Применение мехатронных систем в автомобилестроении. Автомобильные мехатронные устройства. Компьютерное и интеллектуальное управление в мехатронике

Мехатронные модули находят все более широкое применение в различных транспортных системах.

Жесткая конкуренция на автомобильном рынке вынуждает специалистов в этой области к поиску новых передовых технологий. На сегодняшний день, одной из главных проблем для разработчиков заключается в создании «умных» электронных устройств, способных сократить число дорожно-транспортных происшествий (ДТП). Итогом работы в этой области стало создание системы комплексной безопасности автомобиля (СКБА), которая способна автоматически поддерживать заданную дистанцию, останавливать машину при красном сигнале светофора, предупреждать водителя о том, что он преодолевает поворот на скорости, более высокой, чем это допустимо законами физики. Были разработаны даже датчики удара с радиосигнализатором, который при наезде автомобиля на препятствие или столкновении вызывает машину скорой помощи.

Все эти электронные устройства предотвращения ДТП делятся на две категории. Первая включает приборы в автомобиле, действующие независимо от каких-либо сигналов внешних источников информации (других автомобилей, инфраструктуры). Они обрабатывают информацию, поступающую от бортового радиолокатора (радара). Вторая категория — системы, действие которых основано на данных, полученных от источников информации, расположенных вблизи дороги, в частности от маяков, которые собирают сведения о дорожной обстановке и передают их посредством инфракрасных лучей в проезжающие автомобили.

СКБА объединила новое поколение перечисленных выше устройств. Она принимает как сигналы радара, так и инфракрасные лучи «думающих» маяков, а в дополнение к основным функциям обеспечивает безостановочное и спокойное для водителя движение на нерегулируемых пересечениях дорог и улиц, ограничивает скорость движения на поворотах и в жилых районах пределами установленных скоростных лимитов. Как все автономные системы, СКБА требует, чтобы автомобиль был оборудован антиблокировочной системой тормозов (АБС) и автоматической коробкой передач.

СКБА включает лазерный дальномер, постоянно измеряющий расстояние между автомобилем и любым препятствием по ходу — движущимся или неподвижным. Если наезд вероятен, а водитель не замедляет скорость, микропроцессор дает команду сбросить давление на педаль акселератора, включить тормоза. Небольшой экран на панели приборов вспыхивает предупреждением об опасности. По желанию водителя бортовой компьютер может устанавливать безопасную дистанцию в зависимости от дорожного покрытия — влажного или сухого.

СКБА способна управлять автомобилем, ориентируясь на белые линии разметки дорожного покрытия. Но для этого необходимо, чтобы они были четкими, поскольку постоянно «считываются» находящейся на борту видеокамерой. Обработка изображения затем определяет положение машины относительно линий, а электронная система в соответствии с этим воздействует на рулевое управление.

Бортовые приемники инфракрасных лучей СКБА действуют при наличии передатчиков, размещенных через определенные интервалы вдоль проезжей дороги. Лучи распространяются прямолинейно и на небольшое расстояние (примерно до 120 м), а данные, передаваемые закодированными сигналами, невозможно ни заглушить, ни исказить.

Рис. 3.1 Система комплексной безопасности автомобиля: 1 — приемник инфракрасных лучей; 2 — датчик погоды (дождь, влажность); 3 — привод дроссельной заслонки системы питания; 4 — компьютер; 5 — вспомогательный электроклапан в приводе тормозов; 6 — АБС; 7 — дальномер; 8 — автоматическая коробка передач; 9 — датчик скорости автомобиля; 10 — вспомогательным электроклапан рулевого управления; 11 — датчик акселератора; 12 — датчик рулевого управления; 13 — стол-сигнал; 14 — компьютер электронного видения; 15 — телевизионная камера; 16 — экран.

На рис. 3.2 представлен датчик погоды фирмы « Boch ». В зависимости от модели внутрь помещают инфракрасный светодиод и один - три фотоприемника. Светодиод испускает невидимый луч под острым углом к поверхности ветрового стекла. Если на улице сухо, весь свет отражается обратно и попадает на фотоприемник (так рассчитана оптическая система). Поскольку луч модулирован импульсами, то на посторонний свет датчик не среагирует. Но если на стекле есть капли или слой воды, условия преломления изменяются, и часть света уходит в пространство. Это фиксируется сенсором, и контроллер рассчитывает подходящий режим работы стеклоочистителя. Попутно данный прибор может закрыть электролюк в крыше, поднять стекла. Датчик имеет еще 2 фотоприемника, которые интегрированы в общий корпус с датчиком погоды. Первый предназначен для автоматического включения фар, когда смеркается или автомобиль въезжает в тоннель. Второй, переключает «дальний» и «ближний» свет. Задействованы ли эти функции, зависит, от конкретной модели автомобиля.

Рис.3.2 Принцип работы датчика погоды

Антиблокировочные тормозные системы (АБС), ее необходимые компоненты — датчики скорости колеса, электронный процессор (блок управления), сервоклапаны, гидравлический насос с электрическим приводом и аккумулятор давления. Некоторые ранние АБС были “трехканальные”, т.е. управляли передними тормозными механизмами индивидуально, но растормаживали полностью все задние тормозные механизмы при начале блокирования любого из задних колес. Это экономило некоторое количество стоимости и усложнения конструкции, но дало более низкую эффективность по сравнению с полной четырехканальной системой, в которой каждый тормозной механизм управляется индивидуально.

АБС имеет много общего с противобуксовочной системой (ПБС), чье действие могло бы рассматриваться как “АБС наоборот”, так как ПБС работает по принципу обнаружения момента начала быстрого вращения одного из колес по сравнению с другим (момента начала пробуксовывания) и подачи сигнала на притормаживание этого колеса. Датчики скорости колеса могут быть общими, и поэтому наиболее эффективный способ предотвращать пробуксовку ведущего колеса уменьшением его скорости состоит в том, чтобы применить мгновенное (и если необходимо, повторное) действие тормоза, тормозные импульсы могут быть получены от блока клапанов АБС. В действительности, если присутствует АБС, это все, что требуется, чтобы обеспечить и ПБС — плюс некоторое дополнительное программное обеспечение и дополнительный блок управления, чтобы уменьшить при необходимости крутящий момент двигателя или сократить количество подводимого топлива, или осуществить прямое вмешательство в систему управления педалью газа.

На рис. 3.3 представлена схема электронной системы питания автомобиля: 1 - реле зажигания; 2 - центральный переключатель; 3 - аккумуляторная батарея; 4 - нейтрализатор отработавших газов; 5 - датчик кислорода; 6 - воздушный фильтр; 7 - датчик массового расхода воздуха; 8 - колодка диагностики; 9 - регулятор холостого хода; 10 - датчик положения дроссельной заслонки; 11 - дроссельный патрубок; 12 - модуль зажигания; 13 - датчик фаз; 14 - форсунка; 15 - регулятор давления топлива; 16 - датчик температуры ОЖ; 17 - свеча; 18 - датчик положения коленвала; 19 - датчик детонации; 20 - топливный фильтр; 21 - контроллер; 22 - датчик скорости; 23 - топливный насос; 24 - реле включения топливного насоса; 25 - бензобак.

Рис. 3.3 Упрощенная схема системы впрыска

Одной из составных частей СКБА является подушка безопасности ( airbag ) (см. рис. 3.4), элементы которой размещены в разных частях автомобиля. Инерционные датчики, находящиеся в бампере, у моторного щита, в стойках или в районе подлокотника (в зависимости от модели автомобиля), в случае аварии посылают сигнал на электронный блок управления. В большинстве современных СКБА фронтальные датчики рассчитаны на силу удара на скорости от 50 км/ч. Боковые срабатывают при более слабых ударах. От электронного блока управления сигнал следует на основной модуль, который состоит из компактно уложенной подушки, соединенной с газогенератором. Последний представляет собой таблетку диаметром около 10 см и толщиной около 1 см с кристаллическим азотгенерирующим веществом. Электрический импульс поджигает в «таблетке» пиропатрон или плавит проволоку, и кристаллы со скоростью взрыва превращаются в газ. Весь описанный процесс происходит очень быстро. «Средняя» подушка наполняется за 25 мс. Поверхность подушки европейского стандарта мчится навстречу грудной клетке и лицу со скоростью около 200 км/ч, а американского — около 300. Поэтому в машинах, оборудованных подушкой безопасности, производители настоятельно советуют пристегиваться и не сидеть вплотную к рулю или торпедо. В наиболее «продвинутых» системах есть устройства, идентифицирующие наличие пассажира или детского кресла и, соответственно, либо отключающие, либо корректирующие степень надувания.

Рис. 3.4. Автомобильная подушка безопасности:

1 - натяжное устройство ремня безопасности; 2 - надувная подушка безопасности; 3 - надувная подушка безопасности; для водителя; 4 – блок управления и центральный датчик; 5 – исполнительный модуль; 6 – инерционные датчики

Помимо обычных автомобилей большое внимание уделяется созданию легких транспортных средств (ЛТС) с электроприводом (иногда их называют нетрадиционными). К этой группе транспортных средств относятся электровелосипеды, роллеры, инвалидные коляски, электромобили с автономными источниками питания. Разработку таких мехатронных систем ведет Научно-инженерный центр "Мехатроника" в кооперации с рядом организаций.

Масса двигателя 4.7 кг,

Аккумуляторная батарея 36В, 6 А*ч,

Основой для создания ЛТС являются мехатронные модули типа "мотор-колесо" на базе, как правило, высокомоментных электродвигателей. В табл.3.1 приведены технические характеристики мехатронных модулей движения для легких транспортных средств. Мировой рынок ЛТС имеет тенденцию к расширению и по прогнозам его емкость к 2000 году составляла 20 млн. единиц или в стоимостном выражении 10 млрд. долларов.

Таблица 3 .1

ЛТС

с электроприводом

Технические показатели

Максимальная

скорость,

км / ч

Рабочее напряжение, В

Мощность,

кВт

Номинальный момент,

Нм

Номинальный ток,

Масса,

кг

Кресла –

коляски

0,15

Электро-

велосипеды

Роллеры

Миниэлектро-

мобили

Морской транспорт. МС находят все более широкое применение для интенсификации труда экипажей морских и речных судов, связанных с автоматизацией и механизацией основных технических средств, к которым относятся главная энергетическая установка с обслуживающими системами и вспомогательными механизмами, электроэнергетическая система, общесудовые системы, рулевые устройства и двигатели.

Комплексные автоматические системы удержания судна на заданной траектории (СУЗТ) или судна, предназначенного для исследования Мирового океана, на заданной линии профиля (СУЗП) относятся к системам, обеспечивающим третий уровень автоматизации управления. Применение таких систем позволяет:

Повысить экономическую эффективность морских транспортных перевозок за счет реализации наилучшей траектории, движения судна с учетом навигационных и гидрометеорологических условий плавания;

Повысить экономическую эффективность океанографических, гидрографических и морских геологоразведочных работ за счет увеличения точности удержания судна на заданной линии профиля, расширения диапазона ветроволновых возмущений, при которых обеспечивается требуемое качество управления, и увеличения рабочей скорости судна;

Решать задачи реализации оптимальной траектории движения судна при расхождении с опасными объектами; повысить безопасность мореплавания вблизи навигационных опасностей за счет более точного управления движением судна.
Комплексные автоматические системы управления движением по заданной программе геофизических исследований (АСУД) предназначены для автоматического выведения судна на заданную линию профиля, автоматического удержания геолого-геофизического судна на исследуемой линии профиля, маневрирования при переходах с одной линии профиля на другую. Рассматриваемая система позволяет повысить эффективность и качество морских геофизических исследований.

В морских условиях невозможно применение обычных методов предварительной разведки (поисковая партия или детальная аэрофотосъемка), поэтому наиболее широкое распространение получил сейсмический метод геофизических исследований (рис. 3.5). Геофизическое судно 1 буксирует на кабель-тросе 2 пневматическую пушку 3, являющуюся источником сейсмических колебаний, сейсмографную косу 4, на которой размещены приемники отраженных сейсмических колебаний, и концевой буй 5. Профили дна определяют посредством регистрации интенсивности сейсмических колебаний, отраженных от пограничных слоев 6 различных-пород.

Рис. 3.5. Схема проведения геофизических исследований.

Для получения достоверной геофизической информации судно должно удерживаться на заданном положении относительно дна (линии профиля) с высокой точностью, несмотря на малую скорость движения (3—5 уз) и наличие буксируемых устройств значительной длины (до 3 км) с ограниченной механической прочностью.

Фирмой «Анжутц» разработана комплексированная МС, обеспечивающая удержание судна на заданной траектории. На рис. 3.6 представлена структурная схема этой системы, в которую входят: гирокомпас 1; лаг 2; приборы навигационных комплексов, определяющих положение судна (два и более) 3; авторулевой 4; мини-ЭВМ 5 (5 а — интерфейс, 5 б — центральное запоминающее устройство, 5 в — центральный процессорный блок); считыватель перфоленты 6; графопостроитель 7; дисплей 8; клавиатура 9; рулевая машина 10.

С помощью рассматриваемой системы можно автоматически вывести судно на запрограммированную траекторию, которая задается оператором с помощью клавиатуры, определяющей географические координаты точек поворота. В этой системе независимо от информации, поступающей от какой-либо одной группы приборов традиционного радионавигационного комплекса или устройств спутниковой связи, определяющей положение судна, вычисляются координаты вероятного положения судна по данным, выдаваемым гирокомпасом и лагом.

Рис. 3.6. Структурная схема комплексированной МС удержания судна на заданной траектории

Управление курсом с помощью рассматриваемой системы осуществляется авторулевым, на вход которого поступает информация о величине заданного курса ψ зад , формируемая мини-ЭВМ с учетом ошибки по положению судна. Система собрана в пульте управления. В верхней его части размещен дисплей с органами настройки оптимального изображения. Ниже, на наклонном поле пульта, расположен авторулевой с рукоятками управления. На горизонтальном поле пульта находится клавиатура, при помощи которой осуществляется ввод программ в мини-ЭВМ. Здесь же размещен переключатель, с помощью которого производится выбор режима управления. В цокольной части пульта расположены мини-ЭВМ и интерфейс. Вся периферийная аппаратура размещается на специальных подставках или других пультах. Рассматриваемая система может работать в трех режимах: «Курс», «Монитор» и «Программа». В режиме «Курс» осуществляется удержание заданного курса с помощью авторулевого по показаниям гирокомпаса. Режим «Монитор» выбирается тогда, когда готовится переход на режим «Программа», когда этот режим прерывается или когда переход по данному режиму закончен. На режим «Курс» переходят, когда обнаруживаются неисправности мини-ЭВМ, источников питания или радионавигационного комплекса. В этом режиме авторулевой работает независимо от мини-ЭВМ. В режиме «Программа» происходит управление курсом по данным радионавигационных приборов (датчиков положения) или гирокомпаса.

Обслуживание системы удержания судна на ЗТ осуществляется оператором с пульта. Выбор группы датчиков для определения положения судна производится оператором по рекомендациям, представленным на экране дисплея. В нижней части экрана приводится список всех разрешенных для данного режима команд, которые могут вводиться с помощью клавиатуры. Случайное нажатие какой-либо запрещенной клавиши блокируется ЭВМ.

Авиационная техника. Успехи, достигнутые в развитии авиационной и космической техники с одной стороны и необходимость снижения стоимости целевых операций с другой, стимулировали разработки нового вида техники – дистанционно пилотируемых летательных аппаратов (ДПЛА).

На рис. 3.6 представлена структурная схема системы дистанционного управления полетом ДПЛА - HIMAT . Основной компонентой системы дистанционного пилотирования HIMAT является наземный пункт дистанционного управления. Параметры полета ДПЛА поступают в наземный пункт по линии радиосвязи от летательного аппарата, принимаются и декодируются станцией обработки телеметрии и передаются в наземную часть вычислительной системы, а также на приборы индикации информации в наземном пункте управления. Кроме этого, с борта ДПЛА поступает отображаемая с помощью телевизионной камеры картина внешнего обзора. Телевизионное изображение, высвечиваемое на экране наземного рабочего места человека-оператора, используется для управления летательным аппаратом при воздушных маневрах, заходе на посадку и при самой посадке. Кабина наземного пункта дистанционного управления (рабочее место оператора) оборудована приборами, обеспечивающими индикацию информации о полете и состоянии аппаратуры комплекса ДПЛА, а также средствами для управления летательным аппаратом. В частности, в распоряжении человека-оператора имеются ручки и педали управления летательным аппаратом по крену и тангажу, а также ручка управления двигателем. При выходе из строя основной системы управления подача команд системы управления происходит посредством специального пульта дискретных команд оператора ДПЛА.

Рис. 3.6 Система дистанционного пилоторования ДПЛА HIMAT :

  1. носитель В-52; 2 – резервная система управления на самолете TF -104 G ; 3 – линия телеметрической связи с землей; 4 - ДПЛА HIMAT ; 5 – линии телеметрической связи с ДПЛА; 5 – наземный пункт дистационного пилотирования

В качестве автономной навигационной системы, обеспечивающей счисление пути, используются доплеровские измерители путевой скорости и угла сноса (ДПСС). Такая навигационная система используется совместно с курсовой системой, измеряющей курс датчиком вертикали, формирующим сигналы крена и тангажа, и бортовой ЭВМ, реализующей алгоритм счисления пути. В совокупности эти устройства образуют доплеровскую навигационную систему (см. рис. 3.7). Что бы повысить надежность и точность измерения текущих координат летательного аппарата, ДИСС может объединяться с измерителями скорости.

Рис. 3.7 Схема доплеровской навигационной системы

5. Транспортные мехатронные средства

Мехатронные модули находят все более широкое применение в различных транспортных системах. В данном пособии ограничимся кратким анализом только легких транспортных средств (ЛТС) с электроприводом (иногда их называют нетрадиционными). К этой новой для отечественной промышленности группе транспортных средств относятся электровелосипеды, роллеры, инвалидные коляски, электромобили с автономными источниками питания.

ЛТС являются альтернативой транспорту с двигателями внутреннего сгорания и используются в настоящее время в экологически чистых зонах (лечебно-оздоровительных, туристических, выставочных, парковых комплексах), а также в торговых и складских помещениях. Рассмотрим технические характеристики опытного образца электровелосипеда:

Максимальная скорость 20 км/час,

Номинальная мощность привода 160 Вт,

Номинальная частота вращения 160 об/мин,

Максимальный крутящий момент 18 Нм,

Масса двигателя 4.7 кг,

Аккумуляторная батарея 36В, 6 А«ч,

Движение в автономном режиме 20 км.

Основой для создания ЛТС являются мехатронные модули типа "мотор-колесо" на базе, как правило, высокомоментных электродвигателей. В табл.3 приведены технические характеристики мехатронных модулей движения для легких транспортных средств.

ЛТС с электроприводом

Технические показатели

Максим алъная скорость,км/ч

Рабочее напряж ение, В

Мощност ь, Квт

Номиналь ный Момент, Нм

Номинальный ток, А

Масса, кг

Кресла-коляски

0.15

Электро -велосипеды

Роллеры

Миниэлектромобили

ПО

Мировой рынок ЛТС имеет тенденцию к расширению и по прогнозам его емкость к 2000 году составит 20 млн. единиц или в стоимостном выражении 10 млрд. долларов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство Высшего и Среднего Специального Образования Республики Узбекистан

Бухарский инженерно-технологический институт

Самостоятельная работа

Мехатронные системы автомобильного транспорта

План

Введение

1. Цель и постановка задачи

2. Законы управления (программы) переключения передач

3. Современный автомобиль

4. Достоинства новинки

Список литературы

Введение

Мехатроника возникла как комплексная наука от слияния отдельных частей механики и микроэлектроники. Её можно определить как науку, занимающуюся анализом и синтезом сложных систем, в которых в одинаковой степени используются механические и электронные управляющие устройства.

Все мехатронные системы автомобилей по функциональному назначению делят на три основные группы:

Системы управления двигателем;

Системы управления трансмиссией и ходовой частью;

Системы управления оборудованием салона.

Система управления двигателем подразделяется на системы управления бензиновым и дизельным двигателем. По назначению они бывают монофункциональные и комплексные.

В монофункциональных системах ЭБУ подает сигналы только системе впрыска. Впрыск может осуществляться постоянно и импульсами. При постоянной подаче топлива его количество меняется за счет изменения давления в топливопроводе, а при импульсном - за счет продолжительности импульса и его частоты. На сегодня одним из наиболее перспективных направлений приложения систем мехатроники являются автомобили. Если рассматривать автомобилестроение, то внедрение подобных систем позволит прийти к достаточной гибкости производства, лучше улавливать веяния моды, быстрее внедрять передовые наработки ученых, конструкторов, и тем самым получать новое качество для покупателей машин. Сам автомобиль, тем более, современный автомобиль, является объектом пристального рассмотрения с конструкторской точки зрения. Современное использование автомобиля требует от него повышенных требований к безопасности управления, в силу все увеличивающейся автомобилизации стран и ужесточения нормативов по экологической чистоте. Особо это актуально для мегаполисов. Ответом на сегодняшние вызовы урбанизма и призваны конструкции мобильных следящих систем, контролирующих и корректирующих характеристики работы узлов и агрегатов, достигая оптимальных показателей по экологичности, безопасности, эксплуатационной комфортности автомобиля. Насущная необходимость комплектовать двигатели автомобилей более сложными и дорогими топливными системами во многом объясняется введением все более жестких требований по содержанию вредных веществ в отработавших газах, что, к сожалению, только начинает отрабатываться.

В комплексных системах один электронный блок управляет несколькими подсистемами: впрыска топлива, зажигания, фазами газораспределения, самодиагностики и др. Система электронного управления дизельным двигателем контролирует количество впрыскиваемого топлива, момент начала впрыска, ток факельной свечи и т.п. В электронной системе управления трансмиссией объектом регулирования является главным образом автоматическая трансмиссия. На основании сигналов датчиков угла открытия дроссельной заслонки и скорости автомобиля ЭБУ выбирает оптимальное передаточное число трансмиссии, что повышает топливную экономичность и управляемость. Управление ходовой частью включает в себя управление процессами движения, изменения траектории и торможения автомобиля. Они воздействуют на подвеску, рулевое управление и тормозную систему, обеспечивают поддержание заданной скорости движения. Управление оборудованием салона призвано повысить комфортабельность и потребительскую ценность автомобиля. С этой целью используются кондиционер воздуха, электронная панель приборов, мультифункцио-нальная информационная система, компас, фары, стеклоочиститель с прерывистым режимом работы, индикатор перегоревших ламп, устройство обнаружения препятствий при движении задним ходом, противоугонные устройства, аппаратура связи, центральная блокировка замков дверей, стекло- подъёмники, сиденья с изменяемым положением, режим безопасности и т. д.

1. Цель и постановка задачи

То определяющее значение, которое принадлежит электронной системе в автомобиле, заставляет уделять повышенное внимание проблемам, связанным с их обслуживанием. Решение этих проблем заключается во включении функций самодиагностики в электронную систему. Реализация этих функций основана на возможностях электронных систем, уже использующихся на автомобиле для непрерывного контроля и определения неисправностей в целях хранения этой информации и диагностики. Самодиагностика мехатронных систем автомобилей. Развитие электронных систем управления двигателем и трансмиссией привело к улучшению эксплуатационных свойств автомобиля.

На основании сигналов датчиков ЭБУ вырабатывает команды на включение и выключение сцепления. Эти команды подаются на электромагнитный клапан, который осуществляет включение и выключение привода сцепления. Для переключения передач используются два электромагнитных клапана. Сочетанием состояний "открыт-закрыт" этих двух клапанов гидравлическая система задает четыре положения передач (1, 2, 3 и повышающая передача). При переключении передач сцепление выключается, исключая тем самым последствия изменения момента, связанного с переключением передач.

2.

Законы управления (программы) переключения передач в автоматической трансмиссии обеспечивают оптимальную передачу энергии двигателя колесам автомобиля с учетом требуемых тягово-скоростных свойств и экономии топлива. При этом программы достижения оптимальных тягово-скоростных свойств и минимального расхода топлива отличаются друг от друга, так как одновременное достижение этих целей не всегда возможно. Поэтому в зависимости от условий движения и желания водителя можно выбрать с помощью специального переключателя программу "экономия" для уменьшения расхода топлива, программу "мощность". Каковы были параметры вашего настольного компьютера пяти- семи летней давности? Сегодня системные блоки конца XX столетия кажутся атавизмом и претендуют разве что на роль печатной машинки. Аналогичное положение дел с автомобильной электроникой.

3. Современный автомобиль

Современный автомобиль теперь невозможно представить без компактных управляющих блоков и исполнительных механизмов - актюаторов. Несмотря на некоторый скепсис, их внедрение идет семимильными шагами: нас уже не удивишь электронным впрыском топлива, сервоприводами зеркал, люков и стекол, электроусилителем руля и мультимедийными развлекательными системами. А как не вспомнить, что внедрение в автомобиль электроники, по существу было начато с самого наиответственного органа - тормозов. Сейчас уже в далеком 1970 году совместная разработка "Бош" и "Мерседес-Бенц" под скромной аббревиатурой АБС произвела переворот в обеспечении активной безопасности. Антиблокировочная система не только обеспечила управляемость машины с нажатой "в пол" педалью, но и подтолкнула к созданию нескольких смежных устройств - например, систему тягового контроля (TCS). Эта идея была впервые реализована еще в 1987 году одним из лидирующих разработчиков бортовой электроники - компанией "Бош". В существе, тяговый контроль - антипод АБС: последняя не дает колесам скользить при торможении, a TCS - при разгоне. Блок электроники отслеживает тягу на колесах посредством нескольких датчиков скорости. Стоит водителю сильнее обычного "топнуть" по педали акселератора, создав угрозу проскальзывания колеса, устройство попросту "придушит" двигатель. Конструкторский "аппетит" рос из года в год. Всего через несколько лет была создана ESP - программа курсовой устойчивости (Electronic Stability Program). Снабдив автомашину датчиками угла поворота, скорости вращения колес и поперечного ускорения, тормоза стали помогать водителю в возникающих наиболее сложных ситуациях. Подтормаживая то или иное колесо, электроника сводит к минимальному опасность сноса машины при скоростном прохождении сложных поворотов. Следующий этап: бортовой компьютер научили подтормаживать... одновременно 3 колеса. При некоторых обстоятельствах на дороге только так можно застабилизировать автомобиль, который центробежные силы движения будут пытаться увести с безопасной траектории. Но пока электронике доверяли лишь "надзорную" функцию. Давление в гидравлическом приводе шофёр по-прежнему создавал педалью. Традицию нарушила электро-гидравлическая SBC (Sensotronic Brake Control), с 2006 года серийно устанавливаемая на некоторые модели "Мерседес-Бенц". Гидравлическая часть системы представлена аккумулятором давления, главным тормозным цилиндром и магистралями. Электрическая - насосомнасосом, создающим давление 140-160 атм., датчиками давления, скорости вращения колес и хода педали тормоза. Нажимая последнюю, водитель не перемещает привычный шток вакуумного усилителя, а нажимает ногой на "кнопку", подавая сигнал компьютеру, - как будто управляет неким бытовым прибором. Этот же компьютер рассчитывает оптимальное давление для каждого контура, а насос посредством управляющих клапанов подает жидкость к рабочим цилиндрам.

4. Достоинства новинки

Достоинства новинки - быстродействие, совмещение функций АБС и системы стабилизации в одном устройстве. Есть и другие преимущества. Например, если резко сбросить ногу с педали газа, тормозные цилиндры подведут колодки к диску, приготавливаясь к экстренному торможению. Система связана даже со... стеклоочистителями. По интенсивности работы "дворников" компьютер делает вывод о движении в дождь. Реакция - короткие и незаметные для водителя касания колодок о диски для просушки. Ну а если "повезло" встать в пробку на подъеме, не стоит волноваться: машина не откатится назад, пока водитель будет переносить ногу с тормоза на газ. Наконец, при скорости менее 15 км/ч можно активировать функцию так называемого плавного замедления: при сбросе газа автомобиль будет останавливаться так мягко, что водитель даже не ощутит финального "клевка". мехатроника микроэлектроника двигатель трансмиссия

А если электроника выйдет из строя? Ничего страшного: специальные клапаны полностью откроются, и система будет работать подобно традиционной, правда, без вакуумного усилителя. Пока ещё конструкторы не решаются полностью отказаться от гидравлических устройств тормозов, хотя именитые фирмы уже вовсю разрабатывают "безжидкостные" системы. Например, "Делфай" объявила о решении большинства технических проблем, еще недавно казавшихся тупиковыми: мощные электромоторы - заменители тормозных цилиндров разработаны, а электрические исполнительные механизмы удалось сделать даже более компактными чем гидравлические.

Список л итературы

1. Бутылин В.Г., Иванов В.Г., Лепешко И.И. и др. Анализ и перспективы развития мехатронных систем управления торможением колеса // Мехатроника. Механика. Автоматика. Электроника. Информатика. - 2000. - №2. - С. 33 - 38.

2. Данов Б.А., Титов Е.И. Электронное оборудование иностранных автомобилей: Системы управления трансмиссией, подвеской и тормозной системой. - М.: Транспорт, 1998. - 78 с.

3. Данов Б. А. Электронные системы управления иностранных автомобилей. - М.: Горячая линия - Телеком, 2002. - 224 с.

4. Сига Х., Мидзутани С. Введение в автомобильную электронику: Пер. с японск. - М.: Мир, 1989. - 232 с.

Размещено на Allbest.ru

Подобные документы

    Знакомство с особенностями диагностирования и обслуживания современных электронных и микропроцессорных систем автомобиля. Анализ основных критериев классификации электронных компонентов автомобиля. Общая характеристика систем управления двигателем.

    реферат , добавлен 10.09.2014

    Понятия датчика и датчиковой аппаратуры. Диагностика электронной системы управления двигателем. Описание принципа работы датчика дроссельной заслонки двигателя внутреннего сгорания. Выбор и обоснование типа устройства, произведение патентный поиска.

    курсовая работа , добавлен 13.10.2014

    Архитектура микропроцессоров и микроконтроллеров автомобиля. Преобразователи аналоговых и дискретных устройств. Электронная система впрыскивания и зажигания. Электронная система подачи топлива. Информационное обеспечение систем управления двигателем.

    контрольная работа , добавлен 17.04.2016

    Изучение устройства квадрокоптера. Обзор вентильных двигателей и принципов работы электронных регуляторов хода. Описание основ управления двигателем. Расчет всех сил и моментов приложенных к квадрокоптеру. Формирование контура управления и стабилизации.

    курсовая работа , добавлен 19.12.2015

    Общее устройство автомобиля и назначение его основных частей. Рабочий цикл двигателя, параметры его работы и устройство механизмов и систем. Агрегаты силовой передачи, ходовой части и подвески, электрооборудования, рулевого управления, тормозной системы.

    реферат , добавлен 17.11.2009

    Появление новых видов транспорта. Позиции в транспортной системе мира и России. Технологии, логистика, координация в деятельности автомобильного транспорта. Инновационная стратегия США и России. Инвестиционная привлекательность автомобильного транспорта.

    реферат , добавлен 26.04.2009

    Анализ развития автомобильного транспорта как элемента транспортной системы, его место и роль в современном хозяйстве России. Технико-экономические особенности автотранспорта, характеристика основных факторов, определяющих пути его развития и размещения.

    контрольная работа , добавлен 15.11.2010

    Блок двигателя и кривошипно-шатунный механизм автомобиля НИССАН. Газораспределительный механизм, системы смазки, охлаждения и питания. Комплексная система управления двигателем. Подсистемы управления впрыском топлива и углом опережения зажигания.

    контрольная работа , добавлен 08.06.2009

    Транспорт и его роль в социально-экономическом развитии Российской Федерации. Характеристика транспортной системы области. Разработка программ и мероприятий по ее регулированию. Принципы и направления стратегического развития автомобильного транспорта.

    дипломная работа , добавлен 08.03.2014

    Федеральный Закон "О автомобильном транспорте в Российской Федерации". Федеральный Закон "Устав автомобильного транспорта Российской Федерации". Правовые, организационные и экономические условия функционирования автомобильного транспорта РФ.

Объемы мирового производства мехатронных устройств ежегодно увеличиваются, охватывая все новые сферы. Сегодня мехатронные модули и системы находят широкое применение в следующих областях:

Станкостроение и оборудование для автоматизации технологических

процессов;

Робототехника(промышленная и специальная);

Авиационная, космическая и военная техника;

Автомобилестроение(например, антиблокировочные системы тормозов,

системы стабилизации движения автомобиля и автоматической парковки);

Нетрадиционные транспортные средства(электровелосипеды, грузовые

тележки, электророллеры, инвалидные коляски);

Офисная техника(например, копировальные и факсимильные аппараты);

Элементы вычислительной техники(например, принтеры, плоттеры,

дисководы);

Медицинское оборудование (реабилитационное, клиническое, сервисное);

Бытовая техника(стиральные, швейные, посудомоечные и другие машины);

Микромашины(для медицины, биотехнологии, средств

телекоммуникации);

Контрольно-измерительные устройства и машины;

Фото- и видеотехника;

Тренажеры для подготовки пилотов и операторов;

Шоу-индустрия (системы звукового и светового оформления).

ПЕРЕЧЕНЬ ССЫЛОК

1.
Ю. В. Подураев «Основы мехатроники» Учебное пособие. Москва.- 2000г. 104 с.

2.
http://ru.wikipedia.org/wiki/Мехатроника

3.
http://mau.ejournal.ru/

4.
http://mechatronica-journal.stankin.ru/

Анализ структуры мехатронных систем мехатронных модулей

Учебное пособие

По дисциплине «Проектирование мехатронных систем»

по специальности 220401.65

«Мехатроника»

г.о. Тольятти 2010

Краснов С.В., Лысенко И.В. Проектирование мехатронных систем. Часть 2. Проектирование электромеханических модулей мехатронных систем

Аннотация. Учебное пособие включает сведения о составе мехатронной системы, месте электромехатронных модулей в мехатронных системах, о структуре электромехатронных модулей, их типах и особенностях, включает этапы и методы проектирования мехатронных систем. критерии расчета нагрузочных характеристик модулей, критерии выбора приводов и т.д.

1 Анализ структуры мехатронных систем мехатронных модулей 5

1.1 Анализ структуры мехатронной системы 5

1.2 Анализ оборудования приводов мехатронных модулей 12

1.3 Анализ и классификация электрических двигателей 15

1.4 Анализ структуры систем управления приводами 20

1.5 Технологии формирования управляющего сигнала. ШИМ модуляция и ПИД регулирование 28

1.6 Анализ приводов и систем числового управления станков 33

1.7 Энергетические и выходные механические преобразователи приводов мехатронных модулей 39

1.8 Датчики обратной связи приводов мехатронных модулей 44

2 Основные понятия и методологии проектирования мехатронных систем (МС) 48

2.1 Основные принципы проектирования мехатронных систем 48

2.2 Описание этапов проектирования МС 60

2.3 Изготовление (реализация) МС 79

2.4 Тестирование МС 79

2.5 Оценка качества МС 83

2.6 Документация к МС 86

2.7 Экономическая эффективность МС 87

2.8 Разработка мероприятий по обеспечению безопасных условий труда с электромеханическими модулями 88

3. Методы расчетов параметров и проектирование мехатронных модулей 91

3.1 Функциональное моделирование процесса проектирования мехатронного модуля 91

3.2 Этапы проектирования мехатронного модуля 91

3.3 Анализ критериев выбора двигателей мехатронных систем 91

3.4 Анализ основного математического аппарата расчета приводов 98

3.5 Расчет требуемой мощности и выбор ЭД подач 101

3.6 Управление двигателем постоянного тока по положению 110

3.7 Описание современных аппаратно-программных решений управления исполнительными элементами станков 121

Список источников и литературы 135

Мехатроника изучает синергетическое объединение узлов точной механики с электронными, электротехническими и компьютерными компонентами с целью проектирования и производства качественно новых модулей, систем, машин и комплекса машин с интеллектуальным управлениями их функциональными движениями.

Мехатронная система – совокупность мехатронных модулей (компьютерного ядра, информационных устройств-датчиков, электромеханических (приводов двигателей), механичемских (исполнительные элементы – фрезы, руки робота и т.д.), программного обеспечения (специально – управляющие программы, системного – операционные системы и среды, драйверы).

Мехатронный модуль – отдельный блок мехатронной системы, совокупность аппаратно-программных средств, осуществляющих движение одного или нескольких исполнительных органов.

Интегрированные мехатронные элементы выбираются разработчиком на стадии проектирования, а затем обеспечивается необходимая инженерная и технологическая поддержка.

Методологическая основа разработки МС служат методы параллельного проектирования, то есть одновременного и взаимосвязанного при синтезе всех компонентов системы. Базовыми объектами являются мехатронные модули, которые выполняют движение, как правило, по одной координате. В мехатронных системах для обеспечения высокого качества реализации сложных и точных движений применяются методы интеллектуального управления (новые идеи в теории управления, современные аппараты вычислительной техники).

В состав традиционной мехатронной машины входят следующие основные компоненты:

Механические устройства, конечным звеном которого является рабочий орган;

Блок приводов, включающий силовые преобразователи и силовые двигатели;

Устройства компьютерного управления, уровнем для которого является человек-оператор, либо другая ЭВМ входящая в компьютерную сеть;

Сенсорные устройства, предназначенные для передачи устройству управления информации о фактическом состоянии блоков машины и движения мехатронной системы.

Таким образом, наличие трех обязательных частей: электромеханической, электронной, компьютерной, связанных энергетическими и информационными потоками является первичным признаком отличающим мехатронную систему.

Таким образом, для физической реализации мехатронной системы теоретически необходимы 4 основных функциональных блока, которые изображены на рисунке 1.1

Рисунок 1.1 – Блок-схема мехатронной системы

Если работа основана на гидравлических, пневматических или комбинированных процессах, то необходимы соответствующие преобразователи и датчики обратной связи.

Мехатроника является научно-технической дисциплиной, которая изучает построение электромеханических систем нового поколения, обладающих принципиально новыми качествами и, часто, рекордными параметрами. Обычно мехатронная система является объединением собственно электромеханических компонентов с новейшей силовой электроникой, которые управляются с помощью различных микроконтроллеров, ПК или других вычислительных устройств. При этом система в истинно мехатронном подходе, несмотря на использование стандартных компонентов, строится как можно более монолитно, конструкторы стараются объединить все части системы воедино без использования лишних интерфейсов между модулями. В частности, применяя встроенные непосредственно в микроконтроллеры АЦП, интеллектуальные силовые преобразователи и т. п. Это даёт сокращение массогабаритных показателей, повышение надёжности системы и другие преимущества. Любая система, управляющая группой приводов может считаться мехатронной. В частности, если она управляет группой реактивных двигателей космического аппарата.

Рисунок 1.2 – Состав мехатронной системы

Иногда система содержит принципиально новые с конструкторской точки зрения узлы, такие как электромагнитные подвесы, заменяющие обычные подшипниковые узлы.

Рассмотрим обобщенную структуру машин с компьютерным управлением, ориентированных на задачи автоматизированного машиностроения.

Внешней средой для машин рассматриваемого класса является технологическая среда, которая содержит различное основное и вспомогательное оборудование, технологическую оснастку и объекты работ. При выполнении мехатронной системой заданного функционального движения объекты работ оказывают возмущающие воздействия на рабочий орган. Примерами таких воздействий могут служить силы резания для операций механообработки, контактные силы и моменты сил при сборке, сила реакции струи жидкости при операции гидравлической резки.

Внешние среды укрупненно можно разделить на два основных класса: детерминированные и недетерминированные. К детерминированным относятся среды, для которых параметры возмущающих воздействий и характеристики объектов работ могут быть заранее определены с необходимой для проектирования МС степенью точности. Некоторые среды являются недерминированными по своей природе (например, экстремальные среды: подводные, подземные и т.п.). Характеристики технологических сред как правило могут быть определены с помощью аналитико-экспериментальных исследований и методов компьютерного моделирования. Например, для оценки сил резания при механообработке проводят серии экспериментов на специальных исследовательских установках, параметры вибрационных воздействий измеряют на вибростендах с последующим формированием математических и компьютерных моделей возмущающих воздействий на основе экспериментальных данных.

Однако для организации и проведения подобных исследований зачастую требуются слишком сложные и дорогостоящие аппаратура и измерительные технологии. Так для предварительной оценки силовых воздействий на рабочий орган при операции роботизированного удаления облоя с литых изделий необходимо измерять фактические форму и размеры каждой заготовки.

Рисунок 1.3 – Обобщенная схема мехатронной системы с компьютерным управлением движением

В таких случаях целесообразно применять методы адаптивного управления, которые позволяют автоматически корректировать закон движения МС непосредственно в ходе выполнения операции.

В состав традиционной машины входят следующие основные компоненты: механическое устройство, конечным звеном которого является рабочий орган; блок приводов, включающий силовые преобразователи и исполнительные двигатели; устройство компьютерного управления, верхним уровнем для которого является человек-оператор, либо другая ЭВМ, входящая в компьютерную сеть; сенсоры, предназначенные для передачи в устройство управления информации о фактическом состоянии блоков машины и движении МС.

Таким образом, наличие трех обязательных частей - механической (точнее электромеханической), электронной и компьютерной, связанных энергетическими и информационными потоками, является первичным признаком, отличающим мехатронные системы.

Электромеханическая часть включает механические звенья и передачи, рабочий орган, электродвигатели, сенсоры и дополнительные электротехнические элементы (тормоза, муфты). Механическое устройство предназначено для преобразования движений звеньев в требуемое движение рабочего органа. Электронная часть состоит из микроэлектронных устройств, силовых преобразователей и электроники измерительных цепей. Сенсоры предназначены для сбора данных о фактическом состоянии внешней среды и объектов работ, механического устройства и блока приводов с последующей первичной обработкой и передачей этой информации в устройство компьютерного управления (УКУ). В состав УКУ мехатронной системы обычно входят компьютер верхнего уровня и контроллеры управления движением.

Устройство компьютерного управления выполняет следующие основные функции:

Управление процессом механического движения мехатронного модуля или многомерной системы в реальном времени с обработкой сенсорной информации;

Организация управления функциональными движениями МС, которая предполагает координацию управления механическим движением МС и сопутствующими внешними процессами. Как правило, для реализации функции управления внешними процессами используются дискретные входы/выходы устройства;

Взаимодействие с человеком-оператором через человеко-машинный интерфейс в режимах автономного программирования (off-line) и непосредственно в процессе движения МС (режим on-line);

Организация обмена данными с периферийными устройствами, сенсорами и другими устройствами системы.

Задачей мехатронной системы является преобразование входной информации, поступающей с верхнего уровня управления, в целенаправленное механическое движение с управлением на основе принципа обратной связи. Характерно, что электрическая энергия (реже гидравлическая или пневматическая) используется в современных системах как промежуточная энергетическая форма.

Суть мехатронного подхода к проектированию состоит в интеграции в единый функциональный модуль двух или более элементов возможно даже различной физической природы. Другими словами, на стадии проектирования из традиционной структуры машины исключается как сепаратное устройство по крайней мере один интерфейс при сохранении физической сущности преобразования, выполняемого данным модулем.

В идеальном для пользователя варианте мехатронный модуль, получив на вход информацию о цели управления, будет выполнять с желаемыми показателями качества заданное функциональное движение. Аппаратное объединение элементов в единые конструктивные модули должно обязательно сопровождаться разработкой интегрированного программного обеспечения. Программные средства МС должны обеспечивать непосредственный переход от замысла системы через ее математическое моделирование к управлению функциональным движением в реальном времени.

Применение мехатронного подхода при создании машин с компьютерным управлением определяет их основные преимущества по сравнению с традиционными средствами автоматизации:

Относительно низкую стоимость благодаря высокой степени интеграции, унификации и стандартизации всех элементов и интерфейсов;

Высокое качество реализации сложных и точных движений вследствие применения методов интеллектуального управления;

Высокую надежность, долговечность и помехозащищенность;

Конструктивную компактность модулей (вплоть до миниатюризации в микромашинах),

Улучшенные массогабаритные и динамические характеристики машин вследствие упрощения кинематических цепей;

Возможность комплексирования функциональных модулей в сложные системы и комплексы под конкретные задачи заказчика.

Классификация приводов исполнительных механизмов мехатронной системы показана на рисунке 1.4.

Рисунок 1.4 – Классификация приводов мехатронной системы

На рисунке 1.5 показана схема электромехатронного узла на базе привода.

Рисунок 1.5 – Схема электромехатронного узла

В различных областях техники широко распространены приводы, выполняющие силовые функции в системах управле­ния разнообразными объектами. Автоматизация технологичес­ких процессов и производств, в частности, в машиностроении невозможна без использования различных приводов, которые включают в себя: исполнительные механизмы, определяемые технологическим процессом, двигатели и систему управления двигателями. В приводах систем управления МС (технологи­ческих машин, машин - автоматов МА, ПР и т.д.) применяют значительно отличающиеся по физическим эффектам испол­нительные двигатели. Реализация таких физических эффек­тов как магнетизм (электродвигатели), гравитация в виде пре­образования гидравлических и воздушных потоков в механи­ческое движение, расширение среды (двигатели внутреннего сгорания, реактивные, паровые и пр.); электролиз (емкостные двигатели) в совокупности с новейшими достижениями в области микропроцессорной техники позволяет создавать современные приводные системы (ПС) с улучшенными технически­ми характеристиками. Связь силовых параметров привода (крутящий момент, усилие) с кинематическими параметрами (угловая скорость выходного вала, скорость линейного пере­мещения штока ИМ) определяется механическими характе­ристиками электро-, гидро-, пневмо- и других приводов, в совокупности или раздельно решающих задачи движения (ра­бочего, холостого хода) механической части МС (технологи­ческого оборудования). При этом, если требуется регулирова­ние выходных параметров машины (силовых, скоростных, энергетических), то механические характеристики двигате­лей (приводов) должны целесообразно видоизменяться в ре­зультате управления устройствами регулирования, например, уровня питающего напряжения, тока, давления, расхода жид­кости или газа.

Простота формирования механических движений непосред­ственно из электрической энергии в приводных системах с электрическим двигателем, т.е. в электромеханических систе­мах ЭМС, предопределяет ряд преимуществ такого привода перед гидравлическими и пневматическими приводами. В на­стоящее время электродвигатели постоянного и переменного тока выпускаются заводами-изготовителями от десятых долей ватта до десятков мегаватт, что позволяет обеспечить спрос на них (по требуемой мощности) как для применения в промыш­ленности, так и на многих видах транспорта, в быту.

Гидравлические приводы МС (технологического оборудова­ния и ПР) в сравнении с электроприводами, весьма широко применяются в транспортных, горных, строительных, дорож­ных, путевых, мелиоративных и сельскохозяйственных маши­нах, подъемно-транспортных механизмах, летательных и под­водных аппаратах. Они обладают существенным преимуще­ством перед электромеханическим приводом там, где требуют­ся значительные рабочие нагрузки при небольших габаритах, например, в тормозных системах или автоматических короб­ках передач автомобилей, ракетной и космической технике. Широкая применимость гидроприводов обусловлена тем, что напряженность рабочей среды в них значительно больше, чем напряженность рабочей среды в электродвигателях и в про­мышленных пневматических приводах. В реальных гидравли­ческих приводах напряженность рабочей среды в направлении передачи движения составляет 6-100 МПа при гибком управ­лении за счет регулирования потока жидкости гидравлически­ми устройствами, имеющими различное управление, в том числе и электронное. Компактность и малая инерционность гидропривода обеспечивают легкое и быстрое изменение на­правления движения ИМ, а применение электронной аппаратуры управления обеспечивает приемлемые переходные про­цессы и заданную стабилизацию выходных параметров.

Для автоматизации управления МС (различного технологи­ческого оборудования, машин-автоматов и ПР) широко исполь­зуют также пневматические приводы на базе пневмодвигателей для реализации как поступательных, так и вращательных дви­жений. Однако из-за существенного различия свойств рабочей среды пневмо- и гидроприводов их технические характеристики отличаются вследствие значительной сжимаемости газов в срав­нении со сжимаемостью капельной жидкости. При простоте конструкции, хороших экономических показателях и достаточ­ной надежности, но низких регулировочных свойствах, пневмоприводы не могут быть использованы в позиционных и контур­ных режимах работы, что несколько снижает привлекатель­ность их применения в МС (технических системах ТС).

Определить наиболее приемлемый вид энергии в приводе с возможно достижимой эффективностью использования его в процессе эксплуатации технологического или оборудо­вания другого назначения задача достаточно сложная и может иметь несколько решений. Прежде всего, каждый привод дол­жен удовлетворять своему служебному назначению, необходи­мым силовым и кинематическим характеристикам. Определяю­щими факторами при достижении требуемых силовых и кинема­тических характеристик, эргономических показателей разраба­тываемого привода могут быть: быстродействие привода, точ­ность позиционирования и качество управления, ограничения по массе и габаритным размерам, расположение привода в общей компоновке оборудования. Окончательное решение при сопоставимости определяющих факторов принимается по резуль­татам экономического сравнения различных вариантов выбран­ного вида привода по стартовым и эксплуатационным затратам на его проектирование, изготовление и эксплуатацию.

Таблица 1.1 - Классификация электродвигателей

Мехатронные модули находят все более широкое применение в различных транспортных системах.

Современный автомобиль в целом является мехатронной системой, включающей в себя механику, электронику, различные датчики, бортовой компьютер, который отслеживает и регулирует деятельность всех систем автомобиля, информирует пользователя и доводит управление от пользователя до всех систем. Автомобилестроение на современном этапе своего развития является одной из самых перспективных областей внедрения мехатронных систем в силу повышенного спроса и возрастающей автомобилизации населения, а также благодаря наличию конкурентной борьбы между отдельными производителями.

Если классифицировать современный автомобиль по принципу управления, он относится к антропоморфным устройствам, т.к. его движение контролируется человеком. Уже сейчас можно сказать, что в обозримом будущем автомобилестроения нужно ожидать появление автомобилей с возможностью автономного управления, т.е. с интеллектуальной системой управления движением.

Жесткая конкуренция на автомобильном рынке вынуждает специалистов в этой области к поиску новых передовых технологий. На сегодняшний день, одной из главных проблем для разработчиков заключается в создании «умных» электронных устройств, способных сократить число дорожно-транспортных происшествий (ДТП). Итогом работы в этой области стало создание системы комплексной безопасности автомобиля (СКБА), которая способна автоматически поддерживать заданную дистанцию, останавливать машину при красном сигнале светофора, предупреждать водителя о том, что он преодолевает поворот на скорости, более высокой, чем это допустимо законами физики. Были разработаны даже датчики удара с радиосигнализатором, который при наезде автомобиля на препятствие или столкновении вызывает машину скорой помощи.

Все эти электронные устройства предотвращения ДТП делятся на две категории. Первая включает приборы в автомобиле, действующие независимо от каких-либо сигналов внешних источников информации (других автомобилей, инфраструктуры). Они обрабатывают информацию, поступающую от бортового радиолокатора (радара). Вторая категория - системы, действие которых основано на данных, полученных от источников информации, расположенных вблизи дороги, в частности от маяков, которые собирают сведения о дорожной обстановке и передают их посредством инфракрасных лучей в проезжающие автомобили.

СКБА объединила новое поколение перечисленных выше устройств. Она принимает как сигналы радара, так и инфракрасные лучи «думающих» маяков, а в дополнение к основным функциям обеспечивает безостановочное и спокойное для водителя движение на нерегулируемых пересечениях дорог и улиц, ограничивает скорость движения на поворотах и в жилых районах пределами установленных скоростных лимитов. Как все автономные системы, СКБА требует, чтобы автомобиль был оборудован антиблокировочной системой тормозов (АБС) и автоматической коробкой передач.

СКБА включает лазерный дальномер, постоянно измеряющий расстояние между автомобилем и любым препятствием по ходу - движущимся или неподвижным. Если наезд вероятен, а водитель не замедляет скорость, микропроцессор дает команду сбросить давление на педаль акселератора, включить тормоза. Небольшой экран на панели приборов вспыхивает предупреждением об опасности. По желанию водителя бортовой компьютер может устанавливать безопасную дистанцию в зависимости от дорожного покрытия - влажного или сухого.

СКБА (рис.5.22) способна управлять автомобилем, ориентируясь на белые линии разметки дорожного покрытия. Но для этого необходимо, чтобы они были четкими, поскольку постоянно «считываются» находящейся на борту видеокамерой. Обработка изображения затем определяет положение машины относительно линий, а электронная система в соответствии с этим воздействует на рулевое управление.

Бортовые приемники инфракрасных лучей СКБА действуют при наличии передатчиков, размещенных через определенные интервалы вдоль проезжей дороги. Лучи распространяются прямолинейно и на небольшое расстояние (примерно до 120 м), а данные, передаваемые закодированными сигналами, невозможно ни заглушить, ни исказить.

Рис. 5.22. Система комплексной безопасности автомобиля: 1 - приемник инфракрасных лучей; 2 - датчик погоды (дождь, влажность); 3 - привод дроссельной заслонки системы питания; 4 - компьютер; 5 - вспомогательный электроклапан в приводе тормозов; 6 - АБС; 7 - дальномер; 8 - автоматическая коробка передач; 9 - датчик скорости автомобиля; 10 - вспомогательным электроклапан рулевого управления; 11 - датчик акселератора; 12 - датчик рулевого управления; 13 - стол-сигнал; 14 - компьютер электронного видения; 15 - телевизионная камера; 16 - экран.

На рис. 5.23 представлен датчик погоды фирмы «Boch». В зависимости от модели внутрь помещают инфракрасный светодиод и один - три фотоприемника. Светодиод испускает невидимый луч под острым углом к поверхности ветрового стекла. Если на улице сухо, весь свет отражается обратно и попадает на фотоприемник (так рассчитана оптическая система). Поскольку луч модулирован импульсами, то на посторонний свет датчик не среагирует. Но если на стекле есть капли или слой воды, условия преломления изменяются, и часть света уходит в пространство. Это фиксируется сенсором, и контроллер рассчитывает подходящий режим работы стеклоочистителя. Попутно данный прибор может закрыть электролюк в крыше, поднять стекла. Датчик имеет еще 2 фотоприемника, которые интегрированы в общий корпус с датчиком погоды. Первый предназначен для автоматического включения фар, когда смеркается или автомобиль въезжает в тоннель. Второй, переключает «дальний» и «ближний» свет. Задействованы ли эти функции, зависит, от конкретной модели автомобиля.

Рис.5.23. Принцип работы датчика погоды

Антиблокировочные тормозные системы (АБС), ее необходимые компоненты - датчики скорости колеса, электронный процессор (блок управления), сервоклапаны, гидравлический насос с электрическим приводом и аккумулятор давления. Некоторые ранние АБС были “трехканальные”, т.е. управляли передними тормозными механизмами индивидуально, но растормаживали полностью все задние тормозные механизмы при начале блокирования любого из задних колес. Это экономило некоторое количество стоимости и усложнения конструкции, но дало более низкую эффективность по сравнению с полной четырехканальной системой, в которой каждый тормозной механизм управляется индивидуально.

АБС имеет много общего с противобуксовочной системой (ПБС), чье действие могло бы рассматриваться как “АБС наоборот”, так как ПБС работает по принципу обнаружения момента начала быстрого вращения одного из колес по сравнению с другим (момента начала пробуксовывания) и подачи сигнала на притормаживание этого колеса. Датчики скорости колеса могут быть общими, и поэтому наиболее эффективный способ предотвращать пробуксовку ведущего колеса уменьшением его скорости состоит в том, чтобы применить мгновенное (и если необходимо, повторное) действие тормоза, тормозные импульсы могут быть получены от блока клапанов АБС. В действительности, если присутствует АБС, это все, что требуется, чтобы обеспечить и ПБС - плюс некоторое дополнительное программное обеспечение и дополнительный блок управления, чтобы уменьшить при необходимости крутящий момент двигателя или сократить количество подводимого топлива, или осуществить прямое вмешательство в систему управления педалью газа.

На рис. 5.24 представлена схема электронной системы питания автомобиля: 1 - реле зажигания; 2 - центральный переключатель; 3 - аккумуляторная батарея; 4 - нейтрализатор отработавших газов; 5 - датчик кислорода; 6 - воздушный фильтр; 7 - датчик массового расхода воздуха; 8 - колодка диагностики; 9 - регулятор холостого хода; 10 - датчик положения дроссельной заслонки; 11 - дроссельный патрубок; 12 - модуль зажигания; 13 - датчик фаз; 14 - форсунка; 15 - регулятор давления топлива; 16 - датчик температуры ОЖ; 17 - свеча; 18 - датчик положения коленвала; 19 - датчик детонации; 20 - топливный фильтр; 21 - контроллер; 22 - датчик скорости; 23 - топливный насос; 24 - реле включения топливного насоса; 25 - бензобак.

Рис. 5.24. Упрощенная схема системы впрыска

Одной из составных частей СКБА является подушка безопасности (см. рис.5.25.), элементы которой размещены в разных частях автомобиля. Инерционные датчики, находящиеся в бампере, у моторного щита, в стойках или в районе подлокотника (в зависимости от модели автомобиля), в случае аварии посылают сигнал на электронный блок управления. В большинстве современных СКБА фронтальные датчики рассчитаны на силу удара на скорости от 50 км/ч. Боковые срабатывают при более слабых ударах. От электронного блока управления сигнал следует на основной модуль, который состоит из компактно уложенной подушки, соединенной с газогенератором. Последний представляет собой таблетку диаметром около 10 см и толщиной около 1 см с кристаллическим азотгенерирующим веществом. Электрический импульс поджигает в «таблетке» пиропатрон или плавит проволоку, и кристаллы со скоростью взрыва превращаются в газ. Весь описанный процесс происходит очень быстро. «Средняя» подушка наполняется за 25 мс. Поверхность подушки европейского стандарта мчится навстречу грудной клетке и лицу со скоростью около 200 км/ч, а американского - около 300. Поэтому в машинах, оборудованных подушкой безопасности, производители настоятельно советуют пристегиваться и не сидеть вплотную к рулю или торпедо. В наиболее «продвинутых» системах есть устройства, идентифицирующие наличие пассажира или детского кресла и, соответственно, либо отключающие, либо корректирующие степень надувания.

Рис.5.25 Автомобильная подушка безопасности:

1 - натяжное устройство ремня безопасности; 2 - надувная подушка безопасности; 3 - надувная подушка безопасности; для водителя; 4 – блок управления и центральный датчик; 5 – исполнительный модуль; 6 – инерционные датчики

Более подробно с современной автомобильной МС можно ознакомиться в пособии .

Помимо обычных автомобилей большое внимание уделяется созданию легких транспортных средств (ЛТС) с электроприводом (иногда их называют нетрадиционными). К этой группе транспортных средств относятся электровелосипеды, роллеры, инвалидные коляски, электромобили с автономными источниками питания. Разработку таких мехатронных систем ведет Научно-инженерный центр "Мехатроника" в кооперации с рядом организаций. ЛТС являются альтернативой транспорту с двигателями внутреннего сгорания и используются в настоящее время в экологически чистых зонах (лечебно-оздоровительных, туристических, выставочных, парковых комплексах), а также в торговых и складских помещениях. Техническая характеристика опытного образца электровелосипеда:

Максимальная скорость 20 км/час,

Номинальная мощность привода 160 Вт,

Номинальная частота вращения 160 об/мин,

Максимальный крутящий момент 18 Нм,

Масса двигателя 4.7 кг,

Аккумуляторная батарея 36В, 6 А*ч,

Движение в автономном режиме 20 км.

Основой для создания ЛТС являются мехатронные модули типа "мотор-колесо" на базе, как правило, высокомоментных электродвигателей.

Морской транспорт. МС находят все более широкое применение для интенсификации труда экипажей морских и речных судов, связанных с автоматизацией и механизацией основных технических средств, к которым относятся главная энергетическая установка с обслуживающими системами и вспомогательными механизмами, электроэнергетическая система, общесудовые системы, рулевые устройства и двигатели.

Комплексные автоматические системы удержания судна на заданной траектории (СУЗТ) или судна, предназначенного для исследования Мирового океана, на заданной линии профиля (СУЗП) относятся к системам, обеспечивающим третий уровень автоматизации управления. Применение таких систем позволяет:

Повысить экономическую эффективность морских транспортных перевозок за счет реализации наилучшей траектории, движения судна с учетом навигационных и гидрометеорологических условий плавания;

Повысить экономическую эффективность океанографических, гидрографических и морских геологоразведочных работ за счет увеличения точности удержания судна на заданной линии профиля, расширения диапазона ветроволновых возмущений, при которых обеспечивается требуемое качество управления, и увеличения рабочей скорости судна;

Решать задачи реализации оптимальной траектории движения судна при расхождении с опасными объектами; повысить безопасность мореплавания вблизи навигационных опасностей за счет более точного управления движением судна.

Комплексные автоматические системы управления движением по заданной программе геофизических исследований (АСУД) предназначены для автоматического выведения судна на заданную линию профиля, автоматического удержания геолого-геофизического судна на исследуемой линии профиля, маневрирования при переходах с одной линии профиля на другую. Рассматриваемая система позволяет повысить эффективность и качество морских геофизических исследований.

В морских условиях невозможно применение обычных методов предварительной разведки (поисковая партия или детальная аэрофотосъемка), поэтому наиболее широкое распространение получил сейсмический метод геофизических исследований (рис. 5.26). Геофизическое судно 1 буксирует на кабель-тросе 2 пневматическую пушку 3, являющуюся источником сейсмических колебаний, сейсмографную косу 4, на которой размещены приемники отраженных сейсмических колебаний, и концевой буй 5. Профили дна определяют посредством регистрации интенсивности сейсмических колебаний, отраженных от пограничных слоев 6 различных пород.

Рис.5.26. Схема проведения геофизических исследований.

Для получения достоверной геофизической информации судно должно удерживаться на заданном положении относительно дна (линии профиля) с высокой точностью, несмотря на малую скорость движения (3-5 уз) и наличие буксируемых устройств значительной длины (до 3 км) с ограниченной механической прочностью.

Фирмой «Анжутц» разработана комплексированная МС, обеспечивающая удержание судна на заданной траектории. На рис. 5.27 представлена структурная схема этой системы, в которую входят: гирокомпас 1; лаг 2; приборы навигационных комплексов, определяющих положение судна (два и более) 3; авторулевой 4; мини-ЭВМ 5 (5а - интерфейс, 5б - центральное запоминающее устройство, 5в - центральный процессорный блок); считыватель перфоленты 6; графопостроитель 7; дисплей 8; клавиатура 9; рулевая машина 10.

С помощью рассматриваемой системы можно автоматически вывести судно на запрограммированную траекторию, которая задается оператором с помощью клавиатуры, определяющей географические координаты точек поворота. В этой системе независимо от информации, поступающей от какой-либо одной группы приборов традиционного радионавигационного комплекса или устройств спутниковой связи, определяющей положение судна, вычисляются координаты вероятного положения судна по данным, выдаваемым гирокомпасом и лагом.

Рис.5.27. Структурная схема комплексированной МС удержания судна на заданной траектории

Управление курсом с помощью рассматриваемой системы осуществляется авторулевым, на вход которого поступает информация о величине заданного курса ψзад, формируемая мини-ЭВМ с учетом ошибки по положению судна. Система собрана в пульте управления. В верхней его части размещен дисплей с органами настройки оптимального изображения. Ниже, на наклонном поле пульта, расположен авторулевой с рукоятками управления. На горизонтальном поле пульта находится клавиатура, при помощи которой осуществляется ввод программ в мини-ЭВМ. Здесь же размещен переключатель, с помощью которого производится выбор режима управления. В цокольной части пульта расположены мини-ЭВМ и интерфейс. Вся периферийная аппаратура размещается на специальных подставках или других пультах. Рассматриваемая система может работать в трех режимах: «Курс», «Монитор» и «Программа». В режиме «Курс» осуществляется удержание заданного курса с помощью авторулевого по показаниям гирокомпаса. Режим «Монитор» выбирается тогда, когда готовится переход на режим «Программа», когда этот режим прерывается или когда переход по данному режиму закончен. На режим «Курс» переходят, когда обнаруживаются неисправности мини-ЭВМ, источников питания или радионавигационного комплекса. В этом режиме авторулевой работает независимо от мини-ЭВМ. В режиме «Программа» происходит управление курсом по данным радионавигационных приборов (датчиков положения) или гирокомпаса.

Обслуживание системы удержания судна на ЗТ осуществляется оператором с пульта. Выбор группы датчиков для определения положения судна производится оператором по рекомендациям, представленным на экране дисплея. В нижней части экрана приводится список всех разрешенных для данного режима команд, которые могут вводиться с помощью клавиатуры. Случайное нажатие какой-либо запрещенной клавиши блокируется ЭВМ.

Авиационная техника. Успехи, достигнутые в развитии авиационной и космической техники с одной стороны и необходимость снижения стоимости целевых операций с другой, стимулировали разработки нового вида техники – дистанционно пилотируемых летательных аппаратов (ДПЛА) .

На рис. 5.28 представлена структурная схема системы дистанционного управления полетом ДПЛА - HIMAT. Основной компонентой системы дистанционного пилотирования HIMAT является наземный пункт дистанционного управления. Параметры полета ДПЛА поступают в наземный пункт по линии радиосвязи от летательного аппарата, принимаются и декодируются станцией обработки телеметрии и передаются в наземную часть вычислительной системы, а также на приборы индикации информации в наземном пункте управления. Кроме этого, с борта ДПЛА поступает отображаемая с помощью телевизионной камеры картина внешнего обзора. Телевизионное изображение, высвечиваемое на экране наземного рабочего места человека-оператора, используется для управления летательным аппаратом при воздушных маневрах, заходе на посадку и при самой посадке. Кабина наземного пункта дистанционного управления (рабочее место оператора) оборудована приборами, обеспечивающими индикацию информации о полете и состоянии аппаратуры комплекса ДПЛА, а также средствами для управления летательным аппаратом. В частности, в распоряжении человека-оператора имеются ручки и педали управления летательным аппаратом по крену и тангажу, а также ручка управления двигателем. При выходе из строя основной системы управления подача команд системы управления происходит посредством специального пульта дискретных команд оператора ДПЛА.

Рис.5.28. Система дистанционного пилотирования ДПЛА HIMAT:

носитель В-52; 2 – резервная система управления на самолете TF-104G; 3 – линия телеметрической связи с землей; 4 - ДПЛА HIMAT; 5 – линии телеметрической связи с ДПЛА; 5 – наземный пункт дистационного пилотирования

В качестве автономной навигационной системы, обеспечивающей счисление пути, используются доплеровские измерители путевой скорости и угла сноса (ДПСС). Такая навигационная система используется совместно с курсовой системой, измеряющей курс датчиком вертикали, формирующим сигналы крена и тангажа, и бортовой ЭВМ, реализующей алгоритм счисления пути. В совокупности эти устройства образуют доплеровскую навигационную систему (см. рис.5.29). Что бы повысить надежность и точность измерения текущих координат летательного аппарата, ДИСС может объединяться с измерителями скорости

Рис.5.29. Схема доплеровской навигационной системы

Миниатюризация электронных элементов, создание и серийный выпуск специальных типов датчиков и индикаторных устройств, надежно работающих в тяжёлых условиях, а также резкое удешевление микропроцессоров (в том числе и специально предназначенных для автомобилей) создали условия для превращения транспортных средств в МС довольно высокого уровня.

Высокоскоростной наземный транспорт на магнитном подвесе является наглядным примером современной мехатронной системы. Пока единственная в мире коммерческая транспортная система такого рода введена в эксплуатацию в Китае в сентябре 2002 г. и соединяет международный аэропорт Пудонг с центром города Шанхай. Система была разработана, изготовлена и испытана в Германии, после чего вагоны поезда были переправлены в Китай. Направляющий путь, расположенный на высокой эстакаде, изготавливался на месте в Китае. Поезд разгоняется до скорости 430 км/ч и пролетает путь длиной 34 км за 7 минут (максимальная скорость может достигать 600 км/ч). Поезд парит над направляющим путем, трение о путь отсутствует, и основное сопротивление движению оказывает воздух. Поэтому поезду придана аэродинамическая форма, стыки между вагонами закрыты (рис.5.30).

Чтобы в случае аварийного отключения электропитания поезд не упал на направляющий путь, в нем предусмотрены мощные аккумуляторные батареи, энергии которых достаточно для плавной остановки поезда.

С помощью электромагнитов расстояние между поездом и направляющим путем (15 мм) во время движения выдерживается с точностью до 2 мм, что позволяет полностью исключить вибрацию вагонов даже на максимальной скорости. Количество и параметры поддерживающих магнитов является коммерческой тайной.

Рис. 5.30. Поезд на магнитном подвесе

Транспортная система на магнитном подвесе полностью управляется компьютером, так как на такой высокой скорости человек не успевает реагировать на возникающие ситуации. Компьютер управляет и разгоном-торможением поезда, учитывая также повороты пути, поэтому пассажиры не чувствуют дискомфорта при возникающих ускорениях.

Описанная транспортная система отличается высокой надежностью и небывалой четкостью выполнения расписания движения. За три первых года эксплуатации было перевезено свыше 8 миллионов пассажиров.

На сегодняшний день, лидерами в технологии маглев (используемое на Западе сокращение от слов «магнитная левитация») являются Япония и Германия. В Японии маглев поставил мировой рекорд скорости рельсового транспорта – 581 км/ч. Но дальше установления рекордов Япония пока не продвинулась, поезда курсируют лишь по экспериментальным линиям в префектуре Яманаси, общей протяжённостью около 19 км. В Германии развитием технологии маглев занимается компания Transrapid. Хотя в самой Германии коммерческая версия маглева не прижилась, поезда эксплуатируются на испытательном полигоне в Эмсланде компанией Transrapid, которая впервые в мире успешно реализовала коммерческую версию маглев в Китае.

В качестве примера уже существующих транспортных мехатронных систем (ТМС) с автономным управлением можно привести машину-робота компании VisLab и лаборатории машинного зрения и интеллектуальных систем университета Пармы.

Четыре машины-робота проделали беспрецедентный для автономных транспортных средств путь в 13 тысяч километров от итальянской Пармы до Шанхая. Этот эксперимент был призван стать жёстким тестом для интеллектуальной системы автономного вождения ТМС. Ее испытание проходило и в городском трафике, например, в Москве .

Машины-роботы были построены на базе микроавтобусов (рис.5.31). От обычных машин они отличались не только автономным управлением, но и чистой электротягой.

Рис. 5.31. Автомобиль с автономным управлением компании VisLab

На крыше ТМС были расположены солнечные батареи для питания критически важного оборудования: робототехнической системы, вращающей руль и жмущей на педали газа и тормоза, так и компьютерных компонентов машины. Остальную энергию поставляли электрические розетки по ходу путешествия.

Каждый автомобиль-робот был оснащён четырьмя лазерными сканерами спереди, двумя парами стереокамер, смотрящими вперёд и назад, тремя камерами, охватывающими 180-градусный сектор обзора в передней «полусфере» и системой спутниковой навигации, а также набором компьютеров и программ, позволяющих машине принимать решения в тех или иных ситуациях.

Еще один пример транспортной мехатронной системы с автономным управлением – это роботизированный электромобиль RoboCar MEV-C японского предприятия ZMP (рис.5.32).

Рис.5.32. Роботизированный электромобиль RoboCar MEV-C

Производитель позиционирует данную ТМС как машину для дальнейших передовых разработок. В состав устройства автономного управления входят следующие компоненты: стереокамера, 9-осный беспроводной датчик движения, GPS-модуль, сенсор температуры и влажности, лазерный дальномер, чипы Bluetooth, Wi-Fi и 3G, а также протокол CAN, который координирует совместную работу всех компонентов. Размеры RoboCar MEV-C составляют 2,3 x 1,0 x 1,6 м, он весит 310 кг.


Современным представителем транспортной мехатронной системы является трансскутер, относящийся к классу легких транспортных средств с электроприводом.

Трансскутеры – новая разновидность трансформируемых многофункциональных наземных транспортных средств индивидуального пользования с электроприводом, преимущественно предназначенных для лиц с ограниченными физическими возможностями (рис.5.33). Основной отличительной особенностью трансскутера от других наземных транспортных средств является возможность проходимости по лестничным маршам и реализации принципа многофункциональности, а значит, и трансформируемости в широком диапазоне.

Рис. 5.33. Внешний вид одного из образцов трансскутера семейства «Кенгуру»

Движитель трансскутера выполнен на базе мехатронного модуля типа «мотор-колесо». Функции и, соответственно, конфигурации, обеспечиваемые трансскутерами семейства «Кенгуру», следующие (рис.5.34):

- «Скутер» – движение с большой скоростью на длинной базе;

- «Кресло» – маневрирование на короткой базе;

- «Баланс» – движение стоя в режиме гиростабилизации на двух колесах;

- «Компакт-вертикаль» – движение стоя на трёх колесах в режиме гиростабилизации;

- «Поребрик» – преодоление поребрика сходу стоя или сидя (отдельные модели имеют дополнительную функцию «Косой поребрик» – преодоление поребрика под углом до 8 градусов);

- «Лестница вверх» – подъём по ступеням лестницы передним ходом, сидя или стоя;

- «Лестница вниз» – спуск по ступеням лестницы передним ходом, сидя;

- «За столом» – низкая посадка, ноги на полу.

Рис. 5.34. Основные конфигурации трансскутера на примере одного из вариантов его исполнения

В составе трансскутера в среднем 10 компактных высокомоментных электроприводов с микропроцессорным управлением. Все приводы однотипные – вентильные двигатели постоянного тока, управляемые по сигналам с датчиков Холла.

Для управления такими аппаратами используется многофункциональная микропроцессорная система управления (СУ) с бортовым компьютером. Архитектура системы управления трансскутером является двухуровневой. Нижний уровень – обслуживание непосредственно самого привода, верхний уровень – согласованная работа приводов по заданной программе (алгоритму), тестирование и контроль работы системы и датчиков; внешний интерфейс - удалённый доступ. В качестве контроллера верхнего уровня (бортового компьютера) используется PCM-3350 фирмы Advantech, выполненный в формате PC/104. В качестве контроллера нижнего уровня – специализированный микроконтроллер TMS320F2406 фирмы Texas Instruments для управления электродвигателями. Общее число контроллеров нижнего уровня, отвечающих за работу отдельных блоков, – 13: десять контроллеров управления приводами; контроллер рулевой головки, отвечающий также за индикацию выводимой информации на дисплей; контроллер определения остаточной ёмкости аккумуляторной батареи; контроллер заряда и разряда аккумуляторной батареи. Обмен данными между бортовым компьютером трансскутера и периферийными контроллерами поддерживается по общей шине с CAN-интерфейсом, что позволяет минимизировать количество проводников и достичь реальной скорости передачи данных 1 Мбит/с.

Задачи бортового компьютера: управление электроприводами, обслуживание команд от рулевой головки; расчет и вывод на индикацию остаточного заряда аккумуляторной батареи; решение траекторной задачи для передвижения по лестнице; возможность удалённого доступа. Посредством бортового компьютера реализуются следующие отдельные программы:

Разгона и торможения скутера с управляемым ускорением/замедлением, которое персонально адаптируется для пользователя;

Программа, реализующая алгоритм работы задних колёс при поворотах;

Продольной и поперечной гиростабилизации;

Преодоления поребрика вверх и вниз;

Движения по лестнице вверх и вниз,

Адаптации к размерам ступенек;

Идентификации параметров лестницы;

Изменения колесной базы (от 450 до 850 мм);

Мониторинга датчиков скутера, блоков управления приводами, аккумуляторной батареи;

Эмуляции на основе показаний датчиков работы парковочного радара;

Удалённого доступа к управляющим программам, изменения параметров настройки через Интернет.

Трансскутер имеет в своём составе 54 датчика, позволяющих ему приспособиться к окружающей среде. Среди них: датчики Холла, встроенные в вентильные электродвигатели; абсолютные датчики угла, определяющие положение составных частей трансскутера; резистивный датчик поворота руля; инфракрасный датчик расстояния для парковочного радара; инклинометр, позволяющий определять наклон скутера при движении; акселерометр и датчик угловой скорости, служащие для управления гиростабилизацией; радиочастотный приёмник для дистанционного управления; резистивный датчик линейного перемещения для определения положения кресла относительно рамы; шунты для измерения тока двигателей и остаточной ёмкости аккумулятора; потенциометрический задатчик скорости движения; тензометрический датчик веса для контроля развесовки аппарата.

Общая блок-схема СУ представлена на рис.5.35.

Рис. 5.35. Блок-схема СУ трансскутером семейства «Кенгуру»

Условные обозначения:

RMC – абсолютные датчики угла, ДХ – датчики Холла; БУ – блок управления; ЖКИ – жидкокристаллический индикатор; МКЛ – мотор-колесо левое; МКП – мотор-колесо правое; BMS – система управления питанием; LAN – порт для внешнего подключения бортового компьютера с целью программирования, настройки и т.п.; Т – тормоз электромагнитный.

Существует точка зрения, что мехатронные технологии включают в себя технологии новых материалов и композитов, микроэлектронику, фотонику, микробионику, лазерные и др. технологии.

Однако, при этом происходит подмена понятий и, вместо мехатронных технологий, которые реализуются на основе использования мехатронных объектов, в этих работах идет речь о технологии изготовления и сборки таких объектов.

Большинство научных работников в настоящее время считают, что мехатронные технологии всего лишь формируют и реализуют необходимые законы исполнительных движений механизмов с компьютерным управлением, а также агрегатов на их основе, или осуществляют анализ этих движений для решения диагностических и прогностических задач.

В механической обработке эти технологии направлены на обеспечение точности и производительности, которые невозможно достигнуть без использования мехатронных объектов, прообразами которых являются металлорежущие станки с открытыми системами ЧПУ. В частности такие технологии позволяют компенсировать погрешности, которые возникают вследствие колебания инструмента относительно заготовки.

Однако, предварительно следует отметить, что мехатронные технологии включают в себя следующие этапы:

    Технологическая постановка задачи;

    Создание модели процесса с целью получения закона исполнительного движения;

    Разработка программного и информационного обеспечения для реализации;

    Дополнение информационной управляющей и конструкторской базы типового мехатронного объекта, реализующего предлагаемую технологию, если в этом есть необходимость.

Адаптивный способ повышения виброустойчивости токарного станка.

В условиях использования разнообразного режущего инструмента, обрабатываемые детали сложной формы и широкой номенклатуры как обрабатываемых, так и инструментальных материалов резко возрастает вероятность возникновения автоколебаний и потеря виброустойчивости технологической системы станка.

Это влечет за собой снижение, интенсивности обработки или дополнительные капитальные вложения в технологический процесс. Перспективным способом снижения уровня автоколебаний является изменение скорости резания в процессе обработки.

Такой способ достаточно просто реализуется технически и оказывает эффективное воздействие на процесс резания. Ранее этот способ реализовался как априорное регулирование на основе предварительных расчетов, что ограничивает его применение, так как не позволяет учитывать многообразие причин и изменчивость условий возникновения вибраций.

Значительно более эффективны адаптивные системы регулирования скорости резания с оперативным контролем силы резания и ее динамической составляющей.

Механизм считывания уровня автоколебаний при обработке с изменяемой скоростью резания можно представить следующим образом.

Пусть при обработке детали со скоростью резания V 1 технологическая система находится в условиях автоколебаний. При этом частота и фаза колебаний на обработанной поверхности совпадают с частотой и фазой колебаний силы резания и самого резца (эти колебания выражаются в виде дробления, волнистости и шероховатости).

При переходе к скорости V 2 колебания на обработанной поверхности детали относительно резца при последующем обороте (при обработке «по следу») происходит с другой частотой и синхронности колебаний, то есть их фазовое совпадение нарушается. Благодаря этому, в условиях обработки «по следу» интенсивность автоколебаний снижается, а в их спектре появляются высокочастотные гармоники.

С течением времени в спектре начинают преобладать собственные резонансные частоты и процесс автоколебаний вновь интенсифицируется, что требует повторного изменения скорости резания.

Из сказанного следует, что основными параметрами описанного метода является величина изменения скорости резания V, а также знак и частота этого изменения. Эффективность влияния изменения скорости резания на показатели обработки следует оценивать по длительности периода восстановления автоколебаний. Чем он больше, тем дольше сохраняется пониженный уровень автоколебаний.

Разработка метода адаптивного управления скоростью резания предполагает имитационное моделирование этого процесса на основе математической модели автоколебаний, которая должна:

    Учитывать динамику процесса резания;

    Принимать во внимание обработку «по следу»;

    Адекватно описывать процесс резания в условиях автоколебаний.