колебательную вилку.
Рис11. Вибрационный сигнализатор уровня.

Кондуктометрический метод определения предельного уровня

Этот метод основан на изменении силы тока. В пустом резервуаре сопротивление между двумя электродами бесконечно велико; при погружении концов электродов в проводящую среду сопротивление уменьшается соответственно величине её проводимости. Область применения метода распространяется исключительно на контроль уровня проводящих жидкостей. Следовательно, уровень сыпучих или вязких материалов измерять указанным методом нельзя. Необходимо наличие у контролируемого вещества определённой минимальной проводимости (более 1 мкC/см), чтобы при измерении уровня кондуктометрическим методом можно было получить различимый сигнал изменения тока. Настоящий метод применяют главным образом для измерения предельного уровня в цистернах, баках и паровых котлах. Воспламеняющиеся жидкости, такие как различные виды топлива, масла и растворители, являются диэлектриками, поэтому для них этот метод неприменим в отличие от кислот, щелочей и растворов, содержащих воду и являющихся проводниками. Уровень агрессивных жидкостей определяется без проблем, путём использования электродов, выполненных из высокопрочных материалов. При реализации кондуктометрического метода два электрода устанавливаются выше поверхности проводящей жидкости, уровень которой контролируется. Когда жидкость достигает той точки, где оба электрода контактируют с жидкостью, электрический ток вызывает срабатывание реле.

Ёмкостный метод определенияпредельного уровня

Этот метод предполагает изменение электрической ёмкости в зависимости от уровня наполнения резервуара. Конденсатор образован стенкой резервуара и щупом, погруженным в его содержимое. В точном определении уровня решающую роль играют конструкция, изоляция и правильное размещение ёмкостного зонда. Поэтому необходимо учитывать следующие факторы: изоляцию зонда, форму резервуара, давление в резервуаре, температуру контролируемого материала, его зернистость, абразивность, химическую агрессивность, вязкость, возможность образования конденсата или пены.

Магнитные погружные зонды предельного уровня

Магнитные погружные зонды предельного уровня разработаны для использования в очищенных жидкостях, таких как вода, растворители, масла, различные виды топлива. В зависимости от вида контролируемой жидкости возможны различные исполнения зондов:

  • пластиковые для агрессивных кислот и щелочей;
  • из нержавеющей стали для воды, масел и т.п.;
  • из нержавеющей стали во взрывозащищённом исполнении;
  • для горючих жидкостей, таких как топливо, растворители, спирты.

Эти датчики работают следующим образом: поплавок, направляемый трубкой зонда, плавает на поверхности жидкости; магнит, смонтированный на поплавке, в соответствующем положении замыкает герметизированные контакты, установленные на направляющей трубке, посредством магнитного поля.Точность измерения не зависит от давления, плотности и электрических свойств жидкости.

Гидростатический метод определения предельного уровня

Гидростатический метод подходит для определения уровня любых жидкостей. Здесь непосредственно используется давление, оказываемое жидкостью на дно резервуара: давление, создаваемое в трубке зонда, в случае когда уровень жидкости повышается, воздействует на мембранное устройство; как только давление достигает значения, соответствующего установленному значению уровня, срабатывает переключающее коммутационное устройство (контактор, реле). Мембранное устройство возвращается в первоначальное состояние, когда уровень жидкости и, соответственно, давление снова понизится.

В гидростатических сигнализаторах (рис. 15) используются различные способы подключения к измерительной системе; существуют модификацидатчиков из нержавеющей стали и пластика.

Жидкость - вещество, обладающее свойством течь и принимать форму сосуда, в котором оно находится.

Датчики уровня жидкостей необходимы для контроля уровня жидкостей в ёмкостях или трубопроводах. По функционалу датчики уровня делятся на уровнемеры и сигнализаторы.

Датчики уровня жидкостей делятся на два типа: контактные (весь датчик или его часть контактирует с измеряемой средой) и бесконтактные (измерение происходит без контакта с жидкой средой). Каждый из этих типов имеет достоинства и недостатки и находит своё применение в той или иной области.

Контактный тип датчиков как правило применяется в процессах, которые имеют факторы, затрудняющие работу оборудования.

К таким факторам можно отнести:

  • температуры свыше +90°С;
  • давление свыше 3 бар.

В том числе преимущественно контактные датчики используют для измерения уровня пенящихся жидкостей (молоко, пиво, соки, газ. вода и др.). Ввиду рассеяния сигнала и получения некорректных результатов при измерение бесконтактным методом, уровень жидкости в высоких узких резервуарах также рекомендовано контролировать при помощи контактных приборов.

Бесконтактные датчики уровня жидкостей применяются там, где необходимо избежать пагубного влияния физико-химических свойств измеряемой жидкости. На процесс измерения и работоспособность датчика могут влиять:

  • вязкие жидкости (сгущёнка, варенье, нефтепродукты, глицерин и др.);
  • агрессивные жидкости (щёлочи, кислоты).

Все датчики уровня жидкостей различаются не только по функционалу (уровнемеры/сигнализаторы), типу (контактные/бесконтактные), но и самое главное - по принципу действия.

Уровнемеры Сигнализаторы
Контактные Емкостные Емкостные/Емкостно-частотные (RF)
Гидростатические Гидростатические
Байпасные Оптические
Магнитострикционные Вибрационные
Магнитные Поплавковые магнитные
Микроволновые рефлексные Поплавковые кабельные
Буйковые Кондуктивные
Бесконтактные Ультразвуковые Ультразвуковые
Микроволновые радарные
Радиоизотопные

Подробное описание каждого принципа действия, их преимущества и недостатки вы сможете найти на страницах нашего сайта, в этой статье остановимся на ключевых отличиях и применениях того или иного датчика уровня жидкостей.

Емкостные датчики уровня - это экономичное решение для контроля уровня там, где не возникает вспенивания и налипания среды на датчик, а также там, где не требуется высокая точность измерения уровня. Как правило применяется для измерения уровня воды в небольших резервуарах. Для пищевых продуктов и агрессивных сред рекомендованы модели с пластиковым покрытием измерительного зонда. Существенным недостатком является высокая погрешность при измерении жидкостей с низкой диэлектрической проницаемостью (ε=1,5…3,0), а также неспособность работать с диэлектрическими жидкостями.

Однако производителям удалось решить проблему обнаружения жидкостей с низкой диэлектрической проницаемостью и проблему определения границы раздела сред с близкими значениями диэлектрической константы. Емкостно-частотный сигнализатор в отличие от емкостного, благодаря RF-технологии и тонкой настройке способен детектировать слабопроводящие жидкости и одновременно не реагировать на пену.

Гидростатические уровнемеры и сигнализаторы имеют более высокую точность измерения по сравнению с емкостными и такую же невысокую стоимость. Поэтому являются оптимальным выбором по соотношению цена/качество. Вычисление значения уровня происходит благодаря измерению давления столба жидкости, поэтому гидростатические датчики применяются в открытых резервуарах или в закрытых, но в которых давление воздушной среды соответствует атмосферному, в противном случае уровнемер выдаст некорректные результаты. В том числе на определение уровня влияет плотность жидкости, для применения гидростатических уровнемеров необходимо быть уверенным, что её значение остаётся постоянным на протяжение всего времени измерения. Поэтому не рекомендуется использовать гидростатический метод определения уровня для жидкостей с переменной плотностью (радиохимическое производство, нефтепродукты при изменении температуры). Применяются для контроля уровня чистых и сточных вод, жидких пищевых продуктов или химических веществ, не реагируют на пену. Являются фактически безальтернативным решением для измерения уровня воды в скважинах.

Работа байпасных уровнемеров основана на принципе сообщающихся сосудов, что делает процесс измерения весьма наглядным и понятным. Такие уровнемеры применяются в небольших резервуарах, находящихся под давлением с температурой рабочей среды до +250 °С. Могут использоваться совместно с магнитострикционными уровнемерами, что позволит их интегрировать в АСУ. Байпасные уровнемеры не следует применять с вязкими жидкостями или жидкостями вязкость которых повышается при снижении температуры, так как температура жидкости в байпасной камере из-за тепловых перемычек в соединительной арматуре ниже чем в сообщающимся с ним сосуде.

Магнитострикционные и магнитные уровнемеры относятся к типу поплавковых, это значит, что поплавок «лежит» на поверхности жидкости и измерение уровня происходит относительно положения этого поплавка. Такие уровнемеры отличаются большей точностью, особенно магнитострикционные. Их целесообразно применять при коммерческом учёте светлых нефтепродуктов, химических веществ и других дорогостоящих жидкостей. Поплавковые уровнемеры подходят для измерения уровня пенящихся жидкостей, однако не применим с вязкими жидкостями.

Микроволновые рефлексные уровнемеры конструктивно состоят из электронного блока и волновода. Длина волновода должна соответствовать высоте резервуара, что ограничивает применение датчиков в высоких резервуарах. С такой бедой сталкиваются все датчики с аналогичной конструкцией (емкостные, магнитные, магнитострикционные). Однако принцип действия и конструкция рефлексного датчика делает его высокоточным и пригодным для использования в тяжёлых условиях (высокая температура и давление), а также с пенящимися и налипающими жидкостями. Этот вид уровнемеров можно назвать наиболее универсальным, подходящими для применения фактически с любыми жидкостями, не зависимо от давления воздушной среды над поверхностью жидкости или диэлектрической проницаемости среды.

Буйковые уровнемеры - это датчики для тяжёлых условий, в которых ко всему прочему требуется высокая точность измерений. Принцип работы буйковых уровнемеров схож с работой поплавковых датчиков и основан на использовании закона Архимеда. Некоторые модели способны обеспечивать непревзойдённые результаты измерения при температурах от -196 °С до + 500 °С и давление рабочей среды до 414 атмосфер. От сюда складывается высокая стоимость. Как правило используются на нефтехранилищах и в химической промышленности.

Это универсальное устройство непрерывного измерения уровня жидкостей. Обладает всеми преимуществами бесконтактного метода измерения и отличается крайне высокой точностью. Применим со всеми жидкими средами, исключением в некоторых случаях может стать пена. Помехой для импульс-радарного уровнемера может стать газовая подушка над поверхностью жидкости, в таком случае следует применять FMCW-радарные уровнемеры. Наилучшее применение таких датчиков - это резервуары с медленным изменением уровня жидкости, где важна высокая точность измерения. Недостатком может стать их высокая стоимость.

Ультразвуковые датчики уровня ещё один бесконтактный тип датчиков. По большому счёту, именно ультразвуковые датчики наиболее часто применяются для бесконтактного контроля уровня жидкостей. Ведь далеко не всегда важна очень высокая точность измерения как у радарных датчиков, а стоимость таких устройств в несколько раз ниже. Ограничение на применение накладывают пенящиеся жидкости и ёмкости в которых образуется газовая подушка (емкости с азотной кислотой), собственно, как и в случае с импульс-радарными уровнемерами.

Оптические сигнализаторы уровня жидкостей - это миниатюрные датчики, предназначенные для контроля уровня в небольших ёмкостях и резервуарах, находящихся под вибрацией.

Вибрационные сигнализаторы или как их ещё называют «вибровилки» врезаются в ёмкость на требуемых уровнях. Чувствительный элемент постоянно вибрирует, что позволяет использовать датчик с вязкими и пенящимися жидкостями, не боясь ложных срабатываний. Такие датчики имеют среднюю точность и стоимость, относительно других сигнализаторов.

Поплавковые сигнализаторы наиболее простые и экономичные устройства контроля уровня воды и сточных вод, а также слабоагрессивных жидких сред. Поплавковые сигнализаторы делятся на два типа - это поплавковые кабельные и поплавковые магнитные сигнализаторы. Отличие заключается в том, что кабельные имеют определённую длину кабеля и погружаются в жидкость через верх резервуара, а магнитные врезаются в боковую стенку ёмкости на требуемом уровне. Для агрессивных сред поплавок и кабель изготавливаются из различных пластиков. Как правило их применяют для включения/отключения насосов. Отличаются низкой ценой и невысокой точностью.

Добавить сайт в закладки

Виды приборов и преобразователей для измерения уровня

Для измерения уровня жидкости с постоянной плотностью применяют гидростатические и буйковые уровнемеры и преобразователи уровня.

Принцип действия гидростатических уровнемеров основан на измерении давления внутри жидкости, определяемого массой столба жидкости, расположенного между точкой измерения и поверхно­стью жидкости в емкости.

Если емкость открыта и жидкость, уровень которой измеряют, не агрессивна, то в качестве измерительного прибора применяют манометры (при высоте емкости
не ниже 4 м) или напоромеры (при высоте емкости ниже 4 м), устанавливаемые вблизи днища резервуа­ра.

Давление, показываемое прибором, при постоянной плотности жидкости будет пропорционально уровню жидкости.

Для измерения уровня агрессивных жидкостей, контакт которых с чув­ствительным элементом недопустим, их отделяют потоком сжатого воздуха или газа, который подают в соединительную линию. В этом случае чувствительный элемент манометра не будет контактировать с жидкостью, уровень ко­торой измеряют.

Рис. 1 Принципиальная схема гидростатического измерения уровня: 1 -трубка, 2 -редукционный мневмоклапан, 3- вентиль, 4 - стакан, 5 - манометр

Гидростатический преобразователь уровня, пост­роенный по такому принципу, представляет собой трубку 1 (рис. 1), в которую от редукционного пневмо­клапана 2 через вентиль 3 и стакан 4 подают сжатый воздух. При небольшом расходе воздуха, который регулируют вентилем по числу пу­зырьков воздуха в стакане 4 за единицу времени, давление, измерен­ное манометром 5 будет равно гидростатическому давлению столба жидкости между концом трубки и поверхностью жидкости. При постоянной плотности жидкости показания манометра будут пропорциональны уровню жидкости.


Уровень в емкости, которая находится под давлением р и, измеряют дифманометром. Перепад давлений (рис. 2 а) p = (p и + p г) т. е. равен гидростатическому давлению жидкости.

Рис. 2 Дифманометрический уровень с прямой (а) и обратной (б) шкалой: 1, 2 - отборы, 3 - уравнительный сосуд

Отборы 1 и 2 (рис. 2 а) дифманометра устанавливают вверху и внизу емкости, уравнительный сосуд 3 - на уровне отбора 2 и заливают в него измеряемую жидкость. Сосуд соединяют с отбором 1. В том случае, когда над поверхностью жидкости находятся конденсирующиеся пары или газы, уравнительный сосуд 3 (рис. 2 б) устанавливают на уровне отбора 1 и соединяют с ним. При конденсации паров или газов в сосуде уровень в нем остается постоянным, так как излишки конденсата сливаются в ем­кость через соединительную линию и отбор 1. При верхнем расположении сосуда нулевому перепаду давления соответствует максимальное значение измеряемого уровня и шкала дифманометра будет обратной. Для измерения уровня агрессивной жидкости в обе трубки под одинаковым давле­нием (большим р и) и с одинаковым расходом продувается сжатый воздух.

Рис. 3 Принципиальная схема буйкового преобразователя уровня: 1 - камера, 2 - патрубок, 3,5 - рычаги, 4 - мембрана, 6 - грузы, 7 - опора, 8 - корректор нуля

Буйковые измерительные преобразователи уровня применяют для точного измерения уровня жидкости в сосудах, находящихся под давлением до 40 МПа. Они бывают камерные и бескамерные. В камерных преобразователях уровня камера 1 (рис. 3) патрубками 2 подсоединяется к сосуду, где измеряют уровень. В камере на рычаг 3 подвешен буек. Через стальную гибкую мембрану 4 рычаг выведен из камеры.

По закону Архимеда при погружении в жидкость на буек будет действовать выталкивающая сила, равная весу жидкости, вытесненной погруженной частью буйка. Максимальное усилие, дей­ствующее со стороны буйка на рычаг 3 , будет при отсутствии жидкости в камере (нулевой уровень), минимальное - при полном погружении буйка. Создаваемый момент силы измеряют и по нему судят о значении уровня жидкости. Диапазон измере­ния преобразователя определяется длиной поплавка и высотой установки камеры на емкости. Поскольку преобразователи с различными диапазо­нами измерения имеют различную массу, для компенсации начального усилия предусмотрен рычаг 5 с противовесом 6, который может переме­щаться по этому рычагу 3.

В бескамерных преобразователях уровня поплавок помещен непосред­ственно в сосуд, в котором измеряют уровень. Если плотность измеряемой жидкости в заранее известный момент и на известный срок изменяется, шкалы приборов переделывают и показания корректируют.

Измерять уровень жидкости, изменение плотности которой носит слу­чайный характер, рассмотренными приборами нельзя.

Для измерения уровня жидкости с переменной плотностью, а также уровня сыпучих материалов применяют емкостные преобразователи уров­ня. Действие емкостных преобразователей уровней основано на изменении емкости электродной системы при изменении измеряемого уровня. В сосуд, в котором измеряют уровень, вертикально погружают изолированный электрод (например, трос на изоляторах). Измерительный прибор изме­ряет емкость конденсатора, обкладками которого являются изолирован­ный электрод и корпус сосуда (земля). При изменении уровня изменяется емкость конденсатора, так как изменяется диэлектрическая проницаемость среды между обкладками. Если электрод расположить не вертикально, а горизонтально, то изменение емкости будет происходить резко, скачком, так как жидкость или сыпучая среда достигнет электрода одновременно по всей поверхности. Резкое изменение емкости может быть зафиксировано сигнальным устройством.