Генератор на постоянных магнитах принцип действия. Генератор на постоянных магнитах

Содержание:

В современных условиях предпринимаются постоянные попытки усовершенствования электромеханических устройств, снижения их массы и габаритных размеров. Одним из таких вариантов является генератор на постоянных магнитах, представляющий собой достаточно простую конструкцию с высоким коэффициентом полезного действия. Основная функция данных элементов заключается в создании вращающегося магнитного поля.

Виды и свойства постоянных магнитов

С давних пор были известны постоянные магниты, получаемые из традиционных материалов. В промышленности впервые начал использоваться сплав алюминия, никеля и кобальта (алнико). Это дало возможность применять постоянные магниты в генераторах, двигателях и других видах электрооборудования. Особенно широкое распространение получили ферритовые магниты.

Впоследствии были созданы самарий-кобальтовые жесткие магнитные материалы, энергия которых обладает высокой плотностью. Вслед за ними произошло открытие магнитов на основе редкоземельных элементов - бора, железа и неодима. Плотность их магнитной энергии значительно выше, чем самарий-кобальтового сплава при значительно низкой стоимости. Оба вида искусственных материалов успешно заменяют электромагниты и применяются в специфических областях.Неодимовые элементы относятся к материалам нового поколения и считаются наиболее экономичными.

Принцип работы устройств

Главной проблемой конструкции считался возврат вращающихся деталей в исходной положение без существенных потерь крутящего момента. Данная проблема была решена с помощью медного проводника, по которому был пропущен электрический ток, вызывающий притяжение. При отключении тока, действие притяжения прекращалось. Таким образом, в устройствах этого типа использовалось периодическое включение-отключение.


Повышенный ток создает увеличенную силу притяжения, а та, в свою очередь, участвует в выработке тока, проходящего через медный проводник. В результате циклических действий, устройство, кроме совершения механической работы, начинает производить электрический ток, то есть выполнять функции генератора.

Постоянные магниты в конструкциях генераторов

В конструкциях современных устройств, кроме постоянных магнитов применяются электромагниты с в катушке. Такая функция комбинированного возбуждения позволяет получить необходимые регулировочные характеристики напряжения и частоты вращения при пониженной мощности возбуждения. Кроме того, уменьшается величина всей магнитной системы, что делает подобные устройства значительно дешевле по сравнению с классическими конструкциями электрических машин.


Мощность устройств, в которых используются данные элементы может составлять только несколько киловольт-ампер. В настоящее время ведутся разработки постоянных магнитов с лучшими показателями, обеспечивающими постепенный рост мощности. Подобные синхронные машины используются не только в качестве генераторов, но и как двигатели различного назначения. Они широко применяются в горнодобывающей и металлургической отрасли, тепловых станциях и других сферах. Это связано с возможностью работы синхронных двигателей с различными реактивными мощностями. Сами они работают с точной и постоянной скоростью.

Станции и подстанции функционируют вместе со специальными синхронными генераторами, которые в режиме холостого хода обеспечивают выработку только реактивной мощности. В свою очередь, обеспечивает работу асинхронных двигателей.

Генератор на постоянных магнитах работает по принципу взаимодействия магнитных полей движущегося ротора и неподвижного статора. Не до конца изученные свойства этих элементов позволяют работать над изобретением других электротехнических устройств, вплоть до создания безтопливного .

Настоящее изобретение относится к области электротехники, а именно к бесколлекторным электрическим машинам, в частности электрогенераторам постоянного тока, и может быть использовано в любой области науки и техники, где требуются автономные источники питания. Технический результат - создание компактного высокоэффективного электрического генератора, который позволяет при сохранении относительно простой и надежной конструкции широко варьировать выходные параметры электрического тока в зависимости от условий эксплуатации. Сущность изобретения состоит в том, что бесколлекторный синхронный генератор с постоянными магнитами состоит из одной или нескольких секций, каждая из которых включает ротор с круговым магнитопроводом, на котором с одинаковым шагом закреплено четное количество постоянных магнитов, статор, несущий четное число подковообразных электромагнитов, расположенных попарно напротив друг друга и имеющих по две катушки с последовательно встречным направлением обмотки, устройство для выпрямления электрического тока. Постоянные магниты закреплены на магнитопроводе таким образом, что образуют два параллельных ряда полюсов с продольно и поперечно чередующейся полярностью. Электромагниты сориентированы поперек названных рядов полюсов так, что каждая из катушек электромагнита расположена над одним из параллельных рядов полюсов ротора. Количество полюсов в одном ряду, равное n, удовлетворяет соотношению: n=10+4k, где k - целое число, принимающее значения 0, 1, 2, 3 и т.д. Количество электромагнитов в генераторе обычно не превышает число (n-2). 12 з.п. ф-лы, 9 ил.

Рисунки к патенту РФ 2303849

Настоящее изобретение относится к бесколлекторным электрическим машинам, в частности электрогенераторам постоянного тока, и может быть использовано в любой области науки и техники, где требуются автономные источники питания.

Синхронные машины переменного тока получили самое широкое распространение как в сфере производства, так и в сфере потребления электрической энергии. Все синхронные машины обладают свойством обратимости, то есть каждая из них может работать как в режиме генератора, так и в режиме двигателя.

Синхронный генератор содержит статор, обычно это полый шихтованный цилиндр с продольными пазами на внутренней поверхности, в которых расположена обмотка статора, и ротор, представляющий собой постоянные магниты чередующейся полярности, расположенные на валу, который может приводиться в движение тем или иным способом. В промышленных генераторах большой мощности для получения возбуждающего магнитного поля применяют обмотку возбуждения, расположенную на роторе. В синхронных генераторах относительно небольшой мощности применяют постоянные магниты, расположенные на роторе.

При неизменной частоте вращения форма кривой ЭДС, вырабатываемой генератором, определяется только законом распределения магнитной индукции в зазоре между ротором и статором. Поэтому для получения напряжения на выходе генератора определенной формы и для эффективного преобразования механической энергии в электрическую используют различную геометрию ротора и статора, а также подбирают оптимальное количество постоянных магнитных полюсов и число витков обмотки статора (US 5117142, US 5537025, DE 19802784, ЕР 0926806, WO 02/003527, US 2002153793, US 2004021390, US 2004212273, US 2004155537). Перечисленные параметры не являются универсальными, а выбираются в зависимости от условий эксплуатации, что зачастую ведет к ухудшению других характеристик электрогенератора. Кроме того, сложная форма ротора или статора усложняет изготовление и сборку генератора и, как следствие, увеличивает себестоимость изделия. Ротор синхронного магнитоэлектрического генератора может иметь различную форму, например, при малой мощности ротор обычно выполняют в виде «звездочки», при средней мощности - с когтеобразными полюсами и цилиндрическими постоянными магнитами. Ротор с когтеобразными полюсами дает возможность получить генератор с рассеянием полюсов, ограничивающим ударный ток при внезапном коротком замыкании генератора.

В генераторе с постоянными магнитами затруднена стабилизация напряжения при изменении нагрузки (поскольку отсутствует обратная магнитная связь, как, например, в генераторах с обмоткой возбуждения). Для стабилизации выходного напряжения и выпрямления тока используют различные электрические схемы (GB 1146033).

Настоящее изобретение направлено на создание компактного высокоэффективного электрического генератора, который позволяет при сохранении относительно простой и надежной конструкции широко варьировать выходные параметры электрического тока в зависимости от условий эксплуатации.

Электрогенератор, выполненный в соответствии с настоящим изобретением, является бесколлекторным синхронным генератором с постоянными магнитами. Он состоит из одной или нескольких секций, каждая из которых включает:

Ротор с круговым магнитопроводом, на котором с одинаковым шагом закреплено четное количество постоянных магнитов,

Статор, несущий четное число подковообразных (П-образных) электромагнитов, расположенных попарно напротив друг друга и имеющих по две катушки с последовательно встречным направлением обмотки,

Устройство для выпрямления электрического тока.

Постоянные магниты закреплены на магнитопроводе таким образом, что образуют два параллельных ряда полюсов с продольно и поперечно чередующейся полярностью. Электромагниты сориентированы поперек названных рядов полюсов так, что каждая из катушек электромагнита расположена над одним из параллельных рядов полюсов ротора. Количество полюсов в одном ряду, равное n, удовлетворяет соотношению: n=10+4k, где k - целое число, принимающее значения 0, 1, 2, 3 и т.д. Количество электромагнитов в генераторе обычно не превышает число n-2.

Устройство для выпрямления тока обычно представляет собой одну из стандартных выпрямительных схем, выполненных на диодах: двухполупериодную со средней точкой или мостовую, соединенную с обмотками каждого электромагнита. В случае необходимости может быть также использована иная схема выпрямления тока.

В зависимости от особенностей эксплуатации электрогенератора ротор может располагаться как с внешней стороны статора, так и внутри статора.

Электрогенератор, выполненный в соответствии с настоящим изобретением, может включать несколько идентичных секций. Количество таких секций зависит от мощности источника механической энергии (приводного двигателя) и требуемых параметров электрогенератора. Предпочтительно, чтобы секции были сдвинуты по фазе относительно друг друга. Это может достигаться, например, начальным сдвигом ротора в соседних секциях на угол , лежащий в диапазоне от 0° до 360°/n; или угловым сдвигом электромагнитов статора в соседних секциях относительно друг друга. Предпочтительно, чтобы электрогенератор также включал блок регулятора напряжений.

Сущность изобретения поясняется следующими чертежами:

на Фиг.1(а) и (б) изображена схема электрогенератора, выполненного в соответствии с настоящим изобретением, у которого ротор расположен внутри статора;

на Фиг.2 представлено изображение одной секции электрогенератора;

на Фиг.3 представлена принципиальная электрическая схема электрогенератора с двухполупериодной со средней точкой схемой выпрямления тока;

на Фиг.4 представлена принципиальная электрическая схема электрогенератора с одной из мостовых схем выпрямления тока;

на Фиг.5 представлена принципиальная электрическая схема электрогенератора с другой мостовой схемой выпрямления тока;

на Фиг.6 представлена принципиальная электрическая схема электрогенератора с другой мостовой схемой выпрямления тока;

на Фиг.7 представлена принципиальная электрическая схема электрогенератора с другой мостовой схемой выпрямления тока;

на Фиг.8 изображена схема электрогенератора с наружным исполнением ротора;

на Фиг.9 представлено изображение многосекционного генератора, выполненного в соответствии с настоящим изобретением.

На Фиг.1(а) и (б) представлен электрогенератор, выполненный в соответствии с настоящим изобретением, который содержит корпус 1; ротор 2 с круговым магнитопроводом 3, на котором с одинаковым шагом закреплено четное число постоянных магнитов 4; статор 5, несущий четное число подковообразных электромагнитов 6, расположенных попарно напротив друг друга, и средство для выпрямления тока (не показано).

Корпус 1 электрогенератора обычно отливают из алюминиевого сплава или чугуна либо делают сварным. Монтаж электрогенератора в месте его установки осуществляют посредством лап 7 или посредством фланца. Статор 5 имеет цилиндрическую внутреннюю поверхность, на которой с одинаковым шагом крепятся идентичные электромагниты 6. В данном случае десять. Каждый из указанных электромагнитов имеет по две катушки 8 с последовательно встречным направлением обмотки, расположенных на П-образном сердечнике 9. Пакет сердечника 9 собирается из нарубленных пластин электротехнической стали на клею или склепывается. Выводы обмоток электромагнитов через одну из выпрямительных схем (не показано) подключаются к выходу электрогенератора.

Ротор 3 отделен от статора воздушным промежутком и несет четное число постоянных магнитов 4, расположенных таким образом, что образуются два параллельных ряда полюсов, равноудаленных от оси генератора и чередующихся по полярности в продольном и поперечном направлениях (Фиг.2). Количество полюсов в одном ряду удовлетворяет соотношению: n=10+4k, где k - целое число, принимающее значения 0, 1, 2, 3 и т.д. В данном случае (Фиг.1) n=14 (k=1) и соответственно общее число постоянных магнитных полюсов равно 28. При вращении электрогенератора каждая из катушек электромагнитов проходит над соответствующим рядом чередующихся полюсов. Постоянные магниты и сердечники электромагнитов имеют форму такую, чтобы минимизировать потери и добиться однородности (насколько это возможно) магнитного поля в воздушном зазоре при работе электрогенератора.

Принцип действия электрогенератора, выполненного в соответствии с настоящим изобретением, аналогичен принципу действия традиционного синхронного генератора. Вал ротора механически связан с приводным двигателем (источником механической энергии). Под действием вращающего момента приводного двигателя ротор генератора вращается с некоторой частотой. При этом в обмотке катушек электромагнитов в соответствии с явлением электромагнитной индукции наводится ЭДС. Поскольку катушки отдельного электромагнита имеют разное направление обмотки и находятся в любой момент времени в зоне действия различных магнитных полюсов, то наводимая ЭДС в каждой из обмоток складывается.

В процессе вращения ротора магнитное поле постоянного магнита вращается с некоторой частотой, поэтому каждая из обмоток электромагнитов попеременно оказывается то в зоне северного (N) магнитного полюса, то в зоне южного (S) магнитного полюса. При этом смена полюсов сопровождается изменением направления ЭДС в обмотках электромагнитов.

Обмотки каждого электромагнита соединены с устройством для выпрямления тока, которое обычно представляет собой одну из стандартных выпрямительных схем, выполненных на диодах: двухполупериодную со средней точкой или одну из мостовых схем.

На Фиг.3 представлена принципиальная электрическая схема двухполупериодного выпрямителя со средней точкой, для электрогенератора с тремя парами электромагнитов 10. На Фиг.3 электромагниты пронумерованы от I до VI. Один из выводов обмотки каждого электромагнита и разноименный с ним вывод обмотки противоположного электромагнита подключены к одному выходу 12 генератора; другие выводы обмоток названных электромагнитов подключены через диоды 11 к другому выходу 13 генератора (при данном включении диодов выход 12 будет отрицательным, а выход - 13 положительным). То есть если для электромагнита I начало обмотки (В) подключается к отрицательной шине, то для противоположного ему электромагнита IV к отрицательной шине подключается конец обмотки (Е). Аналогично и для других электромагнитов.

На Фиг.4-7 представлены различные мостовые схемы выпрямления тока. Соединение мостов, выпрямляющих ток от каждого из электромагнитов, может быть параллельное, последовательное или смешанное. Вообще различные схемы используют для перераспределения выходных токовых и потенциальных характеристик электрогенератора. Один и тот же электрогенератор, в зависимости от режимов эксплуатации, может иметь ту или иную схему выпрямления. Предпочтительно, чтобы электрогенератор содержал дополнительный переключатель, позволяющий выбирать требуемый режим работы (схему соединения мостов).

На Фиг.4 представлена принципиальная электрическая схема электрогенератора с одной из мостовых схем выпрямления тока. Каждый из электромагнитов I-VI подключен к отдельному мосту 15, которые в свою очередь соединены параллельно. Общие шины подключены соответственно к отрицательному выходу 12 электрогенератора или к положительному 13.

На Фиг.5 представлена электрическая схема с последовательным соединением всех мостов.

На Фиг.6 представлена электрическая схема со смешанным соединением. Мосты, выпрямляющие ток от электромагнитов: I и II; III и IV; V и VI, соединены попарно последовательно. А пары в свою очередь соединены параллельно через общие шины.

На Фиг.7 представлена принципиальная электрическая схема электрогенератора, в которой отдельный мост выпрямляет ток от пары диаметрально противоположных электромагнитов. Для каждой пары диаметрально противоположных электромагнитов одноименные выводы (в данном случае «В») электрически соединены между собой, а оставшиеся выводы подсоединены к выпрямляющему мосту 15. Общее количество мостов равно m/2. Между собой мосты могут быть соединены параллельно и/или последовательно. На Фиг.7 изображено параллельное соединение мостов.

В зависимости от особенностей эксплуатации электрогенератора ротор может располагаться как с внешней стороны статора, так и внутри статора. На Фиг.8 изображена схема электрогенератора с наружным исполнением ротора (10 электромагнитов; 36=18+18 постоянных магнитов (k=2)). Конструкция и принцип действия такого электрогенератора аналогичны описанному выше.

Электрогенератор, выполненный в соответствии с настоящим изобретением, может включать несколько секций А, В и С (Фиг.9). Количество таких секций зависит от мощности источника механической энергии (приводного двигателя) и требуемых параметров электрогенератора. Каждая из секций соответствует одной из конструкций, описанных выше. Электрогенератор может включать как идентичные секции, так и секции, отличающиеся друг от друга числом постоянных магнитов и/или электромагнитов или схемой выпрямления.

Предпочтительно, чтобы идентичные секции были сдвинуты по фазе относительно друг друга. Это может достигаться, например, начальным сдвигом ротора в соседних секциях и угловым сдвигом электромагнитов статора в соседних секциях относительно друг друга.

Примеры реализации:

Пример 1. В соответствии с настоящим изобретением был изготовлен электрогенератор для питания электроприборов напряжением до 36 В. Электрогенератор выполнен с вращающимся внешним ротором, на котором размещено 36 постоянных магнитов (по 18 в каждом ряду, k=2), изготовленных из сплава Fe-Nd-В. Статор несет 8 пар электромагнитов, каждый из которых имеет по две катушки, содержащие по 100 витков провода ПЭТВ диаметром 0,9 мм. Схема включения - мостовая, с соединением одноименных выводов диаметрально противоположных электромагнитов (Фиг.7).

внешний диаметр - 167 мм;

напряжение на выходе - 36 В;

максимальный ток - 43 А;

мощность - 1,5 кВт.

Пример 2. В соответствии с настоящим изобретением был изготовлен электрогенератор для подзарядки блоков питания (пара батарей на 24 В) для электромобилей городского типа. Электрогенератор выполнен с вращающимся внутренним ротором, на котором размещено 28 постоянных магнитов (по 14 в каждом ряду, k=1), изготовленных из сплава Fe-Nd-В. Статор несет 6 пар электромагнитов, каждый из которых имеет по две катушки, содержащие по 150 витков, намотанных проводом ПЭТВ диаметром 1,0 мм. Схема включения - двухполупериодная со средней точкой (Фиг.3).

Электрогенератор обладает следующими параметрами:

внешний диаметр - 177 мм;

напряжение на выходе - 31 В (для зарядки 24 В блока аккумуляторов);

максимальный ток - 35А,

максимальная мощность - 1,1 кВт.

Дополнительно электрогенератор содержит автоматический регулятор напряжения на 29,2 В.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Электрогенератор, содержащий, по крайней мере, одну круговую секцию, включающую ротор с круговым магнитопроводом, на котором с одинаковым шагом закреплено четное количество постоянных магнитов, образующих два параллельных ряда полюсов с продольно и поперечно чередующейся полярностью, статор, несущий четное число подковообразных электромагнитов, расположенных попарно напротив друг друга, устройство для выпрямления электрического тока, где каждый из электромагнитов имеет по две катушки с последовательно встречным направлением обмотки, при этом каждая из катушек электромагнитов расположена над одним из параллельных рядов полюсов ротора и количество полюсов в одном ряду равное n удовлетворяет соотношению

n=10+4k, где k - целое число, принимающее значения 0, 1, 2, 3 и т.д.

2. Электрогенератор по п.1, отличающийся тем, что количество электромагнитов статора m удовлетворяет соотношению m n-2.

3. Электрогенератор по п.1, отличающийся тем, что устройство для выпрямления электрического тока содержит диоды, подключенные к, по крайней мере, одному из выводов обмоток электромагнитов.

4. Электрогенератор по п.3, отличающийся тем, что диоды подключены по двухполупериодной со средней точкой схеме.

5. Электрогенератор по п.3, отличающийся тем, что диоды подключены по мостовой схеме.

6. Электрогенератор по п.5, отличающийся тем, что количество мостов равно m, и они соединены между собой последовательно, или параллельно, или последовательно-параллельно.

7. Электрогенератор по п.5, отличающийся тем, что количество мостов равно m/2 и одни из одноименных выходов каждой пары диаметрально противоположных электромагнитов соединены между собой, а другие подключены к одному мосту.

8. Электрогенератор по любому из пп.1-7, отличающийся тем, что ротор расположен с внешней стороны статора.

9. Электрогенератор по любому из пп.1-7, отличающийся тем, что ротор расположен внутри статора.

10. Электрогенератор по п.1, отличающийся тем, что содержит, по крайней мере, две идентичные секции.

11. Электрогенератор по п.10, отличающийся тем, что, по крайней мере, две секции сдвинуты по фазе относительно друг друга.

12. Электрогенератор по п.1, отличающийся тем, что содержит, по крайней мере, две секции, различающиеся числом электромагнитов.

13. Электрогенератор по п.1, отличающийся тем, что дополнительно содержит блок регулятора напряжений.

Dragons" Lord (2003)

Задача: Построить несколько вариаций электромагнитного генератора, оценить параметры входа и выхода, опробовать несколько идей, обычно встречающихся в заявленных конструкциях других исследователей, потрогать индукционный процесс на вкус и запах собственными руками. Оценить наилучшие габариты магнитопровода, топологию катушек съёма, габариты катушек, толщину провода и число витков.

Было построено три принципиально отличающихся модели генераторов с постоянными магнитами. Первая - альтернатор со шторками, в которой шторки из ферромагнитного материала коммутируют магнитный поток постоянного магнита в сердечник катушки индуктивности. Шторка перемещается в зазоре между магнитом и катушкой и производит коммутацию магнитных линий за счёт окон в самой шторке. Подразумевалось, что шторка достаточно лёгкая и на её вращение тратится мало энергии, за счёт чего процесс генерации будет иметь хороший баланс в плане КПД (затраты на привод / мощность на выходе). Постоянные магниты закреплены неподвижно, катушки также закреплены неподвижно на станине устройства. Перемещаются только многолепестковые шторки.

Вторая модель генератора без шторок. Подвижная роторная часть содержит постоянные магниты. Катушки съёма энергии установлены неподвижно на станине устройства. Подразумевалось, что выгодно иметь постоянные магниты в роторе, т.к. на поддержание магнитного поля мы не затрачиваем внешнюю энергию, мы только лишь перемещаем роторные магниты в пространстве (вращаем ротор). Также в данной конструкции были опробованы модули, представляющие собой спаренные катушки на замкнутом кольцевом сердечнике, согласно идее Ф-машины, где встречные потоки противо ЭДС взаимокомпенсируются. К сожалению, фотографий второй модели генератора не сохранилось, хотя это была наиболее интересная, практичная и технологичная версия из всех трёх.

Третий вариант генератора содержал неподвижные статорные магниты, установленные в станине по окружности, а вращающаяся роторная часть имела "на борту" катушки для съёма сгенерированной энергии. Мысль устройства была в следующем: оптимизированные катушки были легче, чем роторные магниты во второй версии устройства, что подразумевало снижение затрат на вращение такого ротора в сборе. Правда, появлялась проблема с организацией токосъёма с вращающегося ротора, но она была быстро решена при помощи гибких ламелей и двух токопроводящих дорожек на оси ротора.

Что удалось выяснить: В первую очередь, как человека впервые создающего генератор переменного тока, меня интересовали размерности и прочие параметры катушек. Я задавался вполне справедливым вопросом, - какие будут наиболее продуктивными? В экспериментах я очень быстро пришёл к выводу, что соотношение диаметров наиболее приемлемо такое: если за единицу взять диаметр сердечника, то диаметр катушки будет троечка. В экспериментах с первым альтернатором использовались катушки на сердечнике 8 мм и, соответственно, диаметр катушек был 24 мм. Вторая версия генератора имела катушки на сердечнике 10 мм, и диаметр катушки 30 мм. Последние выглядели так:

Также было протестировано несколько катушек одинакового размера, но намотанных проводом различной толщины и построены графики (таблицы) эффективности выходной мощности. Результаты были ожидаемые: чем больше толщина провода, тем большая эффективность катушки по уровню отдаваемой мощности. Однако значения не так глобально отличаются друг от друга, буквально на несколько процентов. Поэтому я не заостряю на этом ваше внимание.

Второй вопрос касался экранирования магнитного потока ферромагнитными шторками. Вообще сам принцип. Экранируется ли (изолируется ли) некая область пространства от магнитных линий? Уничтожаются ли магнитные линии? Что происходит в системе с физической точки зрения? Эти и прочие вопросы были обкатаны на примитивных сторонних моделях с постоянными магнитами и экранами различной формы. В результате удалось вывести жёсткое правило: магнитные линии невозможно уничтожить, - сколько линий (условно) вышло с северного полюса, ровно столько же войдёт в южный, мы можем лишь изменить траекторию движения этих линий в пространстве, - они будут предпочитать течь в более магнитопроницаемой среде (нашей шторке), чем в воздухе. Благодаря этим выводам уже по другому смотришь на модели альтернаторов со шторками и их конструкции. Нужно сразу вкладывать в девайс непрерывный путь следования для магнитных линий, которые хочется увести из некого объёма пространства, чем самым осуществить модуляцию магнитного потока в этом самом объёме.

Дальше возник вопрос по поводу необходимой толщины листа стальной шторки. Учебник физики говорит, что объём ограниченный ферромагнитным экраном со всех сторон изолирован от внешнего магнитного поля. Банальные эксперименты показали, что это правило не всегда справедливо, в силу недописанности. Недописанность касается толщины (в конечном итоге - объёма) ферромагнитного материала, которым мы экранируем. Условно говоря есть удельная величина сколько магнитных линий может вместить определённый объём ферромагнетика. Допустим, условно сечение экрана площадью 1 квадратный см может вместить в себя 100 магнитных линий. Если мы подадим более плотное (мощное) магнитное поле, то ферромагнетик войдёт в насыщение, - он не может вместить более 100 линий и все линии, которые превышают своим количеством эту предельную величину уже не будут экранироваться нашим экраном. Они его просто не будут замечать и проходить насквозь. Таким образом никакого экранирования не будет происходить, точнее будет иметь место лишь частичное экранирование.

В связи с вышеописанными условиями предлагается следующая модель усовершенствованного альтернатора со шторками для тех, кто хочет такую построить. Важно сделать шторки из достаточно толстого листа с хорошей проницаемостью. Будут некоторые проблемы технологического характера с гибкой, чтобы неподвижный магнит статора оказался внутри такого "цветка". Кстати, применение кольцевых магнитов это также моё усовершенствование, которое до этого не применялось. Кольцевой магнит позволяет убрать сопротивление вращению шторки с неравномерными краями, т.к. в любой точке на окружности вращения, с точки зрения шторки - имеем одинаковую интенсивность магнитного поля. Все известные мне модели подобных альтернаторов имели дискретные магниты статора, что делает их априори неработоспособными. Оценку общей эффективности предложенной модели я давать не берусь. Всё покажет эксперимент, если вы таковой проведёте. Удачи.

Далее пару слов по второй модели генератора с вращающимися роторными магнитами. В процессе экспериментов закралось сомнение в одной истине, которую пропагандирует наше образование. А именно, считается, что магнитное поле в замкнутом сердечнике одинаково в любом произвольном сечении, т.к. магнитные линии вроде замкнуты и индукционное преобразование в обычном трансформаторе мыслят через работу определённого количества этих самых магнитных линий. То есть, с точки зрения современной науки не важно, где именно намотать вторичку на кольцевом сердечнике в трансформаторе, т.к. якобы всегда одинаковое количество магнитных линий будут пронизывать площадь, охваченное одинаковым количеством витков, и следовательно, производить одинаковое ЭДС.

Но к замкнутым сердечникам мы ещё вернёмся. Покажем, что то же самое сомнение можно высказать и в отношении незамкнутых стержневых сердечников. Был проведён дополнительный эксперимент, где очень короткий соленоид в осевом направлении был использован, как датчик для измерения наводимой ЭДС вдоль относительно длинного стержневого сердечника. Выяснилось очевидное: сила магнитного поля убывает вдоль оси сердечника, как и положено всем полям обратно квадрату расстояния. Классика трактует это так: мол магнитные линии не все достигают противоположного конца нашего ферромагнитного стержня, а многие выходят из него раньше, через боковую поверхность и возвращаются по воздуху. Тем самым к концу сердечника линий меньше, чем было в начале. Это утверждение полностью ложно, что также было дополнительно доказано на кольцевых сердечниках в более поздних экспериментах. На самом деле, сердечник ничем не отличается от любой другой среды, и поле распространяется и затухает в нём по классической величине, обратно пропорциональной квадрату расстояния. Магнитное поле некорректно рассматривать с точки зрения механистической модели и с точки зрения парадигмы магнитных линий в частности.

В связи с этими открытыми новыми данными были изобретены конические катушки . Катушка мотается на обычный стержневой сердечник и каждый следующий слой делается короче в осевом направлении. Строго говоря, квадрат расстояния обуславливает гиперболический закон убывания плотности поля, что графически на эпюре будет соответствовать и геометрии внешней линии контура катушки. Но условно аппроксимируя мы можем делать её чисто конической без кривизны. Отличие в конечном результате не значительно. Всё сказанное справедливо и для катушек на кольцевых замкнутых сердечниках. Отдача от конической катушки, намотанной моим методом почти в два раза больше, чем от классической цилиндрической. В более поздние периоды своей работы, когда база моих знаний охватила достаточное количество всевозможных изобретателей и их девайсов, я наблюдал у некоторых из них аналогичный подход к топологии катушек. Очень жаль, что данный факт не освещается наукой.

Стоит упомянуть ещё одно важное усовершенствование, которое следует применять в самом широком спектре случаев. Я говорю о ферромагнитном экране на магните с обратной стороны от рабочей зоны (на рисунке выше два таких "блина" обозначены пунктиром). Подобные экраны смещают мнимый центр магнитного поля в сторону, противоположную экрану, чем, как бы усиливают магнит. Прирост КПД при таком усовершенствовании будет достаточно высок.

Буквально пару слов скажу о модулях Ф-машины. Они оказались совершенно не эффективными и бездарными. Дело в том, что первичный поток делится на два русла. То есть математически мы имеем в каждом плече поток, равный одной второй от общего. Далее знаем, что чем выше напряжение, тем выше ток при условии, что есть нагрузка. Не вдаваясь в точные расчёты, можно считать эти две величины (напряжение и ток, выдаваемые под нагрузкой) прямо пропорциональными. Таким образом, условно говоря, если напряжение упадёт вдвое, то и ток упадёт вдвое, т.к. нет уже того мощного диполя, который бы этот ток поддержал. И памятуя, что мощность это произведение напряжения и тока, и зная, что в каждом плече мы понизили первичный поток в два раза, мы получаем, что конечная мощность падает в том же плече в 2х2=4 раза. Отсюда вся неэффективность данной идеи.

Третья модель, конечно, приподняла эффективность, но все три модели ясно показали, что основной вред системе наносит обратное вредное влияние при нагружении выходных катушек. И чем больше выходных катушек установлено, тем ярче можно видеть этот отрицательный эффект.

Для повышения производительности подобных устройств могу порекомендовать повышать удельную мощность постоянных магнитов (применять NdFeB) вкупе с уменьшением их общей массы (имеется в виду вторая модель генератора), а также увеличивать скорость модуляции магнитного потока, т.е. скорость вращения, что можно сделать, применив высокооборотистые и экономичные движки отечественного производства:



Рекомендую вот такие моторчики отечественного производства (ДПМ и ДПР).

Получить общее КПД устройства более 100% в условиях существования обратного само ЭДС мне видится весьма проблематичным. Скорее, даже, невозможным. Обратная ЭДС - это не особенность испытанных генераторов, - это особенность самого процесса индукции, того метода "добычи" электричества, который в данный момент использует человечество. Посему, с механическими генераторами я работать прекращаю и ухожу исследовать область статических (без подвижных частей) систем. А вам желаю всего наилучшего, так как в любом случае, КПД подобных усовершенствованных электромагнитных генераторов будет гораздо выше классических. Также, считаю, важно было донести до читателя мои находки, ибо они могут применяться в самом широком спектре устройств.

Прислал:

Часть 1. Подробно рассмотрено изготовление классического низкооборотного генератора на постоянных магнитах мощностью около 35Вт при 200 об/мин и около 160Вт при 400 об/мин.

1. Введение

Это инструкция по изготовлению генератора на постоянных магнитах (ГПМ), который выдает переменный ток. Он генерирует не «промышленное» напряжение 220В, а низкое переменное напряжение по трем фазам, которое затем выпрямляется и подается на выход в виде постоянного тока с параметрами, подходящими для зарядки батарей 12В.

Подобные генераторы широко используются в самодельных мини-ГЭС, ветряках и прочих электростанциях, изготовленных своими руками. Описание разработано доктором Смэйлом Хеннасом, опубликовано на сайте известного шотландского самодельщика и автора многочисленных пособий Хью Пигота.


Этот генератор на постоянных магнитах состоит из следующих узлов:

1. Стальные оси и цапфы (shafts and spines)
2. Статор, содержащий катушки из провода (Stator)
3. Два магнитных ротора (magnet rotor)
4. Выпрямитель (rectifier)

Статор содержит шесть катушек медного провода, залитых эпоксидной смолой. Корпус статора закреплен цапфами и не вращается. Провода от катушек подключены к выпрямителю, который производит постоянный ток для зарядки батарей 12В. Выпрямитель прикреплен к алюминиевому радиатору, чтобы не перегревался.

Магнитные роторы закреплены на составной, вращающейся на оси конструкции. Задний ротор установлен за статором и закрыт им. Передний ротор находится снаружи и прикреплен к заднему ротору длинными спицами, проходящими через центральное отверстие статора. В случае использования генератора на постоянных магнитах с ветряком, на тех же спицах будут монтироваться лопасти ветряка. Они будут вращать роторы, и таким образом перемещать магниты вдоль катушек. Переменное магнитное поле роторов генерирует ток в катушках.

Этот генератор на постоянных магнитах спроектирован для использования с небольшим ветрогенератором. Для того, чтобы сделать сам ветровой генератор, нужны следующие узлы:

Мачта: стальная труба, закрепленная тросами (Tower)
«Вращающаяся головка», которая устанавливается на верхушке мачты
Хвост, для поворота ветряка по ветру (tail)
Набор лопастей (blades)



Генератор на постоянных магнитах работает на малых оборотах. На графике ниже показана мощность генератора при зарядке 12В батареи. При 420 об/мин он выдаёт 180 Вт = 15А х 12В

При большей скорости генератор отдавать большую мощность. Но больший ток разогревает катушки и К.П.Д. падает. Для использования генератора для больших оборотов лучше мотать катушки другим проводом, более толстым и делать меньше витков в катушке. Но при этом на малых оборотах генератор работать будет плохо.

Для того, чтобы использовать данный генератор на большой и на малой скорости, можно менять способ соединения катушек: со звезды переключаться на треугольник и наоборот.

На графике представлена зависимость выходной мощности от скорости при разных типах соединения. «Звезда» начинает работать при низкой скорости (170 об/мин). «Треугольник» выдает больше мощности, но только при больших оборотах. Звезда хороша при малом ветре, треугольник – при большом.



Если увеличить размеры генератора на постоянных магнитах, то при тех же скоростях он сможет выдавать больше мощности.

Внимание

При изготовлении генератора на постоянных магнитах обращайте особое внимание на крепеж магнитов – ни при каких условиях они не должны отделяться от посадочного места! Болтающийся магнит начинает распарывает корпус статора и необратимо повреждает генератор.

Строго следуйте инструкциям по заливке ротора – ни в коем случае не ограничивайтесь просто приклеиванием магнитов к стальным дискам.
При сборке не бейте по ротору молотком
Оставляйте как минимум 1 мм зазор между роторами и статором (при тяжелых условиях эксплуатации зазор надо увеличить)
Не используйте генератор на постоянных магнитах на скоростях выше 800 об/мин. (При поворотах ветряка на такой скрости в нем возникают гироскопические силы, которые могут согнуть оси и вызвать касание магнитами ротора)
Не прикрепляйте лопасти непосредственно к внешнему ротору, крепите только на спицы.
При креплении лопастей к спицам держите генератор так, чтобы его ось вращения была вертикально, ни в коем случае не горизонтально.

2. Список материалов и инструментов




Ротор, узел подшипника, профиль с осью

Материалы для отливочных форм и оснастки.
  • Половые доски и клей по дереву

  • Наждачная бумага, восковая полировка (если есть – полиуретановый лак + жидкость для его снятия)

  • Кисточки для рисования, губка для их очистки

  • Фанера 13 мм для оснастки и форм

  • Стальной стержень или трубка для намоточной машинки

  • Кусочки толстого металлического листа

Инструменты

  • Защитные очки, маска, перчатки

  • Верстак с тисками

  • Сварочный аппарат

  • угловая шлифовальная машина

  • ножовка, молоток, пробойник, зубило

  • рулетка, циркуль, транспортир

  • гаечные ключи: 8, 10, 13, 17, 19 мм, по 2 каждого типа

  • вороток и метчик М10 для отверстий в магнитном роторе

  • медная проволока для позиционирования магнитов

  • вертикальный сверлильный станок

  • сверла 6, 8, 10, 12 мм

  • насадка для дрели для проделывания отверстий 25 мм, 65 мм

  • токарный станок по дереву

  • резец для токарного станка

  • лобзик по дереву

  • весы для взвешивания эпоксидки. Распылитель для катализатора, пластиковы ванночки, ножницы

  • паяльник, припой с флюсом, кусачки, острый нож

3. Отливочные формы и оснастка

В этом разделе описано изготовление специальных устройств (оснастки) и форм для отливки. Существует масса способов изготовления таких устройств, здесь описан один из них. Отливочные формы и оснасткиу для генератора на постоянных магнитах можно использовать многократно.



3.1 Намоточная машинка

Статор генератора содержит 6 катушек по 100 витков медной проволоки.



Катушки изготавливаются намоткой на фанерный шаблон. Шаблон смонтирован на конце ручки, между фанерных щечек.

Делаем ручку



Отрезаем кусочек стальной пластины 60 х30 х6 мм (плюс-минус) и надежно прикрепляем ее (или привариваем) к концу ручки, как показано ниже.
Сверлим 2 отверстия диаметром 6мм на расстоянии 40 мм друг от друга


Вырезаем 3 куска 13-мм фанеры, как на рисунке ниже




Шаблон имеет размеры 50 х 50мм, толщина 13 мм. Края закругленные. Две щечки – 125 х 125 мм, с вырезами глубиной 20мм вверху и внизу. Вырезы нужны для того, чтобы после намотки зафиксировать катушку изолентой.

Собираем все детали, как показано ниже и сверлим сквозные отверстия для болтов, диаметр 6мм, на расстоянии 40 мм. Лучше всего использовать вертикальный сверлильный станок.


Вставьте два болта сквозь отверстия в стальной пластине и соберите всю конструкцию, шаблон между щечками. Лучше всего использовать барашковые гайки.


3.2 Шаблоны для ротора

Шаблон для крепежных отверстий.

Магнитные роторы монтируются на подшипниковом узле (bearing hub). У узла есть фланец с отверстиями. Например, это может быть 4 отверстия, расположенных на окружности диаметром 102 мм (по-английски есть специальный термин pitch circle diameter, PCD). Или вы можете спроектировать другое количество отверстий, в зависимости от узла подшипника. Далее мы рассматриваем PCD 102 мм.




PCD шаблон будет использоваться для сверления отверстий в роторе, а также для балансировки ротора. Отверстия должны быть размечены и просверлены с предельной точностью.

a) вырежьте квадратную стальную пластину 125 х 125 мм
b) проведите диагонали и накерните центр
c) разведите циркуль на радиус 51 мм, проведите окружность
d) диаметр окружности равен PCD
e) накерните 2 точки пересечения окружности и одной из диагоналей
f) разведите циркуль на 72 мм (цифра верна для PCD 102 мм). Разметьте на окружности две точки ровно на расстоянии 72 мм от двух предыдущих.
g) Просверлите 4 отверстия на расстоянии 72 мм друг от друга, сначала используйте сверло маленького диаметра.

Шаблон для позиционирования магнитов


a) Разметьте центр фанерной заготовки
b) Проведите из размеченной точки 3 окружности диаметром 50мм, 102 мм и 200м
c) Проведите 2 параллельные линии как касательные к окружности 50 мм (на рисунке вверху)
d) Проведите еще 3 пары параллельных линий под 45 и 90 градусов к первой паре.
e) Используя линии, разметьте места для магнитов, и вырежьте шаблон по жирной линии (рисунок выше)
f) Проведите линию между центрам двух противолежащих магнитов
g) Положите стальной PCD шаблон для крепежных отверстий на 102-мм окружность, выровняйте его относительно линии между центрами магнитов, и просверлите отверстия сквозь отверстия в стальном шаблоне.

3.3 Формы и оснастка: Изготовление отливочных форм

Приступаем к изготовлению форм для отливки ротора и статора. Они могут быть изготовлены из дерева или алюминия. Другой способ – вылепить формы из глины и выровнять на гончарном круге, как горшок. Поверхность формы будет внешней поверхностью статора или ротора. Затем внутри формы будут добавлены стеклопластиковые вставки. Поверхность формы должна быть максимально гладкой.

Формы должны быть прочные. Статор или ротор нелегко выбить из формы после застывания, может понадобиться пара ударов киянкой.

3.3.1 Внешняя форма для статора.

Вырежьте несколько дисков из половой доски (рис. ниже), около 500мм в диаметре.



Во всех дисках, кроме одного, вырежьте круглые отверстия, диаметром 360мм, чтобы получить кольца.



На оставшемся диске начертите окружность 360 мм в диаметре
Просверлите 12 мм отверстие в центре диска
Приклейте кольца к диску, чтобы получилась стопка высотой 60мм. Мажьте побольше клея внутри.
Вырежьте диск из 15-мм фанеры диаметром 140 мм, просверлите отверстие 12 мм в его центре
Продев 12 мм болт сквозь оба отверстия, приклейте маленький диск к центру большого. Мажьте побольше клея по краям диска




Приделайте конструкцию к еще одному самодельному диску, или к диску токарного станка, или к колесу. В общем вам нужно то, что на рисунке ниже называется faceplate (держатель).
Поворачивая держатель, нарисуйте карандашом кружочек в его центре.
Просверлите 12 мм отверстие в этом центре. Дрель должна быть строго параллельна оси.
Прикрутите склеенные диски (далее будем называть это заготовкой) к держателю 12мм болтом. Дополнительно закрепите 4-мя шурупами.
Проверьте вращение заготовки. Для этого надо держать карандаш возле поверхности, когда заготовка вращается. Если карандаш оставляет отметину, значит, на поверхности в этом месте выпуклость. Ослабьте шурупы и вставьте кусочки бумаги между держателем и заготовкой на противоположной поверхности заготовки напротив карандашных меток. Закрутите шурупы и попробуйте повторить все снова




Теперь можно обработать заготовку резцом.


Вырежьте ровную поверхность на внутренней стороне заготовки.
Сделайте фаску в 7 градусов на внутренней поверхности
Общий диаметр внутренней части должен быть 380 мм
Диаметр плоской части 360мм (см. рисунок ниже)
Внутренние углы закруглены, не острые




Внутренний диск сточите до диаметра 130мм. Углы также закруглены (рисунок ниже)




Проверьте, что катушка входит на свое место свободно – если нет, то или чуть расточите внутреннюю поверхность, или уменьшите диаметр внутреннего диска.
Снимите заготовку с токарного станка.



Просверлите 4 отверстия в центральной части (они нужны для разделения внешней и внутренней отливочных форм статора, внутренняя форма описана в следующем разделе). Забейте маленькие кусочки фанеры с обратной стороны отверстий, чтобы сделать «упор».

3.3.2 Внутренняя форма для статора.

Вырежьте диски диаметром 370 мм




Просверлите 12 мм отверстие в центре каждого
Склейте их в стопку (рис. выше), скрепите 12 мм болтом
Стопка должна быть минимум 45 мм толщиной, лучше 50 мм
Пройдитесь 20-градусным резцом по краю, срежьте угол так, чтобы диаметр уменьшился с 368 мм до 325 мм


Проверьте, что внешняя форма садится на внутреннюю форму с зазором 6мм по краю. Затем снимите внутреннюю форму со станка.
Разметьте две линии на большей поверхности формы, на расстоянии 340 мм друг от друга.
Срежьте фаски, как на рисунке ниже




Фаски позволят сделать в этих местах наплывы заливочного материала и усилить тем самым места крепления статора.

3.3.3 отливочная форма для ротора.

Для генератора надо 2 магнитных ротора. Отливочная форма для них нужна одна, но лучше иметь две, для ускорения процесса.

Внешняя форма для ротора (рис.ниже) похожа на внешнюю форму для статора, но попроще:



Используя шаблон для крепежных отверстий (о котором говорилось выше), просверлите 4 отверстия для последующего крепления магнитных роторов.

Отливка магнитного ротора требует также внутренней отливочной формы (рис. ниже), с такой же разметкой крепежных отверстий.



Все формы надо зачистить наждачкой, чтобы получить очень гладкую поверхность, которую надо финально отделать затиркой полиуретановой губкой, смазаной воском.

Не надо красить формы: при нагревании краска потрескается и испортит поверхность отливки.


3.3.4 шаблоны для статора

Шаблон для штифтов.

При заливке в статор нужно заделать 4 поддерживающих 8 мм штифта. Для того, чтобы они не перекосились, пока сохнет эпоскидка, их крепят на местах с помощью шаблона, который мы сейчас изготовим. Шаблон делается из деревянного бруска 380 х 50 х 25 мм. Размеры должны быть точно выдержаны, иначе штифты потом не совпадут с крепежными цапфами.

a) разметьте центр бруска на самой большой грани (рис. ниже)
b) нарисуйте циркулем две дуги радиусом 178 мм
c) наметьте по 2 точки на каждой дуге, на расстоянии 30 мм друг от друга и в 10 мм от края.
d) Просверлите 4 отверстия 8 мм, лучше всего с помощью сверлильного станка
e) Аккуратно зашкурьте выходные отверстия от заусенец, чтобы не оставлять следа на отливке.



Бумажный шаблон

Для изготовления статора используется так называемый порошковый стекломат (стекломатериал с порошковым связующим). Чтобы вырезать из него составные части статора, сделайте бумажные шаблоны. Их можно обвести фломастером и вырезать получившуюся фигуру из стекломата.

Оберните форму листом бумаги и наметьте край.


Продолжение следует.

То, что генератор на неодимовых магнитах, например ветрогенератор, является полезным, уже ни у кого не вызывает сомнений. Если даже все приборы в доме и не удастся обеспечить энергией таким способом, то все-таки при длительном использовании он покажет себя с выигрышной стороны. Изготовление прибора своими руками сделает эксплуатацию еще экономичнее и приятнее.

Характеристики неодимовых магнитов

Но давайте сначала выясним, что собой представляют магниты. Они появились не так давно. Приобрести в магазине магниты можно было с девяностых годов прошлого века. Изготовлены они из неодима, бора и железа. Основным элементом, конечно, является неодим. Это металл лантоноидной группы, с помощью которого магниты приобретают огромную силу сцепления. Если взять две штуки большого размера и притянуть друг к другу, то расцепить их будет почти невозможно.

В продаже в основном, конечно, встречаются миниатюрные виды. В любом сувенирном магазине можно найти шарики (или другую форму) из этого металла. Высокая цена неодимовых магнитов объясняется сложностью добычи сырья и технологии его производства. Если шарик диаметром 3-5 миллиметров обойдется всего в несколько рублей, то за магнитик диаметром от 20 миллиметров и выше придется выложить 500 рублей и более.

Неодимовые магниты получают в специальных печах, где процесс происходит без доступа кислорода, в вакууме или атмосфере с инертным газом. Самые распространенные — это магниты с аксиальным намагничиванием, в которых вектор поля направлен вдоль одной из плоскостей, где измеряется толщина.

Характеристики неодимовых магнитов очень ценны, но их легко можно испортить без возможности восстановления. Так, сильный удар способен лишить их всех свойств. Поэтому нужно стараться избегать падений. Также у разных видов имеется свой температурный предел, который варьируется от восьмидесяти до двухсот пятидесяти градусов. При температуре выше предельной магнит теряет свои свойства.

Правильное и аккуратное использование служит залогом сохранения качеств в течение тридцати лет и более. Естественное размагничивание составляет всего один процент в год.

Применение неодимовых магнитов

Их часто используют в опытах в области физики и электротехники. Но и на практике эти магниты нашли уже широкое применение, например, в промышленности. Нередко их можно найти и в составе сувенирной продукции.

Высокая степень сцепления делает их очень полезными при поиске предметов из металла, находящихся под землей. Поэтому многие поисковики используют оборудование с применением неодимовых магнитов, чтобы находить технику, оставшуюся с военных времен.

Если старые акустические колонки еле работают, то иногда стоит к ферритовым магнитам приложить неодимовые, и аппаратура снова отлично зазвучит.

Так и на двигателе или генераторе можно попробовать заменить старые магниты. Тогда есть шанс, что техника заработает намного лучше. Потребление при этом даже снизится.

Человечество уже давно ищет На неодимовых магнитах, как некоторые считают, технология вполне может обрести реальные очертания.

Вертикально ориентированный ветрогенератор в готовом виде

К ветрогенераторам, особенно в последние годы, снова возобновился интерес. Появились новые модели, более удобные и практичные.


Еще недавно главным образом использовались горизонтальные ветрогенераторы, имеющие три лопасти. А вертикальные виды не распространялись из-за сильной нагрузки на подшипники ветроколеса, вследствие чего возникало увеличенное трение, поглощающее энергию.

Но благодаря использованию принципов магнитной левитации, ветрогенератор на неодимовых магнитах стал применяться именно вертикально-ориентированный, с выраженным свободным инерционным вращением. В настоящее время он доказал свою более высокую эффективность по сравнению с горизонтальным.

Легкий старт достигается благодаря принципу магнитной левитации. А благодаря многополюсности, которая дает номинальное напряжение на малых оборотах, удается отказаться от редукторов полностью.

Некоторые приборы способны начать работу, когда скорость ветра составляет всего полтора сантиметра в секунду, а при достижении всего трех—четырех метров в секунду, она может уже равняться вырабатываемой мощности прибора.

Область применения

Таким образом, ветрогенератор, в зависимости от своей мощности, способен обеспечить энергией разные строения.

    Городские квартиры.

    Частные дома, дачи, магазины, мойки.

    Детские сады, больницы, порты и другие городские учреждения.

Преимущества

Приборы приобретают в готовом виде или изготавливают самостоятельно. Купив ветрогенератор, его остается только установить. Все регулировки и центровки уже пройдены, проведены испытания при различных климатических условиях.

Неодимовые магниты, которые используются вместо редуктора и подшипников, позволяют достичь следующих результатов:

    сокращается трение, и повышается срок эксплуатации всех деталей;

    исчезает вибрация и шум прибора при работе;

    себестоимость уменьшается;

    экономится электроэнергия;

    исчезает необходимость регулярно обслуживать прибор.

Ветрогенератор можно приобрести со встроенным инвертором, который заряжает батарею, а также с контроллером.


Наиболее распространенные модели

Генератор на неодимовых магнитах может быть изготовлен на одинарном или двойном креплении. Помимо основных неодимовых, в конструкции могут быть предусмотрены дополнительные ферритовые магниты. Высоту крыла делают разную, в основном от одного до трех метров.

Более мощные модели имеют двойное крепление. В них также устанавливаются дополнительные генераторы на ферритовых магнитах и имеется различная высота крыла и диаметр.

Самодельные конструкции


Учитывая то, что приобрести генератор на неодимовых магнитах, работающий от ветра, далеко не всем по карману, часто решаются на сооружение конструкции своими руками. Рассмотрим различные варианты устройств, которые без труда можно сделать самостоятельно.

Ветрогенератор своими руками

Имеющая вертикальную ось вращения, имеет обычно от трех до шести лопастей. В конструкцию входят статор, лопасти (неподвижные и вращающиеся) и ротор. Ветер влияет на лопасти, вход в турбину и выход из нее. В качестве опоры иногда используют автомобильные ступицы. Такой генератор на неодимовых магнитах является бесшумным, остается стабильным даже при сильном ветре. Ему не нужна высокая мачта. Движение начинается даже при очень слабом ветре.


Каким может быть устройство неподвижного генератора

Известно, что электродвижущая сила через провод генерируется посредством изменения магнитного поля. В сердечнике неподвижного генератора создается путем электронного управления, не механически. Генератор управляет потоком автоматически, действуя резонансно и потребляя очень малую мощность. Его колебания отклоняют в стороны магнитные потоки железных или ферритовых сердечников. Чем больше частота колебаний, тем сильнее мощность генератора. Запуск реализуется путем кратковременного импульса на генератор.

Как сделать вечный двигатель

На неодимовых магнитах в основном однотипны по принципу действия. Стандартным уже вариантом является аксиальный тип.

За его основу берется ступица из автомобиля с тормозными дисками. Такая база станет надежной и мощной.

При решении ее использовать ступицу следует полностью разобрать и проверить, достаточно ли там смазки, а при необходимости очистить ржавчину. Тогда готовый прибор будет приятно покрасить, и он приобретет «домашний», ухоженный вид.


В однофазном приборе полюсы должны иметь равное количество с количеством магнитов. В трехфазном должно соблюдаться соотношение двух к трем или четырех к трем. Магниты размещают с чередованием полюсов. Они должны быть точно расположены. Для этого можно начертить на бумаге шаблон, вырезать его и точно перенести на диск.

Чтобы полюсы не перепутать, маркером делают пометки. Для этого магниты подносят одной стороной: ту, что притягивает, обозначают знаком «+», а ту, что отталкивает, - «-». Магниты должны притягиваться, то есть те, что расположены друг напротив друга, должны иметь разные полюсы.


Обычно используется суперклей или подобный ему, а после наклейки заливают еще эпоксидной смолой для увеличения прочности, предварительно сделав «бордюрчики», чтобы она не вытекла.

Трех- или однофазный

Генератор на неодимовых магнитах обычно делают конструкция при нагрузке будет работать с вибрацией, так как не обеспечится постоянная отдача тока, из-за чего получится скачкообразная амплитуда.

Зато при трехфазной системе в любое время гарантируется постоянная мощность благодаря компенсации фаз. Поэтому ни вибрации не будет возникать, ни гудения. А эффективность работы станет на пятьдесят процентов выше, чем с одной фазой.

Намотка катушки и остальная сборка

Расчет генератора на неодимовых магнитах в основном делается на глаз. Но лучше, конечно, добиваться точности. Например, для тихоходного устройства, где зарядка аккумулятора начинала бы функционировать при 100—150 оборотах в минуту, потребуется от 1000 до 1200 витков. Общее количество делится на количество катушек. Столько потребуется витков в каждую из них. Катушки наматывают по возможности наиболее толстым проводом, так как при меньшем сопротивлении ток будет больше (при большом напряжении сопротивлением весь ток заберется).

Обычно используют круглые, но лучше мотать катушки вытянутой формы. Внутреннее отверстие должно равняться диаметру магнита или быть больше него. Кроме того, оптимальный магнит получится в виде прямоугольника, а не шайбы, так как у первых магнитное поле растянуто по длине, а у последних — сосредоточено в центре.

Толщину статора делают равной толщине магнитов. Для формы можно использовать фанеру. На ее дне и поверх катушек размещают стеклоткань для прочности. Катушки соединяют между собой, и каждую фазу выводят наружу для соединения затем треугольником или звездой.

Остается сделать мачту и надежное основание.

Конечно, это не вечный двигатель на неодимовых магнитах. Однако экономия при использовании ветрогенератора будет обеспечена.