Клиноременные передачи. Расчёт диаметров шкивов ремённой передачи для поликлиновидного ремня. Онлайн калькулятор Ременная передача применение

Лекция 9 РЕМЕННЫЕ ПЕРЕДАЧИ

П л а н л е к ц и и

1. Общие сведения.

2. Классификация ременных передач.

3. Кинематические и геометрические зависимости в ременных передачах.

4. Динамические зависимости.

5. Условия работоспособности, кривые скольжения, критерии расчета.

6. Порядок расчета ременных передач.

7. Натяжные устройства.

8. Шкивы.

1. Общие сведения

Простейшая ременная передача (рис. 9.1) состоит из двух шкивов – ведущего и ведомого, закрепленных на валах и ремнях, охватывающих шкивы.

Нагрузка передается силами трения, возникающими между шкивами и ремнями, вследствие предварительного натяжения ремня.

Применяется ременная передача для привода от электродвигателя небольшой и средней мощности отдельных механизмов. Окружная скорость до 5 м/с для передач с ремнем не рекомендуется. Обычные ременные передачи работают со скоростью до 10 м/с, а быстроходные – до 60–100 м/с.

Достоинства ременных передач:

1. Простота конструкции и эксплуатации, относительно низкая стоимость.

2. Плавность и бесшумность работы, обусловленная эластичностью ремня.

3. Возможность передачи мощности на большие расстояния (клиновыми ремнями до 15 м) при скорости до 100 м/с.

4. Смягчения вибраций и толчков благодаря упругости ремня.

5. Возможность предохранения механизмов от перегрузок за счет упругой вытяжки ремня и проскальзывания ремня.

6. Пониженные требования к точности взаимного расположения осей

Недостатки ременных передач:

1. Непостоянство передаточного числа из-за упругого проскальзывания ремня, в зависимости от величины нагрузки.

2. Значительные габариты.

3. Значительные нагрузки на валы и опоры от натяжения ремня.

4. Незначительная долговечность ремней (1000–5000 ч) в быстроходных передачах.

5. Необходимость в постоянном контроле во время работы из-за возможного соскакивания, обрыва и вытяжки ремней.

6. Неприменимость во взрывоопасных помещениях.

7. Необходимость предохранения от попадания масла на ремень.

2. Классификация ременных передач

По конструктивной разновидности. Основные разновидности ременных передач показаны на рис. 9.2–9.4. Наибольшее распространение имеют открытые передачи (рис. 9.2, а ), перекрестные передачи (рис. 9.2, б ) применяют для изменения направления вращения ведомого шкива.

При использовании натяжного ролика (рис. 9.3) увеличивается угол обхвата ремня шкивов.

Полуперекрестные, или угловые (рис. 9.4), ременные передачи осуществляют движение между валами с пересекающимися осями.

Передаточное число открытых ременных передач – до 5, перекрестных – до 6, полуперекрестных – до 3, с натяжным роликом – до 10.

Ременные передачи позволяют передавать движение одного ведущего шкива (поз. 1 рис. 9.5) к нескольким ведомым (поз. 2 рис. 9.5).

По профилю ремня. В зависимости от профиля ремни делятся на плоские (рис. 9.6, а ), клиновые (рис. 9.6, б ), круглые (рис. 9.6, в ) и поликлиновые (рис. 9.6, г ). Круглые ремни предназначены для передач в приводах малых мощностей: швейных машин, бытовых приборов, настольных станков, радиоаппаратуры и т. д.

Разновидностью приводных ремней является зубчатый ремень, передающий движения за счет зацепления зубьев шкива и трения.

П л о с к и е р е м н и. Среди традиционных плоских ремней наибольшей тяговой способностью обладают кожаные ремни . Они могут работать со скоростью до 40–45 м/с на шкивах малых диаметров и имеют износоустойчивые кромки. Ремни хорошо работают в условиях переменных и ударных нагрузок. Размеры кожаных ремней стандартизированы по ГОСТ 18670–73. В то же время стоимость их велика, вследствие чего они имеют ограниченное применение.

Хлопчатобумажные ремни (ГОСТ 6982–75) применяются в быстроходных передачах при небольших мощностях. Они обеспечивают плавную работу и более дешевые. Такие ремни не применяются в условиях трения по кромкам и при работе в сырых помещениях или температурах выше 50 ºС. Для быстроходных передач используют шитые и тканые бесконечные ремни толщиной 1,5–2 мм.

Шерстяные ремни (ОСТ/НКТП 3157) применяются для передачи средних мощностей, отличаются высокими упругими свойствами и поэтому хорошо зарекомендовали себя при работе с большими ударными нагрузками. Они менее чувствительные к взаимодействию температуры, влажности, паров кислоты и щелочей.

Наибольшее применение имеют плоские прорезиненные ремни. Основная нагрузка воспринимается хлопчатобумажной тканью (бельтингом), резиновые прослойки обеспечивают работу ремня как единого целого. Ремни выпускаются с шириной 20–120 мм, обладают хорошей нагрузочной способностью и допускают работу при скоростях до 30 м/с. Основной недостаток таких ремней – высокая чувствительность к воздействию агрессивных сред. Прорезиненные ремни выполняют как бесконечными, так и конечными, которые потом соединяют склеиванием.

Прорезиненные ремни выпускают трех видов: нарезные – тип А, послойно завернутые – тип Б и спирально завернутые – тип В. Нарезные ремни, состоящие из нескольких (нарезанных) слоев, используют при работе с большими скоростями и малыми диаметрами шкивов. Ремни типа Б выпускают с резиновыми прокладками и без них и применяют при скорости до 20 м/с. Ремни типа В работают со скоростями не выше 15 м/с, их применяют на шкивах с ребордами и в перекрестных передачах.

Весьма перспективны ремни из синтетических материалов.

Пленочные, или синтетические, ремни (МРТУ 17-645–69) обладают высокой статической прочностью и долговечностью, выдерживают температуру 50 ºС

и относительную влажность до 95 %. Изготавливают пленочные ремни из тканей просвечивающего и гарнитурного переплетения для ширины до 75 мм

и с переплетением на основе двухуточной саржи для ширины до 50 мм с

пропиткой и облицовкой синтетическим материалом. Ремни из ткани просвечивающего переплетения более легкие. Пленочные ремни могут работать при скорости от 50 до 100 м/с.

На основе синтетических материалов разработаны многослойные ремни Exstramultus, которые не выдерживают действие кислот, фенола, но малочувствительны к маслам, охлаждающей жидкости, бензину, бензолу. Вследствие высокого предела упругости материала (сердечник из полиамида, наружный слой из хромовой кожи и поливинилхлорида) ремни не получают остаточных удлинений даже при перегрузке и не требуют подтягивания.

К л и н о в ы е р е м н и. Обычные клиновые ремни изготавливают двух конструкций: кордтканевые и кордшнуровые (рис. 9.7, а , б ) в которых передатчиком нагрузки служит корд из бельтинга, расположенный в нейтральном слое. Слой под кордом (слой сжатия) изготавливают из более твердой резины, а слой над кордом (слой растяжения) – из резины средней твердости. Оболочку клиновых ремней изготавливают из текстильной пряжи, искусственного шелка или нейлона с покрытиями из специальных материалов для повышения сопротивляемости разрушению.

Кордшнуровые ремни более гибкие и долговечные, а кордтканевые лучше переносят перегрузки, имеют большую поперечную жесткость и амортизирующую способность.

Замена бельтинга синтетическими волокнами (лавсан, вискоза, анид) позволяет повысить прочность ремней или уменьшить их ширину (узкие клиновые ремни).

В зависимости от отношения расчетной ширины b р к высоте h клиновые ремни изготавливают трех видов сечения: нормального (b p / h 1,4) ,

узкого (b p /h = 1,05–1,1) и широкого (b p /h = 2–4,5).

Ремни нормального сечения (ГОСТ 1284.1–80, ГОСТ 1284.2–80, ГОСТ 1284.3–80) выпускают семи сечений (0, А, Б, В, Г, Д, Е), отличающихся друг от друга размерами при геометрическом подобии и бесконечной длине. Профили Г, Д, Е в настоящее время все чаще заменяются поликлиновыми ремнями. Допускаемая скорость для профилей 0, А, Б, В – до 25 м/с (рис. 9.7, в ), для профилей Г, Д, Е – до 30 м/с.

Узкие клиновые ремни (РТМ 51-15-15-70) имеют сечения четырех размеров: У0, УА, УБ и УВ, которые по нагрузочной способности могут заменить все сечения нормальных клиновых ремней. Максимальная скорость для них – до 40 м/с.

Широкие клиновые ремни используют в основном в вариаторах. Благодаря повышенному сцеплению со шкивами, обусловленному эффектом клина, чем плоскоременных.

b0 b 0

Недостатки клиновых ремней : большие потери на трение и большие напряжения изгиба в ремне.

К клиновым ремням относят поликлиновые ремни (рис. 9.8), которые сочетают достоинства клиновых ремней (повышенное сцепление со шкивами) и плоских (гибкость). Такие ремни могут передавать большие мощности, хорошо работать на малых шкивах, допустимые скорости для них – до 40 м/с. Передачи с поликлиновыми ремнями отличаются меньшими габаритами.

Разработаны ремни трех сечений (рис. 9.8): К, Л, М, размеры которых регламентированы РТМ 38-40528-74. В американских и канадских стандартах предусмотрены еще два сечения (Н и J ) меньших размеров, в основном для бытовой техники и легкой промышленности.

Наряду с перечисленными видами клиновых ремней выпускают ремни с вогнутым нижним, а иногда и выпуклым верхним основаниями. Вогнутость увеличивает продольную гибкость ремня при его изгибе. Выпуклость превышает поперечную жесткость ремня и способствует сохранению трапециевидной формы ремня, предупреждая его деформацию. Чтобы сделать ремень достаточно гибким, по нижнему основанию, а иногда и по обоим, делают зубцы. Для уменьшения износа кромки ремней скашивают.

Двойной клиновый ремень, работающий верхней и нижней частями на различных шкивах, широко используют в сельхозмашиностроении, хотя его долговечность ниже, чем у обычного.

В некоторых случаях (при необходимости сложного монтажа) целесообразно использовать конечные клиновые ремни или ремни, составленные из отдельных элементов, но их долговечность меньше бесконечных.

З у б ч а т ы е и к р у г л ы е р е м н и. Зубчатые ремни сочетают преимущества плоских ремней и зубчатых зацеплений. Их изготавливают из маслостойких искусственных материалов, из резины на основе хлоропреновых каучуков, из вулкалана, которые армируют стальными или полиамидными проволочками.

Зубчатые ремни не имеют скольжения, требуют меньшего натяжения, создают меньшие нагрузки на валы и опоры, работают почти бесшумно со скоростью до 80 м/с. Однако расход мощности на деформацию зубьев у них больше, больший собственный вес, шкивы для них дороже, ремень нуждается в предохранении от осевого смещения (используют шкивы с ребордами). Зубчатые ремни выпускают шириной 5–380 мм, с модулем от 2–10 мм.

Из круглых ремней наиболее распространены хлопчатобумажные, капроновые, реже используют прорезиненные и кожаные.

3. Кинематические и геометрические зависимости

в ременных передачах

Мощности . Диапазон мощностей, передаваемых цепями, довольно широк – от 0,3 до 50 кВт. Можно использовать цепи и при больших мощностях, но при этом резко возрастают габариты.

Скорости. В ременных передачах верхний предел скоростей ограничивается ухудшением условий работы ремня в связи с ростом центробежных сил, что приводит к образованию воздушной подушки между шкивом и ремнем и уменьшает долговечность ремня.

Скорость ведущего шкива, м/с:

v 1 ω 1d 1 π d 1n 1 .

Значение скоростей для отдельных видов передач и материалов, из которых они выполняются, имеют определенный предел:

Обычные материалы. . . . . . . . . . . . . . . . . . . . . . . .

От 5 до 30 м /с

Специальные текстильные или прорезиненные.

До 50 м /с

Полиамидные, пленочные. . . . . . . . . . . . . . . . . . . .

До 100 м /с

Ремни клиновые:

типа 0, А, Б, В. . . . . . . . . . . . . . . . . . . . . . . . . . . .

До 25 м /с

типа Г, Д, Е. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

До 30 м /с

Из-за неизбежного скольжения окружные

скорости ведущего и

ведомого шкивов не равны, т. е. v 1 v 2 и v 1 v 2 ;

v 2 1 ξ v 1 ,

где ξ – коэффициент упругого или относительного скольжения; для плоских ремней ξ = 0,01–0,012; для клиновых ремней ξ = 0,015–0,02.

Передаточные отношения

ограничиваются габаритами передачи,

а также условием получения достаточного угла обхвата на малом шкиве:

i max = 10, i опт = 2,5–4,

d 1 ξ

Диаметры шкивов:

для плоских ремней

d 1 1100 1300

d 2 d 1 i 1 ξ ;

для клиновых ремней d 1 выбирают по таблицам в зависимости от типа ремня, а d 2 – как для плоских ремней;

для поликлиновых ремней

d1 a b T1 ,

где a и b – коэффициенты диаметра d 1 ; а = 65, b= 3 при Т 1 ≤ 25 Н м; а = 45,

b = 2 при Т 1 ≥ 26–90 Н м;

для зубчатых ремней d 1 выбирают по таблицам в зависимости от модуля зацепления. Модуль m вычисляют исходя из усталостной прочности зубьев ремня:

m k 3 1 p ,

где k – коэффициент, учитывающий форму зуба; k = 35 для ремней с трапецеидальной формой зубьев, k = 25 для ремней с полукруглой формой зубьев; Р 1 – номинальная мощность на ведущем валу, кВт; с р – коэффициент динамичности и режима работы, с р = 1,3–2,4.

Диаметр ведомого шкива

d2 = mZ2 .

Межосевое расстояние выбирают таким, чтобы можно было обеспечить необходимый угол обхвата на малом шкиве (рис. 9.9): для плоских ремней α > 150º, для клиновых – α > 120º.

Для плоских ремней

a min = 2(d 1 + d 2),

для клиновых ремней

a min = 0,5(d 1 + d 2 ) + h.

Максимальное межосевое расстояние a mаx ограничивается габаритными размерами и стоимостью передачи.

Малые размеры шкивов снижают долговечность передачи, так как

увеличиваются изгибные напряжения.

α 180 γ 180

d 1 d 2

57o .

Длина ремня

l 2 a

d 1 d 2

Для конечных ремней расчетная длина ремня согласуется с ГОСТом, а затем по окончательно принятой длине ремня уточняется величина межцентрового расстояния.

Уточненное значение межцентрового расстояния

2 l π d d

a 0, 25

2 l π d d

2 8 d

4. Динамические зависимости

Окружная сила рассчитывается по формуле

K P F t д 1 ,

где K д – коэффициент, учитывающий динамическую нагрузку и режим работы (определяется по таблице в зависимости от характера нагружения); K д 1; Р 1 – мощность на ведущем шкиве, кВт (Вт).

Усилие предварительного натяжения. Начальное натяжение ремня F 0

выбирается таким, чтобы ремень мог сохранять это натяжение достаточно длительное время, не вытягиваясь и обеспечивая достаточное сцепление между ремнем и шкивами:

F 0 A σ 0 ,

где А – площадь сечения ремня; σ0 – напряжение предварительного натяжения; σ0 = 1,8 МПа для плоских ремней без натяжного устройства; σ0 = 2,0 МПа для плоских ремней с автоматическим натяжением; σ0 = 1,2–1,5 МПа для клиновых ремней; σ0 = 3–4 МПа для полиамидных ремней.

Усилия в ветвях ремня. Величина усилий в ведущей F 1 и ведомой F 2 ветвях определяется из условия равновесия моментов на ведущем шкиве, которое записывается в виде

T 1 0,5 d 1 F 1 F 2 0,5 d 1F t .

1.Ременные передачи

1.1 Общие сведения

Ременные передачи – это передачи гибкой связью (рис. 14.1), состоящие из ведущего 1 и ведомого 2 шкивов и надетого на них ремня 3. В состав передачи могут также входить натяжные устройства и ограждения. Возможно применение нескольких ремней и нескольких ведомых шкивов. Основное назначение – передача механической энергии от двигателя передаточным и исполнительным механизмам, как правило, с понижением частоты вращения.

ременной передача шкив вал

1.1.1 Классификация передач

По принципу работы различаются передачи трением (большинство передач) и зацеплением (зубчатоременные). Передачи зубчатыми ремнями по своим свойствам существенно отличаются от передач трением и рассматриваются особо в 14.14.

Ремни передач трением по форме поперечного сечения разделяются на плоские, клиновые, поликлиновые, круглые, квадратные.

Условием работы ременных передач трением является наличие натяжения ремня, которое можно осуществить следующими способами:

    предварительным упругим растяжением ремня;

    перемещением одного из шкивов относительно другого;

    натяжным роликом;

    автоматическим устройством, обеспечивающим регулирование натяжения в зависимости от передаваемой нагрузки.

При первом способе натяжение назначается по наибольшей нагрузке с запасом на вытяжку ремня, при втором и третьем способах запас на вытяжку выбирают меньше, при четвертом - натяжение изменяется автоматически в зависимости от нагрузки, что обеспечивает наилучшие условия для работы ремня.

Клиновые, поликлиновые, зубчатые и быстроходные плоские изготовляют бесконечными замкнутыми. Плоские ремни преимущественно выпускают конечными в виде длинных лент. Концы таких ремней склеивают, сшивают или соединяют металлическими скобами. Места соединения ремней вызывают динамические нагрузки, что ограничивает скорость ремня. Разрушение этих ремней происходит, как правило, по месту соединения.

1.1.2 Схемы ременных передач

Передачи с одним ведомым валом

с параллельными осями валов

с непараллельными осями валов

с одинаковым направлением вращения

с обратным направлением вращения

Передачи с несколькими ведомыми валами

Примечания: 1. Схемы 1, 3, 5 - передачи с двумя шкивами; схемы 2, 4, 6, 7, 8, 9 - передачи с натяжными или направляющими роликами. 2. Обозначения: вщ - ведущий шкив; вм - ведомый шкив: HP - натяжной или направляющий ролик

1.2 Достоинства и недостатки

Достоинства

Недостатки

Возможность передачи крутящим моментом между валами, расположенными на относительно большом расстоянии

Громоздкость

Плавность и бесшумность работы передачи

Непостоянство передаточного числа из-за проскальзывания ремня

Предельность нагрузки, самопредохранение от перегрузки. Способность ремня передать определенную нагрузку, свыше которой происходит буксование (скольжение) ремня по шкиву

Повышение нагрузки на валы и подшипники

Возможность работы с высокими скоростями

Невысокий КПД (0,92.. .0,94)

Простота устройства, небольшая стоимость, легкость технического обслуживания

Необходимость защиты ремней от попадания

Малая стоимость

Необходимость защиты ремней от попадания воды

Электризация ремня и поэтому недопустимость работы во взрывоопасных помещениях

Ременные передачи в основном применяются для передачи мощности до 50 кВт (зубчатыми до 200, поликлиновыми до 1000 кВт)

1.3 Область применения

Ремни должны обладать достаточно высокой прочностью при действии переменных нагрузок, иметь высокий коэффициент трения при движении по шкиву и высокую износостойкость. Ременные передачи применяются для привода агрегатов от электродвигателей малой и средней мощности; для привода от маломощных двигателей внутреннего сгорания. Наибольшее распространение в машиностроении находят клиноременные передачи (в станках, автотранспортных двигателях и т. п.). Эти передачи широко используют при малых межосевых расстояниях и вертикальных осях шкивов, а также при передаче вращения несколькими шкивами. При необходимости обеспечения ременной передачи постоянного передаточного числа и хорошей тяговой способности рекомендуется устанавливать зубчатые ремни. При этом не требуется большего начального натяжения ремней; опоры могут быть неподвижными. Плоскоременные передачи применяются как простейшие, с минимальными напряжениями изгиба. Плоские ремни имеют прямоугольное сечение, применяются в машинах, которые должны быть устойчивы к вибрациям (например, высокоточные станки). Плоскоременные передачи в настоящее время применяют сравнительно редко (они вытесняются клиноременными). Теоретически тяговая способность клинового ремня при том же усилии натяжения в 3 раза больше, чем у плоского. Однако относительная прочность клинового ремня по сравнению с плоским несколько меньше (в нем меньше слоев армирующей ткани), поэтому практически тяговая способность клинового ремня приблизительно в два раза выше, чем у плоского. Это свидетельство в пользу клиновых ремней послужило основанием для их широкого распространения, в особенности в последнее время. Клиновые ремни могут передавать вращение на несколько валов одновременно, допускают umax = 8 – 10 без натяжного ролика.

Круглоременные передачи (как силовые) в машиностроении не применяются. Их используют в основном для маломощных устройств в приборостроении и бытовых механизмах (магнитофоны, радиолы, швейные машины и т. д.).

1.4 Кинематика ременных передач

Окружные скорости (м/с) на шкивах:

и

где d1 и d2 – диаметры ведущего и ведомого шкивов, мм; n1 и n2 – частоты вращения шкивов, мин-1.

Окружная скорость на ведомом шкиве v2 меньше скорости на ведущем v1 вследствие скольжения:

Передаточное отношение:

Обычно упругое скольжение находится в пределах 0,01…0,02 и растет с увеличением нагрузки.

1.4.1Силы и напряжения в ремне

Окружная сила на шкивах (Н):

где T1 – вращающий момент, Н м, на ведущем шкиве диаметром d1, мм; P1 – мощность на ведущем шкиве, кВт.

С другой стороны, Ft = F1 - F2, где F1 и F2 - силы натяжения ведущей и ведомой ветвей ремня под нагрузкой. Сумма натяжений ветвей при передаче полезной нагрузки не меняется по сравнению с начальной: F1 + F2 = 2F0. Решая систему двух уравнений, получаем:

F1 = F0 + Ft/2, F2 = F0 – Ft/2

Сила начального натяжения ремня F0 должна обеспечивать передачу полезной нагрузки за счет сил трения между ремнем и шкивом. При этом натяжение должно сохраняться долгое время при удовлетворительной долговечности ремня. С ростом силы несущая способность ременной передачи возрастает, однако срок службы уменьшается.

Соотношение сил натяжения ведущей и ведомой ветвей ремня без учета центробежных сил определяют по уравнению Эйлера, выведенному им для нерастяжимой нити, скользящей по цилиндру. Записываем условия равновесия по осям x и y элемента ремня с центральным углом da. Принимаем, что

и , тогда,

где dFn – нормальная сила реакции, действующая на элемент ремня от шкива; f –коэффициент трения ремня по шкиву. Из имеем:

Подставим значение в пренебрегая членом в связи с его малостью. Тогда

и

После потенцирования имеем:

где e – основание натурального логарифма, b - угол, на котором происходит упругое скольжение, при номинальной нагрузке .

Полученная зависимость показывает, что отношение F1/F2 сильно зависит от коэффициента трения ремня на шкиве и угла . Но эти величины являются случайными, в условиях эксплуатации могут принимать весьма различные значения из числа возможных, поэтому силы натяжения ветвей в особых случаях уточняют экспериментально.

Обозначая и учитывая, что , имеем

и

Ремни обычно неоднородны по сечению. Условно их рассчитывают по номинальным (средним) напряжениям, относя силы ко всей площади поперечного сечения ремня и принимая справедливым закон Гука.

Нормальное напряжение от окружной силы Ft:

где A – площадь сечения ремня, мм2.

Нормальное напряжение от предварительного натяжения ремня

Нормальные напряжения в ведущей и ведомой ветвях:

Центробежная сила вызывает нормальные напряжения в ремне, как во вращающемся кольце:

где s ц – нормальные напряжения от центробежной силы в ремне, МПа; v1 – скорость ремня, м/с; - плотность материала ремня, кг/м3.

При изгибе ремня на шкиве диаметром d относительное удлинение наружных волокон ремня как изогнутого бруса равно 2y/d, где y – расстояние от нейтральной линии в нормальном сечении ремня до наиболее удаленных от него растянутых волокон. Обычно толщина ремня . Наибольшие напряжения изгиба возникают на малом шкиве и равны:

Максимальные суммарные напряжения возникают на дуге сцепления ремня с малым (ведущим) шкивом:

Эти напряжения используют в расчетах ремня на долговечность, так как при работе передачи в ремне возникают значительные циклические напряжения изгиба и в меньшей мере циклические напряжения растяжения из-за разности натяжения ведущей и ведомой ветвей ремня.

1.5 Геометрия

Основные геометрические параметры и - диаметры ведущего и ведомого шкивов; а - межосевое расстояние; В - ширина шкива; L - длина ремня; - угол обхвата; - угол между ветвями ремня (рис.6).

Рис. Основные геометрические параметры ременных передач

Углы и , соответствующие дугам, по которым происходит касание ремня и обода шкива, называют углами обхвата. Перечисленные геометрические параметры являются общими для всех типов ременных передач.

1.5.1 Расчет геометрических параметров

1. Межосевое расстояние

где L - расчетная длина ремня; D1 и D2 - диаметры ведущего и ведомого шкивов.

Для нормальной работы плоскоременной передачи должно соблюдаться условие:

Ременная передача - это механизм переноса энергии с помощью приводного ремня, использующего силы трения или зацепления. Величина передаваемой нагрузки зависит от натяжения, угла обхвата и коэффициента трения. Ремни огибают шкивы, один из которых ведущий, а другой - ведомый.

Достоинства и недостатки

Ременная передача имеет следующие положительные свойства:

  • бесшумность и плавность в работе;
  • не требуется высокая точность изготовления;
  • проскальзывание при перегрузках и сглаживание вибраций;
  • нет необходимости в смазке;
  • небольшая стоимость;
  • возможность ручной замены передачи;
  • легкость монтажа;
  • отсутствие поломок привода при обрыве ремня.

Недостатки:

  • большие размеры шкивов;
  • нарушение передаточного отношения при проскальзывании ремня;
  • небольшая мощность.

В зависимости от вида ремень бывает плоским, клиновым, круглым и зубчатым. Этот элемент ременной передачи может объединять преимущества нескольких типов, например, поликлиновый.

Области использования

  1. Привод ременной передачи с плоским ремнем применяется на станках, пилорамах, генераторах, вентиляторах, а также везде, где требуется повышенная гибкость и допускается проскальзывание. Для высоких скоростей используются синтетические материалы, для меньших - кордтканевые или прорезиненные.
  2. Ременная передача с клиновыми ремнями применяется для сельскохозяйственной техники и автомобилей (вентиляторная), в тяжелонагруженных и высокоскоростных приводах (узкая и нормального сечения).
  3. Вариаторы нужны там, где скорость вращения промышленных машин регулируется бесступенчато.
  4. Приводы с зубчатыми ремнями обеспечивают наилучшие характеристики передач в промышленности и в бытовой технике, где требуются долговечность и надежность.
  5. Круглоременные применяются для малых мощностей.

Материалы

Материалы подбираются к условиям эксплуатации, где основное значение имеют нагрузка и тип. Они бывают следующими:

  • плоские - кожаные, прорезиненные со сшивкой, цельнотканевые из шерсти, хлопчатобумажные или синтетические;
  • клиновые - армирующий слой в центре с резиновой сердцевиной и тканая лента наружи;
  • зубчатые - несущий слой из металлического троса, полиамидного шнура или стекловолокна в основе из резины или пластмассы.

Поверхности ремней покрываются тканями с пропиткой для повышения износостойкости.

Плоские ремни ременных передач

Типы передач бывают следующими:

  1. Открытые - с параллельными осями и вращением шкивов в одном направлении.
  2. Шкивы со ступенями - можно изменить обороты ведомого вала, при этом у ведущего они постоянные.
  3. Перекрестные, когда оси параллельны, а вращение происходит в разных направлениях.
  4. Полуперекрестные - оси валов скрещиваются.
  5. С натяжным роликом, увеличивающим угол обхвата шкива меньшего диаметра.

Ременная передача открытого типа применяется для работы при высокой скорости и с большим межосевым расстоянием. Высокие КПД, нагрузочная способность и долговечность позволяют использовать ее в промышленности, в частности для сельскохозяйственных машин.

Клиноременная передача

Передача характеризуется трапециевидным поперечным сечением ремня и соприкасающимися с ним поверхностями шкивов. Передаваемые усилия при этом могут быть значительными, но ее КПД - небольшой. Клиноременная передача отличается небольшим расстоянием между осями и высоким передаточным числом.

Зубчатые ремни

Передача применяется для высокой скорости при небольшом расстоянии между осями. Она обладает одновременно преимуществами ременных и цепных приводов: работа при высоких нагрузках и с постоянным передаточным отношением. Мощность 100 кВт может обеспечивать преимущественно зубчатая ременная передача. Обороты при этом являются очень высокими - скорость ремня достигает 50 м/с.

Шкивы

Шкив ременной передачи бывает литым, сварным или сборным. Материал выбирают в зависимости от оборотов. Если он изготовлен из текстолита или пластмассы, скорость составляет не более 25 м/с. Если она превышает 5 м/с, требуется статическая балансировка, а для быстроходных передач - динамическая.
В процессе работы у шкивов с плоскими ремнями происходит износ обода от проскальзывания, надлом, трещины, поломка спиц. В клиноременных передачах изнашиваются канавки на рабочих поверхностях, ломаются буртики, происходит разбалансировка.

Если вырабатывается отверстие ступицы, его растачивают, а затем запрессовывают втулку. Для большей надежности ее делают одновременно с внутренним и наружным шпоночными пазами. Тонкостенную втулку устанавливают на клей и крепят болтами через фланец.

Трещины и изломы заваривают, для чего шкив сначала разогревают для устранения остаточных напряжений.

При обтачивании обода под клиновидный ремень допускается, что частота вращения может изменяться до 5% от номинальной.

Расчет передач

Все расчеты для любых типов ремней основаны на определении геометрических параметров, тяговой способности и долговечности.

1. Определение геометрических характеристик и нагрузок. Расчет ременной передачи удобно рассмотреть на конкретном примере. Пусть нужно определить параметры ременного привода от электрического двигателя мощностью 3 кВт к токарному станку. Частоты вращения валов составляют, соответственно, n 1 = 1410 мин -1 и n 2 = 700 мин -1 .

Выбирается обычно узкий клиновой ремень как наиболее часто используемый. Номинальный момент на ведущем шкиве составляет:

T1 = 9550P 1: n 1 = 9550 х 3 х 1000: 1410 = 20,3 Нм.

Из справочных таблиц выбирается диаметр ведущего шкива d 1 = 63 мм с профилем SPZ.
Скорость ремня определяется так:

V = 3,14d 1 n 1: (60 х 1000) = 3,14 х 63 х 1410: (60 х 1000) = 4,55 м/с.

Она не превышает допустимую, которая составляет 40 м/с для выбранного типа. Диаметр большого шкива составит:

d2 = d 1 u х (1 - e y) = 63 х 1410 х (1-0,01) : 700 = 125,6 мм.

Результат приводится к ближнему значению из стандартного ряда: d 2 = 125 мм.
Расстояние между осями и длину ремня находят из следующих формул:

a = 1,2d 2 = 1,2 х 125 = 150 мм;
L = 2a + 3,14d cp + ∆ 2: a = 2 х 150 + 3,14 х (63 + 125) : 2 + (125 - 63) 2: (4 х 150) = 601,7 мм.

После округления до ближайшего значения из стандартного ряда получается окончательный результат: L= 630 мм.

Межосевое расстояние изменится, и его можно снова пересчитать по более точной формуле:

a = (L - 3,14d cp) : 4 + 1: 4 х ((L - 3,14d cp) 2 - 8∆ 2) 1/2 = 164,4 мм.

Для типовых условий передаваемая одним ремнем мощность определяется по номограммам и составляет 1 кВт. Для реальной ситуации ее надо уточнить по формуле:

[P] = P 0 K a K p K L K u .

После определения коэффициентов по таблицам получается:

[P] = 1 х 0,946 х 1 х 0,856 х 1,13 = 0,92 кВт.

Требуемое количество ремней определяется делением мощности электродвигателя на мощность, которую может передавать один ремень, но при этом еще вводится коэффициент С z = 0,9:

z = P 1: ([P]C z) = 3: (0,92 х 0,9) = 3,62 ≈ 4.

Сила натяжения ремня составляет: F 0 = σ 0 A = 3 х 56 = 168 H, где площадь сечения А находится по таблице справочника.

Окончательно нагрузка на валы от всех четырех ремней составит: F sum = 2F 0 z cos(2∆/a) = 1650 H.

2. Долговечность. В расчет ременной передачи входит также определение долговечности. Она зависит от сопротивления усталости, определяемого величиной напряжений в ремне и частотой их циклов (количество изгибов в единицу времени). От появляющихся при этом деформаций и трения внутри ремня происходят разрушения усталости - надрывы и трещины.

Один цикл нагрузки проявляется в виде четырехкратного изменения напряжений в ремне. Частота пробегов определяется из такого соотношения: U = V: l < U d ,
где V - скорость, м/с; l - длина, м; U d - допускаемая частота (<= 10 - 20 для клиновых ремней).

3. Расчет зубчатых ремней. Главным параметром является модуль: m = p: n, где p - окружной шаг.

Величина модуля зависит от угловой скорости и мощности: m = 1,65 х 10-3 х (P 1: w 1) 1/3 .

Поскольку он стандартизован, расчетная величина приводится к ближайшему значению ряда. Для высоких скоростей берутся повышенные значения.

Число зубьев ведомого шкива определяется по передаточному числу: z 2 = uz 1 .

Межосевое расстояние зависит от диаметров шкивов: a = (0,5...2) х (d 1 + d 2).

У ремня число зубьев будет равно: z p = L: (3,14m), где L - ориентировочная расчетная длина ремня.

После выбирают ближнее стандартное число зубьев, затем определяют точную длину ремня из последнего соотношения.

Нужно также определить ширину ремня: b = F t: q, где F t - окружная сила, q - удельное натяжение ремня, выбираемое по модулю.

Нагрузка на валы составит: R = (1...1,2) х F t .

Заключение

Работоспособность ременных передач зависит от типа ремней и условий их эксплуатации. Правильный расчет позволит выбрать надежный и долговечный привод.

Ременную передачу относят к передачам трением с гибкой связью. Она состоит из ведущего и ведомого шкивов и ремня, надетого на шкивы предварительным натяжением (рис. 13.1). Нагрузку передают силы трения, возникающие между шкивами и ремнем. Являются разновидностью фрикционных передач, где движение передаётся посредством специального кольцевого замкнутого ремня.

Ре менные передачи применяются для приводаагрегатов от электродвигателей малой и средней мощности; для привода от маломощных двигателей внутреннего сго рани я.

Достоинства ременных передач.

1. Простота конструкции.

2. Возможность передачи движения на значительные расстояния (до 15 м).

3. Возможность работы с высокими частотами вращения.

4. Плавность и бесшумность работы.

5. Смягчение вибраций и толчков.

6. Предохранение механизмов от перегрузок за счет возможности проскальзывания ремня (к передачам зубчатым ремнем это свойство не относится).

Недостатки.

    Большие радиальные размеры.

    Малая долговечность ремня.

    Большие нагрузки на валы и подшипники.

    Непостоянство передаточного число.

Применение . Ременные передачи применяют в большинстве случаев для передачи движения от электродвигателя, когда по конструктивным соображениям межосевое расстояние а должно быть достаточно большим, а передаточное число и может быть не строго постоянным (приводы стан- ков, конвейеров, дорожных и строительных машин и др.). Передачи зубчатым ремнем можно применять и в приводах, требующих постоянного значения и. Мощность, передаваемая ременной передачей, обычно до 50 кВт, хотя может достигать 2000 кВт и больше. Скорость ремня v = 5...50 м/с, а в высокоскоростных передачах до 100 м/с и выше. Ограничение мощности и скорости вызвано большими габаритами передачи, ухудшением условий работы ремня, малыми значениями долговечности и КПД.

22. Классификация ременных передач. Геометрия ременной передачи

В зависимости от формы поперечного сечения ремня передачи бывают: плоским ремнем, клиновым ремнем, круглым ремнем, поликлиновым ремнем. Наибольшее применение в машиностроении имеют клиновые и поликлиновые ремни. Передачу круглым ремнем применяют в приводах малой мощности (настольные станки, приборы). Разновидностью ременной передачи является передача зубчатым ремнем; передающая нагрузку путем зацепления ремня со шкивами. Плоские ремни применяются как простейшие, с минимальными напряжениями изгиба, а клиновые имеют повышенную тяговую способность.

Клиновые ремни применяют по несколько штук, чтобы варьировать нагрузочную способность и несколько повысить надёжность передачи. Кроме того, один толстый ремень, поставленный вместо нескольких тонких будет иметь гораздо большие напряжения изгиба при огибании шкива.

Основные геометрические соотношения ременных передач

1. Межосевое расстояние а ременной передачи определяет в основном конструкция привода машины. Рекомендуют: для передач плоским ремнем a ≥ 1,5(d 2 +d 1) (13.1) для передач клиновым и поликлиновым ремнем a ≥0,55(d 2 + d 1)+ h ,(13.2) где d 1 и d 2 - диаметры шкивов; h - высота сечения ремня.

2. Расчетная длина ремня L Р равна сумме длин прямоли- нейных участков и дуг обхвата шкивов 13.3) По найденному значению из стандартного ряда выбирают ближайшую бульшую расчетную длину ремняL p . При соединении концов длину ремня увеличивают на 30...200 мм.

3. Межосевое расстояние при окончательно установленной длине ремня L p (13.4)

4. Угол обхвата ремнем малого шкива. (13.5) Для передачи ремнем рекомендуютα 1 ≥150 α , клиновым или поликлиновым - α 1 ≥110 .

Просмотр: эта статья прочитана 23721 раз

Pdf Выберите язык... Русский Украинский Английский

Краткий обзор

Полностью материал скачивается выше, предварительно выбрав язык


Механизмы с гибкими звеньями

Для передачи движения между сравнительно далеко расположенными друг от друга звеньями применяют механизмы, в которых усилие от ведущего звена к ведомому передается с помощью гибких звеньев. Передачи с гибкими звеньями применяются в качестве силовых в машинах общего и специального машиностроения (при мощностях до 50 кВт, передаточных чисел до 10, при окружных скоростях до 30 м/с), а также в приборах и аппаратах точной механики (для устройств вычерчивания кривых, регистрирующих приборов, шкальных механизмов и т.п.).

В качестве гибких звеньев применяются: ремни, шнуры, канаты разных профилей, провод, стальная лента, цепи различных конструкций.

Передачи с гибкими звеньями могут обеспечивать постоянное и переменное передаточное отношения со ступенчатым или плавным изменением его величины.

Для сохранности постоянства натяжения гибких звеньев в механизмах применяются натяжные устройства: натяжные ролики и пружины, противовесы и т.п.

Виды передач:

1 По способу соединения гибкого звена с остальными:
фрикционные;

  • с непосредственным соединением;
  • с зацеплением.

2 По взаимному расположению валов и направлению их вращения:

  • открытые;
  • перекрестные;
  • полуперекрестные.

Ременные передачи

Принцип действия и классификация

Передача состоит из двух шкивов, закрепленных на валах, и ремня, охватывающего эти шкивы. Нагрузки передается за счет сил трения, возникающих между шкивами и ремнем вследствие натяжения последнего.

В зависимости от формы поперечного перереза ремня различают передачи:

  • плоскоременную;
  • клиноременную;
  • круглоременную.

Преимущества:

  • возможность передачи движения на значительные расстояния (до 15 м и более);
  • плавность и бесшумность работы;
  • защита механизмов от колебаний нагрузки вследствие упругости ремня;
  • защита механизмов от перегрузки за счет возможного проскальзывания ремня;
  • простота конструкции и эксплуатации (передача не требует смазки).

Недостатки:

  • повышенные габариты (при равных условиях диаметры шкивов в 5 раз больше диаметров зубчатых колес);
  • непостоянство передаточного отношения вследствие проскальзывание ремня;
  • повышенная нагрузка на валы и их опоры, связанное с большим предварительным натяжением ремня (в 2-3 раза больше, чем у зубчатых передач);
  • низкая долговечность ремней (1000-5000 часов).

Область применения

Ременные передачи применяют преимущественно в тех случаях, когда по условиям конструкции валы расположены на значительных расстояниях. Передача передает мощность до 50 кВт. В комбинации с зубчатой передачей ременную передачу устанавливают на быстроходную степень, как менее нагруженную.

В современном машиностроении наибольшее распространение имеют клиновые ремни. Применение плоских ремней старой конструкции сократилось. Плоские ремни новой конструкции (клепочные из пластмасс) получают распространение в высокоскоростных передачах. Круглые ремни применяются только для малых мощностей: в приборах, бытовых машинах и т.п.

В случае отсутствия устройства автоматического натяжения ремень вытягивается, возникает проскальзывание.

Силы в зацеплении

  • сила натяжения рабочей ветви;
  • сила натяжения холостой ветви;
  • окружная сила;
  • сила предварительного натяжения;
  • центробежная сила;
  • сила от изгиба ремня.

Критерии трудоспособности и расчета ременных передач:

  1. тяговая способность, обусловленная силой трения между ремнем и шкивом;
  2. долговечность ремня, который ограничивается разрушением ремня от усталости.

Основным расчетом ременных передач является расчет по тяговой способности. Долговечность ремню учитывается при расчетах путем выбора основных параметров передачи согласно рекомендациям.

Тяговая способность передачи характеризуется значением максимально допустимой окружной силы или полезного напряжения. Допустимое из условия отсутствия буксования напряжения увеличивается с увеличением напряжения предварительного натяжения, однако на практике это приводит к снижению долговечности ремня.

Влияние напряжения от центробежных силдля наиболее распространенных на практике среднескоростных (V< 20 м/с) и тихоходных (V< 10 м/с) передач незначительный.

Увеличение напряжений изгиба не оказывает влияния на повышение тяговой способности передачи, больше того, они, периодически изменяются, что является главной причиной разрушения ремней от усталости. Поэтому на практике ограничивают минимально допустимые значениями отношения.

Долговечность ремня зависит также от характера и частоты цикла изменения напряжений.

Снижение долговечности при увеличении частоты пробегов связано не только с усталостью, но и с термостойкостью ремня. В результате гистерезисных потерь при деформации ремень нагревается с увеличением частоты пробегов. Перегрев ремня приводит к снижению прочности.

Практика эксплуатации устанавливает, что при соблюдении рекомендаций по выбору основных параметров передачи средняя долговечность ремней составляет 2000...3000 часов.

Скольжение в ременной передаче

Исследования М. Е. Жуковского показали, что в ременных передачах имеют место два вида скольжения:

  1. упругое скольжение, существующее при любой нагрузке;
  2. буксование, возникающее при перегрузке. Упругое скольжение является причиной непостоянства передаточного отношения и увеличения затрат на трение.

Клиноременная передача

Клиноременная передача имеет преобладающее применение из-за увеличения тяговой способности вследствие повышения трения, при этом сцепление со шкивом увеличивается приблизительно в 3 раза. Ремень имеет клиновую форму поперечного перереза и располагается в соответствующих канавках. Для уменьшения напряжений изгиба применяют несколько ремней. Клиновые ремни изготовляют в виде замкнутой бесконечной ленты.

Способы натяжения ремней

Величина силы предварительного натяжения ремней существенно влияет на долговечность, тяговую способность и КПД передачи. Большинство ременных передач работают при переменной нагрузке, расчет при этом выполняется по максимальному значению нагрузки, которая при постоянном значении снижает долговечность и КПД в периоды недогруженности передачи. В этом случае целесообразна конструкция, в которой натяжения ремня автоматически изменяется с изменением нагрузки.

Постоянное натяжение ремня поддерживается в конструкции, в которой натяжения обеспечивается массой электродвигателя, установленного на качающейся плите, а также при применении натяжных роликов.

Периодическое подтягивание ремней может обеспечиваться с помощью винта или подобного устройства, способного перемещать двигатель по полозкам плиты.

Формат: pdf

Размер: 900КВ

Язык: русский, украинский

Пример расчета прямозубой цилиндрической передачи
Пример расчета прямозубой цилиндрической передачи. Выполнен выбор материала, расчет допускаемых напряжений, расчет на контактную и изгибную прочность.


Пример решения задачи на изгиб балки
В примере построены эпюры поперечных сил и изгибающих моментов, найдено опасное сечение и подобран двутавр. В задаче проанализировано построение эпюр с помощью дифференциальных зависимостей, провелен сравнительный анализ различных поперечных сечений балки.


Пример решения задачи на кручение вала
Задача состоит в проверке прочности стального вала при заданном диаметре, материале и допускаемых напряжениях. В ходе решения строятся эпюры крутящих моментов, касательных напряжений и углов закручивания. Собственный вес вала не учитывается


Пример решения задачи на растяжение-сжатие стержня
Задача состоит в проверке прочности стального стержня при заданных допускаемых напряжениях. В ходе решения строятся эпюры продольных сил, нормальных напряжений и перемещений. Собственный вес стержня не учитывается


Применение теоремы о сохранении кинетической энергии
Пример решения задачи на применение теоремы о сохранение кинетической энергии механической системы



Определение скорости и ускорения точки по заданным уравнениям движения
Пример решение задачи на определение скорости и ускорения точки по заданным уравнениям движения