Энергосберегающий асинхронный двигатель с совмещенными обмотками. Замена устаревших электродвигателей на современные энергоэффективные Экономия материалов при производства асинхронных двигателей

Уже около пяти лет «НПО „Санкт-Петербургская электротехническая компания“ (СПБЭК) настойчиво собирает по предприятиям, институтам, научным центрам бывшего Союза внедренные рацпредложения, инновации, разработки.

Еще одна новация, применимая в российских реалиях связана с именем Дмитрия Александровича Дуюнова, занимающегося проблемой повышения энергоэффективности асинхронных двигателей:

"В России на долю асинхронных двигателей, по разным оценкам, приходится от 47 до 53% потребления всей вырабатываемой электроэнергии. В промышленности в среднем 60%, в системах холодного водоснабжения до 80%. Они осуществляют практически все технологические процессы, связанные с движением и охватывают все сферы жизнедеятельности человека. В каждой квартире находится асинхронных двигателей больше, чем жильцов. Ранее, поскольку задачи экономии энергоресурсов не было, при проектировании оборудования стремились „подстраховаться“, и использовали двигатели с мощностью, превышающей расчетную. Экономия электроэнергии в проектировании отходила на второй план, и такое понятие как энергоэффективность не было столь актуальным. Промышленность России энергоэффективные двигатели не проектировала и не выпускала. Переход к рыночной экономике резко изменил ситуацию. Сегодня сэкономить единицу энергетических ресурсов, например 1 т топлива в условном исчислении, вдвое дешевле, чем её добыть.

Энергоэффективные двигатели (ЭД) — это асинхронные ЭД с короткозамкнутым ротором, в которых за счет увеличения массы активных материалов, их качества, а также за счет специальных приемов проектирования удалось поднять на 1-2% (мощные двигатели) или на 4-5% (небольшие двигатели) номинальный КПД при некотором увеличении цены двигателя. Этот подход может приносить пользу, если нагрузка меняется мало, регулирование скорости не требуется и двигатель правильно выбран. С появлением двигателей с совмещенными обмотками „Славянка“ имеется возможность существенно улучшить их параметры без увеличения их цены. За счет улучшенной механической характеристики и более высоких энергетических показателей, стало возможным не только экономить от 30 до 50% потребления энергии при той же полезной работе, но и создавать регулируемый привод с уникальными характеристиками, не имеющий аналогов в мире.

В отличие от стандартных, ЭД с совмещенными обмотками обладают более высокой кратностью моментов, имеют КПД и коэффициент мощности близкий к номинальному в широком диапазоне нагрузок. Это позволяет повысить среднюю нагрузку на двигатель до 0,8 и повысить эксплуатационные характеристики обслуживаемого приводом оборудования.

По сравнению с известными методами повышения энергоэффективности асинхронного привода, новизна предлагаемого нами подхода заключается в изменении основополагающего принципа конструкции классических обмоток двигателя. Научная новизна заключается в том, что сформулированы новые принципы конструирования обмоток двигателей, а также выбора оптимальных соотношений чисел пазов ротора и статора. На их основе разработаны промышленные конструкции и схемы однослойных и двухслойных совмещенных обмоток, как для ручной, так и для автоматической укладки обмоток на стандартном оборудовании. На технические решения получен ряд патентов РФ.

Сущность разработки вытекает из того, что в зависимости от схемы подключения трёхфазной нагрузки к трёхфазной сети (звезда или треугольник) можно получить две системы токов, образующий между векторами угол в 30 электрических градусов. Соответственно, к трёхфазной сети можно подключить электродвигатель, имеющий не трёхфазную обмотку, а шестифазную. При этом часть обмотки должна быть включена в звезду, а часть в треугольник и результирующие вектора полюсов одноименных фаз звезды и треугольника должны образовывать между собой угол в 30 электрических градусов. Совмещение двух схем в одной обмотке позволяет улучшить форму поля в рабочем зазоре двигателя и как следствие существенно улучшить основные характеристики двигателя.

По сравнению с известными, частотно-регулируемый привод может быть выполнен на базе новых двигателей с совмещенными обмотками с повышенной частотой питающего напряжения. Это достигается за счёт меньших потерь в стали магнитопровода двигателя. В результате себестоимость такого привода получается существенно ниже, чем при использовании стандартных двигателей, в частности, значительно снижаются шумность и вибрации».

Под энергоэффективностью понимается рациональное использование энергетических ресурсов, с помощью которого достигается уменьшение потребления энергии при том же уровне нагрузочной мощности.

На рис. 1а, б приведены примеры нерационального и рационального использования энергии. Мощности Рн приемников 1 и 2 одинаковые, при этом потери ΔР1, выделяющиеся в приемнике 1, значительно превосходят потери ΔР2, которые выделяются в приемнике 2. Как следствие, потребляемая мощность ΔРп1 приемником 1 больше мощности ΔРп2, потребляемой приемником 2. Таким образом, приемник 2 является энергоэффективным по сравнению с приемником 1.

Рис. 1а. Нерациональное использование энергии

Приемник 2

Рис. 1б. Рациональное использование энергии

В современном мире вопросам энергоэффективности уделяется особое внимание. Объясняется это отчасти тем, что решение данной задачи может привести к достижению основных целей международной энергетической политики:

  • повышению энергетической безопасности;
  • снижению вредного экологического воздействия вследствие использования энергоресурсов;
  • повышению конкурентоспособности промышленности в целом.

В последнее время был принят целый ряд инициатив и мер в отношении энергоэффективности на региональном, национальном и международном уровнях.

Энергетическая стратегия России

В России разработана Энергетическая стратегия, которая подразумевает развёртывание программы энергоэффективности в рамках комплексной политики энергосбережения. Данная программа направлена на создание базисных условий для ускоренного технологического обновления энергетической отрасли, развития современных перерабатывающих производств и транспортных мощностей, а также на освоение новых, перспективных рынков.

23 ноября 2009 г. президентом Российской Федерации Д.А. Медведевым был подписан Федеральный закон № 261-ФЗ “Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации”. Данный закон формирует принципиально новое отношение к процессу энергосбережения. В нем четко обозначены полномочия и требования в этой области для всех уровней власти, а также заложена основа для достижения реального результата. Законом вводится обязанность по учету энергетических ресурсов для всех предприятий. Организации, совокупные годовые затраты которых на потребление энергоресурсов превышают 10 миллионов рублей, предлагается обязать до 31 декабря 2012 года и далее не реже 1 раза в 5 лет проходить энергетические обследования, по результатам которых составляется энергетический паспорт предприятия, фиксирующий продвижение по шкале энергоэффективности.

С принятием закона ‘Об энергоэффективности’, одними из ключевых статей документа стали поправки в Налоговый кодекс (Статья 67 часть 1), которые освобождают от налога на прибыль предприятия, использующие объекты, имеющие наивысший класс энергоэффективности. Правительство РФ готово оказывать субсидии и снижение налогового бремени тем предприятиям, которые готовы поднять своё оборудование до уровня энергосберегающей техники.

Энергоэффективность электродвигателей

По данным РАО «ЕЭС России» за 2006-й год около 46% вырабатываемой электроэнергии в России потребляется промышленными предприятиями (рис. 1), половина этой энергии посредством электродвигателей преобразуется в механическую.

Рис. 2. Структура потребления электроэнергии в России

В процессе преобразования энергии, часть ее теряется в виде тепла. Величина потерянной энергии определяется энергетическими показателями двигателя. Применение энергоэффективных электродвигателей позволяет существенно снизить потребление энергии и уменьшить содержание углекислого газа в окружающей среде.

Основным показателем энергоэффективности электродвигателя, является его коэффициент полезного действия (далее КПД) :

η=P2/P1=1 – ΔP/P1,

где Р2 – полезная мощность на валу электродвигателя, Р1 – активная мощность потребляемая электродвигателем из сети, ΔP – суммарные потери возникающие в электродвигателе.

Очевидно, чем выше КПД (и соответственно ниже потери), тем меньше энергии потребляет электродвигатель из сети для создания той же самой мощности P2. В качестве демонстрации экономии электроэнергии при использовании энергоэффективных двигателей сравним количества потребляемой мощности на примере электродвигателей ABB обычной (М2АА) и энергоэффективной (М3АА) серий (рис. 3).

1. Серия М2АА (класс энергоэффективности IE1): мощность Р2=55 кВт, частота вращения n=3000 об/мин, η=92,4%, cosφ=0,91

Р1=Р2/η=55/0,924=59,5 кВт.

Суммарные потери:

ΔP=Р1–Р2=59,5-55=4,5 кВт.

Q=4,5·24·365=39420 кВт.

C=2·39420=78840 руб.

2. Серия М3АА (класс энергоэффективности IE2): мощность Р2=55 кВт, частота вращения n=3000 об/мин, η=93,9%, cosφ=0,88

Активная мощность, потребляемая из сети:

Р1=Р2/η=55/0,939=58,6 кВт.

Суммарные потери:

ΔP=Р1–Р2=58,6-55=3,6 кВт.

Если предположить, что данный двигатель работает 24 часа в сутки, 365 дней в году, то количество энергии, теряемое и выделяемое в виде тепла

Q=3,6·24·365=31536 кВт.

При средней стоимости электроэнергии 2 руб. за кВт/ч количество потерянной электроэнергии за 1 год в денежном эквиваленте

C=2·31536=63072 руб.

Таким образом, в случае замены обычного электродвигателя (класс IE1) энергоэффективным (класс IE2) экономия энергии составляет 7884 кВт в год на один двигатель. При использовании 10 таких электродвигателей экономия составит 78840 кВт в год или в денежном выражении 157680 руб./год. Таким образом, эффективное использование электроэнергии позволяет предприятию снизить себестоимость выпускаемой продукции, тем самым, повысив ее конкурентоспособность.

Стоимостная разница электродвигателей с классами энергоэффективности IE1 и IE2, составляющая 15621 руб., окупается приблизительно за 1 год.

Рис. 3. Сравнение обычного электродвигателя с энергоэффективным

Следует отметить, что с ростом энергоэффективности увеличивается и срок службы двигателя . Это объясняется следующим. Источником нагрева двигателя являются потери, выделяемые в нем. Потери в электрических машинах (ЭМ) подразделяются на основные, обусловленные протекающими в ЭМ электромагнитными и механическими процессами, и добавочные, обусловленные различными вторичными явлениями. Основные потери подразделяют на следующие классы:

  • 1. механические потери (включают в себя вентиляционные потери, потери в подшипниках, потери на трение щеток о коллектор или контактные кольца);
  • 2. магнитные потери (потери на гистерезис и вихревые токи);
  • 3. электрические потери (потери в обмотках при протекании тока).

Согласно эмпирическому закону срок службы изоляции уменьшается в два раза при увеличении температуры на 100С. Таким образом, срок службы двигателя с повышенной энергоэффективностью несколько больше, так как потери и следовательно нагрев энергоэффективного двигателя меньше.

Способы повышения энергоэффективности двигателя:

  • 1. Применение электротехнических сталей с улучшенными магнитными свойствами и уменьшенными магнитными потерями;
  • 2. Использование дополнительных технологических операций (например, отжиг для восстановления магнитных свойств сталей, как правило, ухудшающихся после механообработки);
  • 3. Использование изоляции с повышенной теплопроводностью и электрической прочностью;
  • 4. Улучшение аэродинамических свойств для снижения вентиляционных потерь;
  • 5. Использование высококачественных подшипников (NSK, SKF);
  • 6. Увеличение точности обработки и изготовления узлов и деталей двигателя;
  • 7. Использование двигателя совместно с частотным преобразователем.

Еще одним важным параметром, характеризующим энергоэффективность электродвигателя, является коэффициент нагрузки cosφ. Коэффициент нагрузки определяет долю активной мощности в полной, поступающей в электродвигатель из сети.

где S – полня мощность.

При этом только активная мощность преобразуется в полезную мощность на валу, реактивная мощность нужна лишь для создания электромагнитного поля. Реактивная мощность поступает в двигатель и возвращается обратно в сеть с удвоенной частотой сети 2f, создавая тем самым в подводящих линиях дополнительные потери. Таким, образом, система, состоящая из двигателей с высоким значениями КПД, но низкими значениями cosφ, не может считаться энергоэффективной.

Препятствия на пути внедрения энергоэффективных систем электропривода

Не смотря на высокую результативность энергоэффективных решений , на сегодняшний день существует ряд препятствий для распространения энергоэффективных систем электропривода:

  • 1. Замена только одного или двух электродвигателей на целом предприятии является несущественной мерой;
  • 2. Низкий уровень информированности потребителей в области классов энергоэффективности двигателей, их различий и существующих стандартов;
  • 3. Раздельное финансирование на многих предприятиях: распорядитель бюджета на закупки электродвигателей часто является не тем лицом, которое занимается вопросами снижения себестоимости выпускаемой продукции или несет ежегодные расходы на техническое обслуживание;
  • 4. Приобретение электродвигателей в составе комплексного оборудования, производители которого часто в целях удешевления продукции устанавливают электродвигатели низкого качества;
  • 5. В рамках одной компании расходы на приобретение оборудования и на потребление энергии за срок службы часто оплачиваются по разным статьям;
  • 6. На многих предприятиях существуют запасы электродвигателей, как правило, того же типа и того же класса эффективности.

Важным аспектом в вопросах, связанных с энергоэффективностью электрических машин , является популяризация принятия решения на приобретение оборудования на основе оценки суммарных эксплуатационных расходов за срок службы.

Новые международные стандарты, регламентирующие энергоэффективность электродвигателей.

В 2007, 2008-м гг. IEC были введены два новых стандарта, касающихся энергоэффективности электродвигателей : стандарт IEC/EN 60034-2-1 устанавливает новые правила определения КПД, стандарт IEC 60034-30 – новые классы энергоэффективности электродвигателей.

В стандарте IEC 60034-30 установлены три класса энергоэффективности трехфазных асинхронных электродвигателей с короткозамкнутым ротором (рис.4).

Рис. 4. Классы энергоэффективности согласно новому стандарту IEC 60034-30

В настоящее время обозначение классов энергоэффективность часто можно увидеть в виде следующих комбинаций: EFF3, EFF2, EFF1. Однако границы разделения классов (рис. 5) установлены старым стандартом IEC 60034-2, на смену которому пришел новый IEC 60034-30 (рис. 4).

Рис. 5. Классы энергоэффективности согласно старому стандарту IEC 60034-2.

Статья взята с сайта szemo.ru

Повысить мощность и существенно снизить энергопотребление сгоревших и новых асинхронных двигателей позволяет уникальная технология модернизации с применением совмещенных обмоток типа «Славянка». Сегодня ее успешно внедряют на нескольких крупных промышленных предприятиях. Такая модернизация позволяет повысить на 10-20% пусковые и минимальные моменты, понизить на 10-20% пусковой ток или повысить мощность электродвигателя на 10-15%, стабилизировать КПД близким к номинальному в широком диапазоне нагрузок, понизить ток холостого хода, снизить в 2,7-3 раза потерь в стали, уровень электромагнитных шумов и вибраций, повысить надёжность и увеличить межремонтный срок эксплуатации в 1,5 — 2 раза.

В России на долю асинхронных двигателей, по разным оценкам, приходится от 47 до 53% потребления всей вырабатываемой электроэнергии, в промышленности - в среднем 60%, в системах холодного водоснабжения - до 80%. Они осуществляют практически все технологические процессы, связанные с движением и охватывают все сферы жизнедеятельности человека. В каждой квартире можно найти асинхронных двигателей больше, чем жильцов. Ранее, поскольку задачи экономии энергоресурсов не было, при проектировании оборудования стремились «подстраховаться», и использовали двигатели с мощностью, превышающей расчетную. Экономия электроэнергии в проектировании отходила на второй план, и такое понятие как энергоэффективность не было столь актуальным. Энергоэффективные двигатели российская промышленность не проектировала и не выпускала. Переход к рыночной экономике резко изменил ситуацию. Сегодня сэкономить единицу энергетических ресурсов, например, 1 т топлива в условном исчислении, вдвое дешевле, чем её добыть.

Энергоэффективные двигатели (ЭД) — это асинхронные ЭД с короткозамкнутым ротором, в которых за счет увеличения массы активных материалов, их качества, а также за счет специальных приемов проектирования удалось поднять на 1-2% (мощные двигатели) или на 4-5% (небольшие двигатели) номинальный КПД при некотором увеличении цены двигателя.

С появлением двигателей с совмещенными обмотками «Славянка» по запатентованной схеме стало возможно существенно улучшить параметры двигателей без увеличения цены. За счет улучшенной механической характеристики и более высоких энергетических показателей, стало возможным экономить до 15% потребления энергии при той же полезной работе и создавать регулируемый привод с уникальными характеристиками, не имеющий аналогов в мире.

В отличие от стандартных, ЭД с совмещенными обмотками обладают высокой кратностью моментов, имеют КПД и коэффициент мощности близкий к номинальному в широком диапазоне нагрузок. Это позволяет повысить среднюю нагрузку на двигатель до 0,8 и повысить эксплуатационные характеристики обслуживаемого приводом оборудования.

По сравнению с известными методами повышения энергоэффективности асинхронного привода новизна технологии, применяемой петербуржцами, заключается в изменении основополагающего принципа конструкции классических обмоток двигателя. Научная новизна - в том, что сформулированы совершенно новые принципы конструирования обмоток двигателей, выбора оптимальных соотношений чисел пазов роторов и стартора. На их основе разработаны промышленные конструкции и схемы однослойных и двухслойных совмещенных обмоток, как для ручной, так и для автоматической укладки обмоток на стандартном оборудовании. На технические решения получен ряд патентов РФ.

Сущность разработки в том, что в зависимости от схемы подключения трёхфазной нагрузки к трёхфазной сети (звезда или треугольник) можно получить две системы токов, образующий между векторами угол в 30 электрических градусов. Соответственно, к трёхфазной сети можно подключить электродвигатель, имеющий не трёхфазную обмотку, а шестифазную. При этом часть обмотки должна быть включена в звезду, а часть в треугольник и результирующие вектора полюсов одноименных фаз звезды и треугольника должны образовывать между собой угол в 30 электрических градусов. Совмещение двух схем в одной обмотке позволяет улучшить форму поля в рабочем зазоре двигателя и как следствие существенно улучшить основные характеристики двигателя.

По сравнению с известными, частотно-регулируемый привод может быть выполнен на базе новых двигателей с совмещенными обмотками с повышенной частотой питающего напряжения. Это достигается за счёт меньших потерь в стали магнитопровода двигателя. В результате себестоимость такого привода получается существенно ниже, чем при использовании стандартных двигателей, в частности, значительно снижаются шумность и вибрации.

Применение данной технологии при ремонтах асинхронных двигателей позволяет за счет экономии электроэнергии окупить затраты в течение 6-8 месяцев. За последний год только Научно-производственное объединение «Санкт-Петербургская электротехническая компания» модернизировала несколько десятков сгоревших и новых асинхронных двигателей путем перемотки обмоток статора на ряде крупных предприятий Санкт-Петербурга в сфере хлебопекарной, табачной промышленностях, заводах стройматериалов и многих других. И это направление успешно развивается. Сегодня Научно-производственное объединение «Санкт-Петербургская электротехническая компания» ищет потенциальных партнеров в регионах, способных организовать совместно с петербуржцами бизнес по модернизации асинхронных электродвигателей в своей области.

Подготовила Мария Алисова.

Справка

Николай Яловега — основоположник технологии — профессор, доктор технических Наук. Оформлен патент в США в 1996 году. На сегодняшний день срок действия истек.

Дмитрий Дуюнов — разработчик методики расчета схем укладки совмещенных обмоток двигателя. Оформлен ряд патентов.

Номер в формате pdf (4221 kБ)

Д.А. Дуюнов , руководитель проекта, ООО «АС и ПП», г. Москва, Зеленоград

В России на долю асинхронных двигателей, по разным оценкам, приходится от 47 до 53% потребления всей вырабатываемой электроэнергии. В промышленности - в среднем 60%, в системах холодного водоснабжения - до 90%. Они осуществляют практически все технологические процессы, связанные с движением, и охватывают все сферы жизнедеятельности человека. С появлением новых, так называемых двигателей с совмещенными обмотками (ДСО) имеется возможность существенно улучшить их параметры без увеличения цены.

На каждую квартиру современного жилого дома приходится асинхронных двигателей больше, чем в ней жильцов. Ранее, поскольку задачи экономии энергоресурсов не было, при проектировании оборудования стремились «подстраховаться», и использовали двигатели с мощностью, превышающей расчетную. Экономия электроэнергии в проектировании отходила на второй план, и такое понятие как энергоэффективность не было столь актуальным. Энергоэффективные двигатели - это, скорее, чисто западное явление. Промышленность России такие двигатели не проектировала и не выпускала. Переход к рыночной экономике резко изменил ситуацию. Сегодня сэкономить единицу энергетических ресурсов, например 1 т топлива в условном исчислении, вдвое дешевле, чем ее добыть.

Энергоэффективные двигатели (ЭД), представленные на внешнем рынке, - это асинхронные ЭД с короткозамкнутым ротором, в которых за счет увеличения массы активных материалов, их качества, а также за счет специальных приемов проектирования удается поднять на 1-2% (мощные двигатели) или на 4-5% (небольшие двигатели) номинальный КПД при некотором увеличении цены двигателя. Этот подход может приносить пользу, если нагрузка меняется мало, регулирование скорости не требуется и параметры двигателя правильно выбраны.

Используя двигатели с совмещенными обмотками (ДСО), за счет улучшенной механической характеристики и более высоких энергетических показателей, стало возможным не только экономить от 30 до 50% потребления энергии при той же полезной работе, но и создавать регулируемый энергосберегающий привод с уникальными характеристиками, не имеющий аналогов в мире. Наибольший эффект достигается при использовании ДСО в установках с переменным характером нагрузки. Исходя из того, что в настоящее время мировой объем производства асинхронных двигателей различной мощности достиг семи миллиардов штук в год, эффект от внедрения новых двигателей трудно переоценить.

Известно, что средняя загрузка электродвигателя (отношение мощности, потребляемой рабочим органом машины, к номинальной мощности электродвигателя) в отечественной промышленности составляет 0,3-0,4 (в европейской практике эта величина составляет 0,6). Это значит, что обычный двигатель работает с КПД значительно ниже номинального. Завышенная мощность двигателя часто приводит к незаметным на первый взгляд, но очень существенным отрицательным последствиям в обслуживаемом электроприводом оборудовании, например, к излишнему напору в гидравлических сетях, связанному с ростом потерь, снижению надежности и т.п. В отличие от стандартных, ДСО обладают низким уровнем шумов и вибраций, более высокой кратностью моментов, имеют КПД и коэффициент мощности близкий к номинальному в широком диапазоне нагрузок. Это позволяет поднять среднюю нагрузку на двигатель до 0,8 и повысить характеристики обслуживаемого приводом технологического оборудования, в частности, существенно понизить его энергопотребление.

Экономия, окупаемость, прибыль

Вышеуказанное касается энергосбережения в приводе и призвано сократить потери на преобразование электрической энергии в механическую и повысить энергетические показатели привода. ДСО при широкомасштабном внедрении дают широкие возможности по энергосбережению вплоть до создания новых энергосберегающих технологий.

По данным сайта федеральной службы государственной статистики (http://www.gks.ru/
wps/wcm/connect/rosstat/rosstatsite/main/) потребление электроэнергии в 2011 г. в целом по России составило 1 021,1 млрд кВт·ч.

Согласно приказу Федеральной службы по тарифам от 06.10.2011 г. № 239-э/4 минимальный уровень тарифа на электрическую энергию (мощность), поставляемую покупателям на розничных рынках в 2012 году, составит 164,23 коп/кВт·ч (без НДС).

Замена стандартных асинхронных двигателей позволит экономить от 30 до 50% энергии при той же полезной работе. Экономический эффект от повсеместной замены составит минимум:

1021,1·0,47·0,3·1,6423 = 236,4503 млрд руб. в год.

По Московской области эффект составит минимум:

47100,4·0,47·0,3·1,6423 = 10906,771 млн руб. в год.

Учитывая предельные уровни тарифов на электрическую энергию на периферийных и других проблемных территориях, максимальный эффект и минимальный период окупаемости достигается в регионах с максимальными тарифами - Иркутская область, Ханты-Мансийский автономный округ, Чукотский автономный округ, Ямало-Ненецкий автономный округ и др.

Максимальный эффект и минимальный период окупаемости может быть достигнут при замене двигателей с непрерывным режимом работы, например - насосные агрегаты водоснабжения, вентиляторные установки, прокатные станы, а также высоконагруженных двигателей, например - лифты, эскалаторы, транспортеры.

Для расчета периода окупаемости за основу приняты цены ОАО «УралЭлектро». Полагаем, что с предприятием заключен энергосервисный контракт по замене двигателя АДМ 132 M4 насосного агрегата на условиях лизинга. Цена двигателя 11 641 руб. Стоимость работ по его замене (30% стоимости) 3 492,3 руб. Дополнительные расходы (10% стоимости) 1 164,1 руб.

Всего затрат:

11 641 + 3 492,3 + 1 164,1 = 16 297,4 руб.

Экономический эффект составит:

11 кВт·0,3·1,6423 руб./кВт·ч·1,18·24 = = 153,48278 руб. в сутки (с НДС).

Период окупаемости:

16 297,4 / 153,48278 = 106,18 суток или 0,291 года.

Для остальных мощностей расчет дает аналогичные результаты. Учитывая, что время работы двигателей на промышленных предприятиях может не превышать 12 часов, период окупаемости может составлять не более 0,7-0,8 года.

Предполагается, что по условиям лизингового контракта предприятие, заменившее двигатели на новые, после уплаты лизинговых платежей выплачивает в течение трех лет 30% от экономии электроэнергии. В этом случае доход составит: 153,48278·365·3 = 168 063,64 руб. Следовательно, замена одного двигателя малой мощности позволяет получить доход от 84 до 168 тыс. руб. В среднем от замены двигателей с одного небольшого коммунального предприятия можно получить доход не менее 4,8 млн руб. Внедрение новых двигателей при модернизации стандартных позволит в коммунальной сфере и на транспорте во многих случаях отказаться от дотаций на электроэнергию без роста тарифов.

Особое социальное значение проект приобретает в связи со вступлением России в ВТО. Отечественные производители асинхронных двигателей не в состоянии конкурировать с ведущими мировыми производителями. Это может привести к банкротству многих градообразующих предприятий. Освоение производства двигателей с совмещенными обмотками позволит не только снять эту угрозу, но и составить серьезную конкуренцию на внешних рынках. Поэтому реализация проекта имеет для страны и политическое значение.


Новизна предлагаемого подхода

В последние годы в связи с появлением надежных и приемлемых по цене преобразователей частоты широкое распространение стали получать регулируемые асинхронные приводы. Хотя цена преобразователей и остается достаточно высокой (в два-три раза дороже двигателя), они позволяют в ряде случаев снизить потребление электроэнергии и улучшить характеристики двигателя, приблизив их к характеристикам менее надежных двигателей постоянного тока. Надежность частотных регуляторов также в разы ниже, чем электродвигателей. Не каждый потребитель имеет возможность вложить такие огромные деньги на установку частотных регуляторов. В Европе к 2012 году лишь 15% регулируемых электроприводов укомплектовано двигателями постоянного тока. Поэтому актуально рассматривать проблему энергосбережения главным образом применительно к асинхронному электроприводу, в том числе частотно-регулируемому, оснащенному специализированными двигателями с меньшей материалоемкостью и себестоимостью.

В мировой практике сложилось два основных направления решения указанной проблемы.

Первый - энергосбережение средствами электропривода за счет подачи конечному потребителю в каждый момент времени необходимой мощности. Второй - производство энергоэффективных двигателей, удовлетворяющих стандарту IE-3. В первом случае усилия направлены на снижение стоимости частотных преобразователей. Во втором случае - на разработку новых электротехнических материалов и оптимизацию основных размеров электрических машин.

По сравнению с известными методами повышения энергоэффективности асинхронного привода, новизна предлагаемого нами подхода заключается в изменении основополагающего принципа конструкции классических обмоток двигателя. Научная новизна заключается в том, что сформулированы новые принципы конструирования обмоток двигателей, а так же выбора оптимальных соотношений чисел пазов ротора и статора. На их основе разработаны промышленные конструкции и схемы однослойных и двухслойных совмещенных обмоток, как для ручной, так и для автоматической укладки. На технические решения с 2011 года получено 7 патентов РФ. Несколько заявок находятся на рассмотрении в Роспатенте. Готовятся заявки на патентование за рубежом.

По сравнению с известными, частотно-регулируемый привод может быть выполнен на базе ДСО с повышенной частотой питающего напряжения. Это достигается за счет меньших потерь в стали магнитопровода. Себестоимость такого привода получается существенно ниже, чем при использовании стандартных двигателей, в частности, значительно снижаются шумность и вибрации.

В ходе испытаний, проведенных на стендах Катайского насосного завода, штатный двигатель мощностью 5,5 кВт был заменен на двигатель мощностью 4,0 кВт нашей конструкции. Насос обеспечил все параметры в соответствии с требованиями ТУ, при этом двигатель практически не нагрелся.

В настоящее время ведутся работы по внедрению технологии в нефтегазовом комплексе (компании Лукойл, ТНК-ВР, Роснефть, Бугульминский электронасосный завод), в предприятиях метрополитенов (Международная ассоциация метрополитенов), в горнодобывающей отрасли (Лебединский ГОК) и ряде других отраслей.

Сущность предлагаемой разработки

Сущность разработки вытекает из того, что в зависимости от схемы подключения трехфазной нагрузки к трехфазной сети (звезда или треугольник) можно получить две системы токов, образующих между векторами индукции магнитных потоков угол в 30 электрических градусов. Соответственно, к трехфазной сети можно подключить электродвигатель, имеющий не трехфазную обмотку, а шестифазную. При этом часть обмотки должна быть включена в звезду, а часть в треугольник и результирующие вектора индукции полюсов одноименных фаз звезды и треугольника должны образовывать между собой угол в 30 электрических градусов.

Совмещение двух схем в одной обмотке позволяет улучшить форму поля в рабочем зазоре двигателя и как следствие существенно улучшить основные характеристики двигателя. Поле в рабочем зазоре стандартного двигателя лишь условно можно назвать синусоидальным. На самом деле оно ступенчатое. В результате этого в двигателе возникают гармоники, вибрации и тормозящие моменты, которые оказывают отрицательное воздействие на двигатель и ухудшают его характеристики. Поэтому стандартный асинхронный двигатель обладает приемлемыми характеристиками только в режиме номинальной нагрузки. При нагрузке, отличной от номинальной, характеристики стандартного двигателя резко снижаются, снижается коэффициент мощности и КПД.

Совмещенные обмотки так же позволяют уменьшить уровень магнитной индукции полей от нечетных гармоник, что приводит к существенному снижению общих потерь в элементах магнитопровода двигателя и повышению его перегрузочной способности и удельной мощности. Это так же позволяет выполнять двигатели для работы на более высокие частоты питающего напряжения при использовании сталей, рассчитанных для работы на частоте 50 Гц. Двигатели с совмещенными обмотками обладают меньшей кратностью пусковых токов при более высоких пусковых моментах. Это имеет существенное значение для оборудования, работающего с частыми и затяжными пусками, а так же для оборудования, подключенного к протяженным и высоконагруженным сетям с высоким уровнем падения напряжения. Они генерируют меньше помех в сеть, и меньше искажают форму питающего напряжения, что имеет существенное значение для целого ряда объектов, оснащенных сложной электроникой и вычислительными системами.

На рис. 1 показана форма поля в стандартном двигателе 3000 об./мин в статоре 24 паза.

Форма поля аналогичного двигателя с совмещенными обмотками представлена на рис. 2.

Из приведенных графиков видно, что форма поля двигателя с совмещенными обмотками ближе к синусоидальной, чем у стандартного двигателя. В результате, как показывает имеющийся опыт, без увеличения трудоемкости, при меньшей материалоемкости, без изменения существующих технологий, при равных прочих условиях получаем двигатели, по своим характеристикам существенно превосходящие стандартные. В отличие от ранее известных методов повышения энергоэффективности, предлагаемое решение наименее затратное и реализуемо не только при производстве новых двигателей, но и при капитальном ремонте и модернизации существующего парка. На рис. 3 показано, как изменилась механическая характеристика от замены стандартной обмотки на совмещенную при капитальном ремонте двигателя.

Ни одним другим известным способом невозможно столь радикально и эффективно улучшить механические характеристики существующего парка двигателей. Результаты стендовых испытаний, проведенных Центральной заводской лабораторией ЗАО «УралЭлектро-К» г. Медногорск, подтверждают заявленные параметры. Полученные данные подтверждают и результаты, полученные при проведении испытаний в НИПТИЭМ г. Владимир.

Среднестатистические данные основных энергетических показателей КПД и cos, полученные при испытании партии модернизированных двигателей, превышают каталожные данные стандартных двигателей. В комплексе все вышеприведенные показатели обеспечивают двигателям с совмещенными обмотками характеристики, превосходящие лучшие аналоги. Это было подтверждено даже на первых опытных образцах модернизированных двигателей.

Конкурентные преимущества

Уникальность предлагаемого решения заключается в том, что очевидные на первый взгляд конкуренты, по сути, являются потенциальными стратегическими партнерами. Это объясняется тем, что освоить производство и модернизацию двигателей с совмещенными обмотками можно в кратчайшие сроки практически на любом профильном предприятии, занятом производством или ремонтом стандартных двигателей. При этом не требуется изменения существующих технологий. Для этого достаточно доработать существующую на предприятиях конструкторскую документацию. Ни один конкурирующий продукт не обладает такими преимуществами. При этом не возникает необходимости в получении специальных разрешений, лицензий и сертификатов. Показательным примером может служить опыт сотрудничества с ОАО «УралЭлектро-К». Это первое предприятие, с которым заключен лицензионный договор на право производства энергоэффективных асинхронных двигателей с совмещенными обмотками. По сравнению с частотными приводами, предлагаемая технология позволяет получить большую экономию электроэнергии при существенно меньших капитальных вложениях. В ходе эксплуатации затраты на обслуживание так же существенно ниже. По сравнению с другими энергоэффективными двигателями, предлагаемый продукт отличается более низкой ценой при тех же показателях.

Заключение

Область применения асинхронных двигателей с совмещенными обмотками охватывает практически все сферы жизнедеятельности человека. Ежегодно в мире производится порядка семи миллиардов штук двигателей различной мощности и исполнений. На сегодня практически ни один технологический процесс невозможно организовать без использования электродвигателей. Последствия широкомасштабного использования данной разработки трудно переоценить. В социальной сфере они позволяют существенно снизить тарифы на основные виды услуг. В области экологии они позволяют достичь беспрецедентных результатов. Так, например, при той же полезной работе они позволяют в три раза снизить удельную выработку электроэнергии и как следствие резко сократить удельный расход углеводородов.

В энергосберегающих двигателях за счет увеличения массы активных материалов (железа и меди) повышены номинальные значения КПД и cosj. Энергосберегающие двигатели используются, например, в США, и дают эффект при постоянной нагрузке. Целесообразность применения энергосберегающих двигателей должна оцениваться с учетом дополнительных затрат, поскольку небольшое (до 5%) повышение номинальных КПД и cosj достигается за счет увеличения массы железа на 30-35%, меди на 20-25%, алюминия на 10-15%, т.е. удорожания двигателя на 30-40%.

Ориентировочные зависимости КПД (h) и соs j от номинальной мощности для обычных и энергосберегающих двигателей фирмы Гоулд (США) приведены на рисунке.

Повышение КПД энергосберегающих электродвигателей достигается следующими изменениями в конструкции:

· удлиняются сердечники, собираемые из отдельных пластин электротехнической стали с малыми потерями. Такие сердечники уменьшают магнитную индукцию, т.е. потери в стали.

· уменьшаются потери в меди за счет максимального использования пазов и использования проводников повышенного сечения в статоре и роторе.

· добавочные потери сводятся к минимуму за счет тщательного выбора числа и геометрии зубцов и пазов.

· выделяется при работе меньше тепла, что позволяет уменьшить мощность и размеры охлаждающего вентилятора, что приводит к уменьшению вентиляторных потерь и, следовательно, уменьшению общих потерь мощности.

Электродвигатели с повышенным КПД обеспечивают уменьшение расходов на электроэнергию за счет сокращения потерь в электродвигателе.

Проведенные испытания трех «энергосберегающих» электродвигателей показали, что при полной нагрузке полученная экономия составила: 3,3% для электродвигателя 3 кВт, 6% для электродвигателя 7,5 кВт и 4,5% для электродвигателя 22 кВт.

Экономия при полной нагрузке приблизительно составляет 0,45 кВт, что при стоимости энергии 0,06 доллара/кВт. ч составляет 0,027 доллара/ч. Это эквивалентно 6% эксплуатационных затрат электродвигателя.

Цена обычного электродвигателя 7,5 кВт, приводимая в прайс-листах, составляет 171 доллар США, тогда как стоимость электродвигателя с повышенным КПД - 296 долларов США (надбавка к цене - 125 долларов США). Из приведенной таблицы следует, что период окупаемости для электродвигателя с повышенным КПД, рассчитанный на основе маргинальных издержек, составляет приблизительно 5000 часов, что эквивалентно 6,8 месяцев работы электродвигателя при номинальной нагрузке. При меньших нагрузках период окупаемости будет несколько больше.

Эффективность использования энергосберегающих двигателей будет тем выше, чем больше загрузка двигателя и чем ближе режим работы его к постоянной нагрузке.

Применение и замена двигателей на энергосберегающие должна оцениваться с учетом всех дополнительных затрат и сроков их эксплуатации.