Как работает электродвигатель в автомобиле тесла. Технические характеристики Tesla Model S. Электрические «лошадиные силы»

Подробности Опубликовано: 03.10.2015 14:28

Электромобили массово начали заполнять улицы Нью-Йорка еще 100 лет назад. Но почему они до сих пор не пользуются популярностью во всем мире? Ответ прост – в то время не было достаточно мощных аккумуляторов. С развитием технологий батареи с большой емкостью появились, причем достаточно давно. Десятки лет назад на различных выставках и в новостных сюжетах начали попадаться на глаза прототипы электрических авто, которые были достаточно эффективными и практичными. Каждая из этих новинок имела что-то уникальное и инновационное , некоторые производители даже запускали их в серийное производство и устанавливали доступную для покупателей цену. Но почему же основным средством передвижения до сих пор остаются автомобили с бензиновыми двигателями?

Все потому, на то время не существовало электромобиля, который бы смог совершить революцию. Все электрокары расхваливались в узких кругах гиков, но не находили признания среди простых людей. Были семейные модели, которые могли экономить средства, но не было суперкара, тетради на обложке с которым сметали бы с полок школьники и о котором мальчики мечтали с ранних лет. В мире электромобилей не было своего «Айфона» и своего Стива Джобса, который бы его разработал. Не было электрокара с «вау!» эффектом.

Начало

Сейчас же такой автомобиль-революционер существует. Знакомьтесь - Tesla Model S . Менять мир к лучшему этот полноразмерный пятидверный лифтбек класса люкс начал с 2012 года. Идейным отцом проекта является американский инженер и предприниматель Илон Маск, который еще в 2009 году представил прототип Model S всему миру на Франкфуртском автосалоне. Сегодня уже мало кто вспоминает, сколько проблем предшествовало этой презентации, компания Tesla Motors была даже на грани банкротства. Однако Маск верил в идею серийного электромобиля до конца, вложил все свои сбережения и смог найти инвесторов. И впоследствии его усилия дали свои плоды: первая ограниченная партия в 1 000 экземпляров стоимостью около $100 тысяч каждый разошлась как горячие пирожки!

Такой фантастический успех неудивителен, поскольку до сих пор «Тесла» остается электромобилем с наибольшим запасом пробега без подзарядки, разгоняется до 100 км/ч за, на минуточку, 2,8 секунды!!! (имеется ввиду топовая версия Modes S P85D с режимом Ludicrous), а также имеет в США титул самого безопасного транспортного средства на дорогах. Реальность превзошла все ожидания. Впервые за 10 лет существования Tesla Motors получила прибыль, погасила все долги и увеличила объем производства Model S. К этому времени по всему миру ездит около 50 000 этих электрокаров.

По факту лучший электромобиль в мире, Tesla Model S является сегодня лидером не только в категории электрических авто. Так, например, по итогам 2013 года в США, модель стала самым продаваемым люксовым седаном, опередив, в частности, BMW 7-й серии и Mercedes-Benz S-класса, а в Норвегии, благодаря господдержке электромобилей, Model S вообще стала самым продаваемым авто по итогам сентября 2013, опередив при этом такого не слабого конкурента, как Volkswagen Golf .

Какой электродвигатель у Tesla Model S

Под капотом у «Теслы» располагается не двигатель, а багажник небольшого размера. По законам автомобильной логики, если багажник сконструирован спереди, то сзади - двигатель. Но здесь не все так просто, поскольку в задней части авто тоже отдел для багажа, но уже значительно больше, пространства хватает даже для установки двух дополнительных детских кресел или размещения велосипеда.

Заднеприводные модели

Электродвигатель конструкторы разместили над задней осью, и визуально его "не потрогать». Трехфазная асинхронная электрическая машина с четырьмя полюсами подключена непосредственно к заднему приводу без коробки переключения передач и трансмиссии как таковой. В топовой комплектации ее мощность составляет 310 кВт или 416 лошадиных сил, а максимальный крутящий момент, который может она развить, достигает 600 Н · м. При этом двигатель способен выдавать до 16 000 об/мин, что позволяет автомобилю передвигаться со скоростью до 210 км/ч. Также во время рекуперации энергии он может работать как генератор, когда водитель отпускает педаль акселератора и автомобиль начинает снижать скорость движения. Вообще заднеприводные Model S изначально выпускались в трех комплектациях: 60, 85 и P85. В зависимости от этого мощность двигателя составляла соответственно 225 кВт, 280 кВт, а в версии Performance целых 310 кВт. С апреля 2015 компания прекратила выпуск Model S 60 и заменила базовую модель на Model S 70D.

Полноприводные модели

В октябре 2014 года компания Tesla анонсировала модификации S-ки с полным приводом, которые содержат по два электродвигателя каждая. Один, как и раньше, остался на заднем мосту, другой же приводит в движение отдельно передние колеса. Таким образом в модели P85 появился еще один мотор на передней оси, мощность которого 221 л. с., что в сумме с задним, более мощным двигателем составляет почти 700 л. с. Теперь разгон до 100 км/ч стал возможным за 3,2 с, что быстрее, чем в Porsche Panamera Turbo S! Также возросла максимальная скорость, которая теперь составляет 249,5 км/ч. Другим версиям установили на передние колеса по 188 «лошадок». Все полноприводные модификации получили суффикс «D» и стали именоваться 70D, 85D и P85D. Интересно, что распределение нагрузки на оси был почти равномерным и в ранних моделях, но в новой P85D он стал близким к идеальному - 50:50.

На этом инженеры Тesla не остановились и в июле 2015 компания представила новые версии Model S – 70, 90, 90D и P90D вместе с опциональным "ludicrous mode" («нелепый» режим), позволяющим разогнаться до «сотни» за 2,8 секунды. Теперь P90D сочетает в себе 259 лошадиные силы (193 кВт) передней оси и 503 лошадиные силы (375 кВт) задней оси, дающих общую мощность 762 л.с. (568 кВт). Проапгрейдить авто и установить режим «ludicrous» можно за 10000 долларов.

Какой аккумулятор у электромобиля Tesla

Все Model S далеко не из самых легких, вес каждого авто около 2 тонн. Хотя элементы кузова изготовлены из легкого алюминия, но общую массу автомобиля значительно увеличивает аккумуляторная батарея. Она размещена под полом и включает в себя более 7000 современных литий-ионных элементов производства японской Panasonic. В зависимости от комплектации ее мощность может достигать 70 кВт*ч или 85 кВт*ч. Собственно, отсюда и пошли названия ряда модификаций «Теслы». Менее мощный рассчитан, чтобы преодолеть расстояние в 335 км на одной полной зарядке, на другом можно проехать 426 км.

Размещение такой тяжелой батареи внизу между колесной базой существенно смещает центр тяжести, что делает автомобиль более устойчивым на поворотах. Отдельные литий-ионные модули, размещаются в батарее не равномерно, а уплотняются ближе к середине, что положительно влияет на инерцию S-ки относительно вертикальной оси. Также в батарее есть и другая полезная функция: она укрепляет конструкцию кузова и придает жесткость его каркасу. Разработчики учли печальный опыт нескольких машин из первой партии, когда из-за наезда днищем на жесткие предметы был пробит «бензобак», и установили для защиты батареи от повреждений специальную титановую пластину.

В июле 2015 Tesla Motors представила апгрейд запаса хода, увеличивающим ёмкость аккумуляторов до 90 кВт*ч, которым можно оснастить (за дополнительную плату) топовые версии 85D и P85D. Разработчики объяснили возможность такого улучшения эффективности «оптимизацией химических процессов в ячейке». Новые батареи увеличили протяженность пробега на одном заряде на 6%.

Зарядные станции Tesla Supercharger

Станции быстрой зарядки позволяют пополнять запасы энергии электромобилей Tesla при мощности до 120 кВт, в обход базового 10-киловаттного (или дополнительного - 20 кВт) инвертора. По словам разработчиков Tesla, Supercharger заряжают батарей электромобилей во много раз быстрее, чем зарядные станции других типов. Результат такой экспресс зарядки весьма впечатляет - 50% заряда аккумулятора Model S пополняется всего за 20 минут, и 80% - за 40 минут. 75-минутная полная «заправка» может показаться несколько продолжительной, однако в Тесла уверяют, что остановки при длительных путешествиях обычное дело: люди частенько разминаются, перекусывают или принимают душ.

Сеть Superchargers, которые питаются от солнечных батарей, постоянно растет: на конец 2015 года в Северной Америке их уже 220, а в Европе - 180. Руководство компании заявляет, что заправка для владельцев авто Тесла будет всегда совершенно бесплатной. Так стимулируется использование электромобилей во всем мире. И, естественно, Superchargers работают 24 часа в сутки и 7 дней в неделю.

Как управлять автомобилем Tesla

Водителю сначала будет непривычно за рулем и придется привыкать к особенностям электромобиля. Но эти особенности отличаются в лучшую сторону, поэтому и привыкать можно с удовольствием. Например, Model S не заводится, а включается нажатием на педаль тормоза. Но это не первое, что привлекает внимание, потому что сначала в глаза бросается большой 17-дюймовый дисплей, расположенный справа от руля.

В компании Tesla Motors решили минимизировать количество кнопок и механических элементов управления, взамен поместили все это на один сенсорный экран. Только на руле и рулевой колонке оставили несколько механических кнопок, переключатели поворотов и стеклоочистителей, а также ручку переднего и заднего хода. За рулем расположен еще один экран, на который выводится информация о заряде и температуре батареи, остаток пробега, скорость движения и т.д. Внизу только две педали, в большинстве случаев пользоваться приходится только одной из них - акселератором. Тормоза нужны только в экстренных случаях, так как при отпускании педали газа автомобиль «тормозит двигателем», а сцепление вообще отсутствует.

В отличие от других электромобилей, Tesla Model S подойдет людям, которые собираются передвигаться не только по городу, но и на более дальние путешествия. Также по душе она придется фанатам гаджетов, поскольку контролировать состояние машины можно со своего смартфона. Благодаря своему роскошному дизайну и дорогой стоимости машина пользуется спросом у бизнесменов и людей с высоким доходом, в то же время, за счет высокого уровня безопасности и возможности установки двух дополнительных сидений для детей семейные поездки также будут максимально комфортными. И, наконец, Tesla Model S - это выбор прогрессивных людей, которым не безразличны вопросы окружающей среды и которые готовы к скорейшему переходу к транспорту будущего .

Видео: Tesla Model S P85 тест-драйв

Таблица технических характеристик Tesla Model S

Краткое описание Технология BEV (Battery Electric vehicle)
Прямые поставки в Украину нет
Цена в салонах $75 000 - $105 000 *
Мощность /362/416/762 л.с.*
Тип топлива Электричество
Время зарядки Зарядка от бытовой сети переменного тока:
110В за 1 час восполняет 8 км пути
220В за 1 час восполняет 50 км пути

Зарядка на станциях быстрой зарядки Supercharger за 1 час 500 км пути.

Запас хода 225/320/426/426 км * (в зависимости от ёмкости аккумулятора)
Кузов Тип Седан
Конструкция Несущая
Класс Спорт седан
Количество мест 5
Количество дверей 4
Размеры, масса и объемы Длина мм 4976
Ширина мм 1963
Высота мм 1435
Колесная база мм 2959
Колея колес передних/задних мм 1661 /1699
Клиренс мм 154.9
Снаряженная масса кг 2108 *
Объем багажника литр 900
Эксплуатационные характеристики Максимальная скорость км/ч 225/249*
Разгон 0 -100 км/ч с 5,2/4,4/3,2/2,8*
Запас хода км до 426*
Двигатель Тип Асинхронный (индукционного типа) трехфазный электродвигатель переменного тока
Тип топлива электричество
Модель Используется электродвигатель собственного производства
Макс. мощность 259/315/362/503 л.с.*
Макс. крутящий момент 420/430/440/600 Нм*
Тяговая аккумуляторная батарея Тип литий-ионная
Ёмкость кВт-ч 70/85/90*
Трансмиссия Тип привода Задний/Полноприводный
Коробка передач Одноступенчатый редуктор
Постоянное передаточное число 9.73
Ходовая часть Рулевое управление реечное с электроусилителем
Подвеска передняя / задняя зависимая/ независимая
Тормозная система вентилируемые тормозные диски используются в сочетании с электронным приводом стояночного тормоза и системой рекуперативного торможения
Шины -Goodyear Eagle RS-A2 245/45R19 (стандартные 19-дюймовые)
-Continental Extreme Contact DW 245/35R21 (дополнительные 21-дюймовые)
Безопасность Количество подушек безопасности 8
Подушки безопасности Боковые подушки безопасности водителя и переднего пассажира, боковые шторки безопасности для первого и второго ряда сидений, фронтальные подушки безопасности для головы и колен водителя и переднего пассажира
Вспомогательные системы торможения Антиблокировочная система тормозов (ABS)
Другое Сенсор отключения батареи при столкновении, иммобилайзер, ремни безопасности, автопилот и т.д.

Пятидверный электромобиль премиум-класса Tesla Model S справил официальную премьеру осенью 2009 года на автомобильных смотринах во Франкфурте, правда, лишь в качестве прототипа, но впервые был продемонстрирован общественности еще в марте на пресс-конференции в Лос-Анджелесе. Серийное производство машины стартовало в первой половине 2012 года, а уже в июне начались ее отгрузки первым клиентам.

В 2014 году американцы модернизировали «эску», добавив несколько полноприводных версий, увеличив мощность моторов и внедрив новый интерфейс мультимедийного комплекса.

Выглядит Tesla Model S красиво и выразительно, а в потоке угадывается безошибочно, хотя с некоторых ракурсов она напоминает другие машины. Нарочито агрессивный передок со злобным взглядом ксеноновой оптики, длинный и стремительный силуэт с активно ниспадающей линией крыши, «мускулистыми» арками колес и выдвигающимися дверными ручками, мощная корма с красивыми светодиодными фонарями и массивным бампером – внешне электрокар полностью соответствует своему премиальному статусу. И при этом он ничем не уступает именитым конкурентам с обычными двигателями.

Очередное обновление электрический лифтбэк пережил в апреле 2016 года, и на этот раз основные изменения пришлись на оформление экстерьера – внешность пятидверки подретушировали в духе кроссовера Model X и трехобъемника Model 3.
Ощутимей всего преобразился передок машины – с него исчезла имитирующая радиаторную решетку большая черная заглушка, уступившая место тонкой планке с логотипом марки, а вместо би-ксеноновой оптики появилась светодиодная. С других же ракурсов «американец» полностью сохранил свои очертания.

По своим габаритным размерам «эска» относится к европейскому классу «E»: её длина укладывается в 4976 мм, ширина – в 1963 мм, высота – в 1435 мм, а колесная база – в 2959 мм. Дорожный просвет электромобиля составляет 152 мм, однако при установке опциональной пневмоподвески его величина варьируется от 119 до 192 мм.

Внутреннее убранство Tesla Model S вызывает настоящий восторг, ведь построено оно вокруг 17-дюймовой интерактивной консоли, обосновавшейся по центру передней панели, которая заведует всеми основными функциями автомобиля. Данное решение позволило отказаться от россыпи кнопок, оставив на торпедо лишь пару классических тумблеров – открывание бардачка и включение «аварийки». Приборка представлена еще одним цветным экраном, только менее крупным, а наиболее приземленно выглядит классический многофункциональный «штурвал», по-спортивному усеченный в нижней части. Интерьер электрокара скроен премиальными материалами, объединяющими кожу, алюминий и дерево.

Спереди в калифорнийской «эске» установлены удобные и податливые кресла с отлично развитым боковым подпором и достаточным набором электрорегулировок. Задние места в машине менее гостеприимные – у дивана плоская подушка и бесформенные спинки, а покатая крыша давит на головы рослых пассажиров.

В результате рестайлинга 2016 года салон машины в плане дизайна остался прежним, однако обзавелся новыми материалами и вариантами отделки.

С практичностью у Tesla Model S полный порядок: при пятиместной компоновке объем грузового отсека составляет 745 литров, а со сложенными спинками сидений второго ряда – 1645 литров.

Дополнительный багажник есть и в передней части электромобиля, но его вместительность куда скромнее – 150 литров.

Технические характеристики. «Начинка» является главной «изюминкой» «эски», ведь в движение машина приводится асинхронным (индукционного типа) трехфазным электромотором (на полноприводных версиях их несколько) переменного тока, отдача которого зависит от модификации, сочетающимся с одноступенчатым редуктором и комплектом литий-ионных аккумуляторов в количестве от 5040 до 7104 штук.

  • 60 установлен 306-сильный электрический двигатель, выдающий 430 Нм крутящего момента во всем диапазоне, который обеспечивает автомобилю разгон до первой «сотни» по истечению 5.5 секунд и 210 км/ч максимальной скорости. Батареи емкостью 60 кВт/час позволяют ему преодолевать на одной зарядке до 375 км пути.
  • Для модификации с индексом «75 » предусмотрена силовая установка мощностью 320 «лошадок», отдача которой насчитывает 440 Нм пиковой тяги, питающаяся от аккумуляторов на 75 кВт/час. На стартовое ускорение до 100 км/ч у такого электрокара уходит 5.5 секунды, его «максимум» ограничен на уровне 230 км/ч, а «дальнобойность» немногим переваливает за 400 км.
  • Под кузовом Tesla Model S 60D скрывается уже два электромотора суммарной мощностью 328 лошадиных сил (525 Нм вращающего момента), делающих лифтбек полноприводным. Данная версия разменивает первую «сотню» через 5.2 секунды, пиково разгоняясь до 210 км/ч, а на «одном баке» способна покрыть как минимум 351 км благодаря батареям объемом 60 кВт/час.
  • «Эска» с маркировкой «75D » имеет в своем арсенале пару электродвигателей, совместно генерирующих 333 «кобылы» и 525 Нм крутящей тяги. Такие характеристики делают «зеленую» машину настоящим спорткаром: до первой «сотни» она «выстреливает» спустя 5.2 секунды, а набор скорости прекращает лишь при достижении 230 км/ч. Полностью заряженные аккумуляторы емкостью 75 кВт/час обеспечивают пятидверке приличную дальность хода – 417 км.
  • Следующий по иерархии вариант Tesla Model S 90D оснащен двумя электрическими агрегатами, совокупный потенциал которых насчитывает 422 «скакуна» и 660 Нм доступного момента. На покорение второй «сотни» электромобиль устремляется через 4.4 секунды и максимально набирает 249 км/ч. Благодаря батареям на 90 кВт/час, машина преодолевает на «полном баке» 473 км пути.
  • Версия с названием «100D » приводится в движение передним и задними электромоторами, которые вкупе выдают 512 «коней» и 967 Нм крутящего потенциала. Первая «сотня» такой пятидверке покоряется за 3.3 секунды, а «максималка» не превышает 250 км/ч. Батареи на 100 кВт/час обеспечивают ей «дальнобойность» в 430 км.
  • «Топовое» решение Tesla Model S P100D оснащается двумя силовыми установками: задний электромотор развивает 503 лошадиных силы, а передний – 259 «кобыл» (суммарная отдача – 762 «коня» и 967 Нм пиковой тяги). Такие характеристики «катапультируют» машину с места до 100 км/ч по истечению 2.5 секунд и позволяют ей разгоняться до 250 км/ч. На полностью заряженных батареях емкостью 100 кВт/ч электрокар покрывает порядка 613 км пробега.

Для предельной зарядки литий-ионных аккумуляторов Tesla Model S от обычной бытовой сети 220В требуется больше 15 часов в зависимости от модификации. При использовании разъема стандарта NEMA 14-50 данный цикл сокращается до 6-8 часов, а на специальных станциях Supercharger (в России таких не найдешь) – до 75 минут.

Калифорнийский электромобиль построен вокруг плоского хранилища из «крылатого металла» для элементов питания, к которому присоединены алюминиевые подрамники и кузов. В снаряженном состоянии «эска» весит от 1961 до 2239 кг, а масса у нее распределяется по осям в соотношении 48:52 (у полноприводной P85D – 50:50).

«По кругу» на машине установлено независимое шасси: спереди – двойные поперечные рычаги, сзади – многорычажная компоновка. Опционально для нее доступна пневматическая подвеска.
На всех колесах Model S применены дисковые тормоза (диаметром 355 мм на передних и 365 мм на задних) с четырехпоршневыми суппортами Brembo и ABS, а ее рулевая система выражена реечным механизмом с электрическим усилителем.

Комплектации и цены. В России Tesla Model S официально не продается, однако на «вторичном рынке» приобрести такой электрокар можно по цене от 4,5 миллионов рублей. В Германии машину можно приобрести по цене от 57 930 евро (~3.68 млн. рублей по текущему курсу), однако с учетом налогов ее стоимость возрастает до 69 020 евро (~4.39 млн. рублей).
Стандартно «американец» укомплектован восемью подушками безопасности, ксеноновыми фарами, 17-дюймовым тачскрином мультимедийной системы, цифровой панелью приборов, электропакетом, ABS, ESP, двухзонной климатической установкой, заводской аудиосистемой, светодиодными задними фонарями и многим другим оборудованием.

Tesla Model S — новатор в области электромобилестроения, способный целиком ликвидировать бензиновые моторы и вызвать у человека стремление перемещаться на экологически безопасных транспортных средствах. Тесла стал первым авто, сумевшим привести доказательства в пользу электромобиля и заставившим усомниться в незаменимости бензинового двигателя, которому, как оказалось, пора занять своё место в музее.

История

Автомобиль Tesla Model S первый раз увидел мир в 2012 году, будучи выпущенным тогда ещё совсем неизвестной североамериканской фирмой Tesla Motors. Концепт этого электромобиля был показан в 2009 г. в Германии в автомобильном салоне Франкфурта и уже тогда привлек к себе всеобщее внимание.


Особенности авт омобиля

Авто движется благодаря мощному электродвигателю. Стоит отметить, что технические свойства и характеристики автомобиля Тесла Модель S находятся далеко впереди множества пользующихся славой элитных скакунов. Отличные показатели, если брать во внимание то, что это седан семейного типа. Тем более, что его безопасность по результатам проводимых краш-тестов составила пять звёзд. Tesla Model S назвали наиболее безопасной машиной 2013-го.

Технические характеристики автомобиля:


Аккумулятор

Аккумулятор Tesla Model S содержит сверхсовременную литий-ионную батарею, ёмкостью от 60 кВт/ч до 85 кВт/ч. Такого заряда аккумулятора достаточно для преодоления 400 км. Таким образом, автомобиль составляет конкуренцию бензиновым авто класса S. Сама батарея содержит 16 узлов и расположена по днищу авто, обеспечивая безопасность. Данное размещение батареи смещает центр тяжести автомобиля на 45 см. При зарядке от бытовой сети 220В за час можно зарядить аккумулятор таким количеством заряда, которого хватит на 50 км. Чтобы зарядить аккумулятор полностью на специальной станции, потребуется полчаса. Нужно заметить, что батарея электромобиля содержит высочайшую уплотненность заряда (такие батареи применяют в ноутбуках). Источник долгого времени работы батареи заключается в применении специального устройства охлаждения жидкостью, способного также охладить и мотор.

Двигатель

Двигатель электромобиля снабжен новейшим трехфазовым мотором переменного тока. Движок создан на базе лаборатории фирмы Tesla Motors и его характеристики не имеют себе равных. Электродвигатель определен в задний мост авто. Мощность мотора составляет — 416 л. с., вращающий период — 600 Нм. Помимо этого, данное авто содержит прочную трансмиссию от фирмы Mercedes-Benz, что позволяет приводить двигатель авто в передвижение благодаря одностадийному редуктору.Абсолютная быстрота: 209 / 201 / 193 км/ч. Сила: 416 / 362 / 302 л. с. Разбег с 0 до 100 км/ч: 4.4 / 5.4 / 5.9 с.

Амортизация и ведущая часть

Амортизация и ведущая часть Tesla Model S пропитана передовыми новинками, это касается и ходовой автомобиля. Пневматические подвески позволят поднять или опустить автомобиль по желанию владельца. Реечное автоуправление рулём содержит электрический предусилитель. Жесткость управления регулируется бортовым компьютером. Имеются разные варианты жесткости управления, начиная от твёрдого для спорта, завершая мягким и удобным для любителей комфорта.


Тормозная концепция

Вытяжные тормозные диски и умное компьютерное управление стояночным тормозом составляют неплохую тормозную систему. Однако главной фишкой данного автомобиля является рекуперативная концепция торможения. Благодаря ей, машина способна замедлять ход при помощи мотора и изменять эту силу в электроэнергию, заряжая при этом батареи. Данная функция весьма комфортная и практичная. Чтобы активизировать рекуперативную концепцию замедления хода, водителю следует попросту медленно освободить рычаг ускорения, и автомобиль тут же примется притормаживать, перерабатывая силу трения в электроэнергию.

Безопасность

Нельзя не вспомнить о том, что электромобиль является весьма уютным и имеет высокий уровень безопасности. Tesla Model S имеет 8 подушек безопасности и специальную защитную систему, отключающую питание в случае аварии, которая контролируется компьютером. В общем, Tesla Model S имеет всё для вашего удобства и безопасности, а главное она является экологически чистой машиной.

Легендарный электрокар Илона Маска Tesla продан уже тиражом более 253000 экземпляров. Так какой же двигатель установлен на Tesla model S?

Какого типа двигатель на Тесла?

В автомобилях Model S используют асинхронный, четырехполюсный трехфазный двигатель, с жидкостной системой охлаждения. Электродвигатель Тесла является собственной разработкой компании и не имеет аналогов.

Двигатель Tesla Model S особенности и преимущества

Двигатель Tesla по габаритам не больше баскетбольного мяча, при этом обладает достаточно большой мощностью. Благодаря своей компактности удалось освободить переднею часть под вместительный багажник. Впрочем, вес Тесла модел С все равно достигает 2027 кг из-за большого веса батарей.

Двигатель Тесла принцип работы

Работает двигатель по принципу индукции. На катушку статора подается переменный ток и за счет магнитной индукции ротор приводится в движение.

Характеристики электродвигателя Тесла

Количество оборотов в минуту достигает 16 000 что не характерно для широко известных промышленных . И скорей близко к характеристикам высокотехнологичного стоматологического оборудования. Питается двигатель постоянным током 400 В. Инвертор преобразовывает его в переменный после чего пиковое значение достигает 1400 А.

Батарея Tesla

Батарея приводящая в движение двигатель обладает емкостью 60 – 85 кВт/ч, в зависимости от комплектации автомобиля. Такую емкость двигатель автомобиля разрядит за 330 – 425 км пути. Время зарядки батареи Tesla model S от бытовой сети - 15 часов. Компания Tesla предлагает свой вариант «суперзарядки» повышенной мощности которая ускорит этот процесс, всего за час до полного заряда.

Расположение электродвигателя

Количество и расположение электродвигателей зависит от комплектации автомобиля:

Single motor – один мощный электродвигатель, расположен в задней части трансмиссии

Dual motor – данная компоновка имеет полный привод. Два менее мощные привода расположены в передней и задней части трансмиссии.

Performance dual motor – спорт версия один большой двигатель в задней части автомобиля и маленький в передней.

В схеме электромобиля Теслы то, что принимают за приемник (черный ящик и два стержня за спиной у водителя) очевидно, является передатчиком. Используется два излучателя. Для получения трех нот. Тесла любил число 3. Кроме самого главного электродвигателя на автомобиле должен был присутствовать аккумулятор и стартер. При включении стартера вместе с Эл. Двигателем последний превращается в генератор, который питает два пульсирующих излучателя. ВЧ колебания излучателей поддерживают движение электродвигателя. Электродвигатель, таким образом, может одновременно являться и источником вращения колес автомобиля и генератором, питающим ВЧ излучатели.


Традиционное толкование рассматривает два стержня в качестве приемников каких-то космических лучей. Потом к ним цепляют какие то усилители (без питания!) чтобы они снабжали электричеством ЭЛ. Двигатель.
На самом деле ЭЛ. Двигатель не потребляет никакого тока.
В 20-е годы Маркони демонстрировал Муссолини и его жене как он на расстоянии несколько сотен метров может остановить движение транспортной колонны с помощью ВЧ ЭМ излучения.
Тот же самый эффект может быть использован с обратным знаком по отношению к электродвигателям.

Остановка вызывается диссонирующим излучением. Движение вызывается через резонирующее изучение. Очевидно, что эффект показанный Маркони работает с бензиновыми двигателями, поскольку у них есть электрогенератор, питающий свечи зажигания. Дизельные двигатели к подобному воздействию гораздо менее восприимчивы.


Движущей силой электродвигателя Теслы являлся не электрический ток, какого бы происхождения он не был, космического или какого-то еще, а резонансные высокочастотные колебания в среде, в эфире, вызывающие в электродвигателе движущую силу. Не на атомарном уровне, как у Дж. Кили а на уровне колебательного контура Эл. Двигателя.


Таким образом, можно изобразить следующую концептуальную схему работы Эл. Двигателя на электромобиле Теслы.


Аккумулятор запускает стартер. Эл. Двигатель приходит в движение и начинает работать как Эл. Генератор. Питание поступает на два независимых генератора высокочастотных ЭМ импульсов, настроенных по рассчитываемой формуле в резонанс с колебательным контуром Эл. Двигателя. Независимые колебания ЭМ генераторов настроены в гармоничном аккорде. Через несколько секунд после запуска стартер отключается, аккумулятор отключается. Высокочастотные ЭМ импульсы 2х генераторов развивают мощность в ЭЛ двигателе, который поет в резонансе с ВЧ генераторами, движет автомобиль, сам работает как электрогенератор, питающий ВЧ излучатели и никакого тока не потребляет.


Принцип работы электроавтомобиля Теслы

Согласно закону причинно следственных связей, если второе вытекает из первого, то и первое может вытекать из второго. В физике это принцип обратимости всех процессов.
Например, известны явления возникновения поляризации диэлектрика под действием механических напряжений. Это называется "прямой пьезоэлектрический эффект". В тоже время характерно и обратное - возникновения механических деформаций под действием электрического поля - "обратный пьезоэлектрический эффект". Прямой и обратный пьезоэлектрический эффекты наблюдаются в одних и тех же кристаллах - пьезоэлектриках.
Другой пример с термоэлементами. Если места контактов термоэлемента поддерживать при различных температурах, то в цепи возникает эдс (термоэдс), а при замыкании цепи - электрический ток. Если же через термоэлемент пропускать ток от постороннего источника, то на одном из его контактов происходит поглощение, а на другом - выделение тепла.


При обычной организации процесса, всякий электродвигатель потребляет ток и производит колебательные возмущения в окружающей среде, в эфире. То что называется индуктивность. Эти неизбежные возмущения среды обычно никак не используются. На них принято не обращать внимания, пока они никому не мешают. Между тем, следует понимать, что затраты энергии, питание, которое необходимо электродвигателю, как раз и вызываются тем, что электродвигатель работает не в абсолютной пустоте, а в среде и что на создание колебательных возмущений в среде как раз и расходуется подавляющая часть энергии питающей электродвигатель. Тех самых колебательных возмущений, на которые принято закрывать глаза.


Здесь заключается самый важный момент. Его необходимо подчеркнуть. Потери энергии при работе всякого электродвигателя связаны не с трением ротора, не с сопротивлением воздуха, а с потерями индуктивности, т.е. с "вязкостью" эфира по отношению к вращающимся электромагнитным частям двигателя. Неподвижный (относительно) эфир раскручивается электродвигателем, в нем возникают концентрические волны расходящиеся во все стороны. При работе электродвигателя эти потери составляют более 90% от всех его потерь.

СХЕМА ПОТЕРЬ ЭНЕРГИИ В ОБЫЧНОМ ЭЛЕКТРОДВИГАТЕЛЕ

Что сделал Тесла. Тесла понял, что электродвигатель, который неизбежно "гонит волны" в эфире не самое оптимальное устройство для этой цели. Понятно, что колебания в 30 Гц (1800 об./мин.) не сильно гармонируют с частотами, которые легко поддерживаются средой. 30 Гц. слишком низкая частота, для получения резонанса в такой среде как эфир.


Ввиду понимания Теслой изложенного, решение не представляло технической сложности. Он буквально на коленях, в номере гостиницы, собрал ВЧ генератор, устройство, которое "поднимает волну" в пространстве где работает электродвигатель. (Генератор ВЧ, а не низкочастотный просто, потому что низкочастотный не позволил бы создать стоячую волну через резонанс. Так как рассеивание волн опережало бы импульсы генератора). Частота ВЧ генератора должна была быть в кратном резонансе с частотой электродвигателя. Например если частота двигателя 30 Гц, то частота генератора может быть 30 МГц. Таким образом ВЧ генератор является как бы посредником между средой и двигателем.


ВЧ генератору, который в резонансе с эфиром, для нормальной работы требуется минимум энергии. Той энергии, которой его снабжает электродвигатель ему хватает с избытком. Электродвигатель же использует не энергию ВЧ генератора, а энергию резонансно накачанной стоячей волны в Эфире.

Естественно, что такой электродвигатель будет еще и охлаждаться. Двигатель требующий питания нагревается от сопротивления среды, которую ему приходится раскручивать. Здесь же среду раскручивать не надо. Наоборот сама среда раскручивает двигаель, из которого, как следствие, истекает ток. Никакого колдовства и мистики в этом нет. Всего лишь разуманя организация процесса.


Фаза всасывания и рассеивания. На фазе всасывания конденсаторы заряжаются. На фазе рассевания отдают в цепь, компенсируя потери. Таким образом, КПД не 90% а возможно 99%. Возможно ли увеличив количество конденсаторов получить больше чем 99%? По видимому нет. Мы не можем собрать на фазе рассеивания больше, чем двигатель отдает. Поэтому дело не в количестве емкостей, а в расчете оптимальной емкости.

Пьезоэлектричество (от греч. piezo - давлю и электричество), явления возникновения поляризации диэлектрика под действием механических напряжений (прямой пьезоэлектрический эффект) и возникновения механических деформаций под действием электрического поля (обратный пьезоэлектрический эффект). Прямой и обратный пьезоэлектрический эффекты наблюдаются в одних и тех же кристаллах - пьезоэлектриках.


Кварцевый генератор, маломощный генератор электрических колебаний высокой частоты, в котором роль резонансного контура играет кварцевый резонатор - пластинка, кольцо или брусок, вырезанные определённым образом из кристалла кварца. При деформации кварцевой пластинки на её поверхностях появляются электрические заряды, величина и знак которых зависят от величины и направления деформации. В свою очередь, появление на поверхности пластины электрических зарядов вызывает её механическую деформацию (см. Пьезоэлектричество). В результате этого механические колебания кварцевой пластины сопровождаются синхронными с ними колебаниями электрического заряда на её поверхности и наоборот. К. г. характеризуются высокой стабильностью частоты генерируемых колебаний: Dn/n, где Dn - отклонение (уход) частоты от её номинального значения n составляет для небольших промежутков времени 10-3-10-5%, что обусловлено высокой добротностью (104-105) кварцевого резонатора (добротность обычного колебательного контура ~ 102).


Частота колебаний К. г. (от нескольких кГц до нескольких десятков МГц) зависит от размеров кварцевого резонатора, упругости и пьезоэлектрической постоянных кварца, а также от того, как вырезан резонатор из кристалла. Например, для Х - среза кристалла кварца частота (в МГц) n=2,86/d, где d - толщина пластинки в мм.


Мощность К. г. не превышает нескольких десятков Вт. При более высокой мощности кварцевый резонатор разрушается под влиянием возникающих в нём механических напряжений.


К. г. с последующим преобразованием частоты колебаний (делением или умножением частоты) используются для измерения времени (кварцевые часы, квантовые часы) и в качестве стандартов частоты.

Естественная Анизотропия . - наиболее характерная особенность кристаллов. Именно потому, что скорости роста кристаллов в разных направлениях различны, кристаллы вырастают в виде правильных многогранников: шестиугольные призмы кварца, кубики каменной соли, восьмиугольные кристаллы алмаза, разнообразные, но всегда шестиугольные звёздочки снежинок Резонанс (франц. resonance, от лат. resono - звучу в ответ, откликаюсь), явление резкого возрастания амплитуды вынужденных колебаний в какой-либо колебательной системе, наступающее при приближении частоты периодического внешнего воздействия к некоторым значениям, определяемым свойствами самой системы. В простейших случаях Р. наступает при приближении частоты внешнего воздействия к одной из тех частот, с которыми происходят собственные колебания в системе, возникающие в результате начального толчка. Характер явления Р. существенно зависит от свойств колебательной системы.


Наиболее просто Р. протекает в тех случаях, когда периодическому воздействию подвергается система с параметрами, не зависящими от состояния самой системы (т. н. линейные системы). Типичные черты Р. можно выяснить, рассматривая случай гармонического воздействия на систему с одной степенью свободы: например, на массу m, подвешенную на пружине, находящуюся под действием гармонической силы F = F0 coswt, или электрическую цепь, состоящую из последовательно соединённых индуктивности L, ёмкости С, сопротивления R и источника электродвижущей силы Е, меняющейся по гармоническому закону. Для определенности в дальнейшем рассматривается первая из этих моделей, но всё сказанное ниже можно распространить и на вторую модель. Примем, что пружина подчиняется закону Гука (это предположение необходимо, чтобы система была линейна), т. е., что сила, действующая со стороны пружины на массу m, равна kx, где х - смещение массы от положения равновесия, k - коэффициент упругости (сила тяжести для простоты не принимается во внимание). Далее, пусть при движении масса испытывает со стороны окружающей среды сопротивление, пропорциональное её скорости и коэффициенту трения b, т. е. равное k (это необходимо, чтобы система оставалась линейной). Тогда уравнение движения массы m при наличии гармонической внешней силы F имеет вид: Если на линейную систему действует периодическое, но не гармоническое внешнее воздействие, то Р. наступит только тогда, когда во внешнем воздействии содержатся гармонические составляющие с частотой, близкой к собственной частоте системы. При этом для каждой отдельной составляющей явление будет протекать так же, как рассмотрено выше. А если этих гармонических составляющих с частотами, близкими к собственной частоте системы, будет несколько, то каждая из них будет вызывать резонансные явления, и общий эффект, согласно суперпозиции принципу, будет равен сумме эффектов от отдельных гармонических воздействий.


Если же во внешнем воздействии не содержится гармонических составляющих с частотами, близкими к собственной частоте системы, то Р. вообще не наступает. Т. о., линейная система отзывается, «резонирует» только на гармонические внешние воздействия. В электрических колебательных системах, состоящих из последовательно соединённых ёмкости С и индуктивности L, Р. состоит в том, что при приближении частот внешней эдс к собственной частоте колебательной системы, амплитуды эдс на катушке и напряжения на конденсаторе порознь оказываются гораздо больше амплитуды эдс, создаваемой источником, однако они равны по величине и противоположны по фазе. В случае воздействия гармонической эдс на цепь, состоящую из параллельно включенных ёмкости и индуктивности, имеет место особый случай Р. (антирезонанс). При приближении частоты внешней эдс к собственной частоте контура LC происходит не возрастание амплитуды вынужденных колебаний в контуре, а наоборот, резкое уменьшение амплитуды силы тока во внешней цепи, питающей контур. В электротехнике это явление называется Р. токов или параллельным Р. Это явление объясняется тем, что при частоте внешнего воздействия, близкой к собственной частоте контура, реактивные сопротивления обеих параллельных ветвей (ёмкостной и индуктивной) оказываются одинаковыми по величине и поэтому в обеих ветвях контура текут токи примерно одинаковой амплитуды, но почти противоположные по фазе. Вследствие этого амплитуда тока во внешней цепи (равного алгебраической сумме токов в отдельных ветвях) оказывается гораздо меньшей, чем амплитуды тока в отдельных ветвях, которые при параллельном Р. достигают наибольшей величины. Параллельный Р., так же как и последовательный Р., выражается тем резче, чем меньше активное сопротивление ветвей контура Р. Последовательный и параллельный Р. называются соответственно Р. напряжений и Р. токов. В линейной системе с двумя степенями свободы, в частности в двух связанных системах (например, в двух связанных электрических контурах), явление Р. сохраняет указанные выше основные черты. Однако, т. к. в системе с двумя степенями свободы собственные колебания могут происходить с двумя различными частотами (т. н. нормальные частоты, см. Нормальные колебания), то Р. наступает при совпадении частоты гармонического внешнего воздействия как с одной, так и с другой нормальной частотой системы. Поэтому, если нормальные частоты системы не очень близки друг к другу, то при плавном изменении частоты внешнего воздействия наблюдаются два максимума амплитуды вынужденных колебаний. Но если нормальные частоты системы близки друг к другу и затухание в системе достаточно велико, так что Р. на каждой из нормальных частот «тупой», то может случиться, что оба максимума сольются. В этом случае кривая Р. для системы с двумя степенями свободы теряет свой «двугорбый» характер и по внешнему виду лишь незначительно отличается от кривой Р. для линейного контура с одной степенью свободы.


Т. о., в системе с двумя степенями свободы форма кривой Р. зависит не только от затухания контура (как в случае системы с одной степенью свободы), но и от степени связи между контурами. Р. весьма часто наблюдается в природе и играет огромную роль в технике. Большинство сооружений и машин способны совершать собственные колебания, поэтому периодические внешние воздействия могут вызвать их Р.; например Р. моста под действием периодических толчков при прохождении поезда по стыкам рельсов, Р. фундамента сооружения или самой машины под действием не вполне уравновешенных вращающихся частей машин и т. д. Известны случаи, когда целые корабли входили в Р. при определённых числах оборотов гребного вала.


Во всех случаях Р. приводит к резкому увеличению амплитуды вынужденных колебаний всей конструкции и может привести даже к разрушению сооружения. Это вредная роль Р., и для устранения его подбирают свойства системы так, чтобы её нормальные частоты были далеки от возможных частот внешнего воздействия, либо используют в том или ином виде явление антирезонанса (применяют т. н. поглотители колебаний, или успокоители).


В др. случаях Р. играет положительную роль, например: в радиотехнике Р. - почти единственный метод, позволяющий отделить сигналы одной (нужной) радиостанции от сигналов всех остальных (мешающих) станций. Нужно подобрать емкость так, чтобы пошло смещение по фазе. Противофаза это аспект оппозиции. Совпадение - это аспект соединения. Соединения дает бросок, но и равное падение. Возможно, что максимальное содействие получается, когда работает аспект тригона. Это смещение по фазе не на 180%, а на 120%. Емкость должна быть рассчитана так, чтобы она давала смещение по фазе в 120%, возможно, что это даже лучше, чем соединение. Может именно поэтому, Тесла любил число 3. Потому что использовал тригональный резонанс. Тригональный резонанс, в отличие от резонанса соединения должен быть более мягкий (не деструктивный) и более стабильный, более живучий. Тригональный резонанс должен держать мощность и не идти в разнос. ВЧ резонанс создает накачку стоячей волны вокруг передатчика. Поддержание резонанса в эфире не требует большой мощности. В тоже время образовавшаяся стоячая волна может обладать огромной мощностью для совершения полезной работы. Этой мощности хватит и на поддержание работы генератора и на поддержание гораздо более мощных устройств