Плавают обороты 3s fse. Впускной коллектор и очистка от сажи

Непосредственный впрыск Toyota система D-4

11.02.2009

Диагностика и ремонт систем впрыска и зажигания двигателей 3S-FSE,1AZ-FSE,1JZ-FSE Toyota D-4
Система непосредственного впрыска на Toyota (D-4) была анонсирована в начале 1996 года, в ответ на GDI от конкурентов. В серию такой двигатель (3S-FSE) был запущен с 1997 года на модели Corona (Premio T210), в 1998 - начал устанавливаться на модели Vista и Vista Ardeo (V50).Позднее непосредственный впрыск появился на рядных шестерках 1JZ-FSE (2.5) и 2JZ-FSE (3.0), а с 2000 года, после замены серии S на серию AZ, был запущен и двигатель D-4 1AZ-FSE.

Мне пришлось увидеть в ремонте первый двигатель 3S-FSE в начале 2001года. Это была Toyota Vista. Я менял маслосъёмные колпачки и попутно изучал новую конструкцию двигателя. Первая информация о нем появилась позднее в 2003 на Сахалинском сайте у Кучера Владимира Петровича. Первые удачные ремонты давали незаменимый опыт для работы с этим типом двигателей, которыми сейчас никого не удивишь. Тогда же, я слабо представлял, с каким чудом имею дело. Двигатель был настолько революционным, что многие ремонтники просто отказывались от ремонтов. Применив ТНВД, высокое давление, два катализатора, электронный дроссель, шаговый мотор управления EGR, отслеживание положения дополнительных заслонок во впускном коллекторе, систему VVTi , и индивидуальную систему зажигания разработчики показали, что наступила новая эра экономичных и экологичных двигателей.

На фотографиях показан общий вид двигателей 3S-FSE, 1AZ-FSE, 1JZ-FSE.

Принципиальная блок-схема двигателя прямого впрыска на примере 1AZ-FSE выглядит следующим образом.

Следует отметить следующие важные системы и их элементы, которые наиболее часто имеют дефекты.

Система топливоподачи: погружной электрический насос в баке с сеткой топливозаборника и топливным фильтром на выходе, топливный насос высокого давления, установленный на головке блока цилиндров с приводом от распредвала, топливная рампа с редукционным клапаном.

Система синхронизации: датчики коленвала и распредвала. Система управления:

Датчики: массового расхода воздуха, температуры охлаждающей жидкости и впускаемого воздуха, детонации, положения педали газа и дроссельной заслонки, давления во впускном коллекторе, давления топлива в рампе, подогреваемые кислородные датчики;

Исполнительные устройства: катушки зажигания, блок управления форсунками и сами форсунки, клапан регулировки давления в рампе, вакуумный соленоид управления заслонками во впускном коллекторе, клапан управления муфтой VVT-i. Это далеко не весь перечень, но эта статья и не претендует на полное описание моторов прямого впрыска. Выше приведенной схеме, естественно, соответствует структура таблицы кодов неисправностей и текущих данных. При наличии в памяти кодов, начинать надо именно с них. Причём, если их много, анализировать их бессмысленно, надо переписать, стереть и отправить владельца в пробную поездку. Если загорится контрольная лампа, снова прочитать и анализировать уже более узкий перечень. Если нет – сразу переходить к анализу текущих данных.

При диагностировании двигателя сканер выдает дату порядка (80) параметров для оценки состояния и анализа работы датчиков и систем двигателя. Следует отметить, что большим недостатком у 3S-FSE является отсутствие в дате параметра – «давление топлива». Но, не смотря на это, дата очень информативна и, при правильном понимании, достаточно точно отражает работу датчиков и систем двигателя и АКПП.

Для примера посмотрим на одну правильную дату и несколько фрагментов даты проблемами с мотора 3S-FSE

На этом фрагменте даты видим нормальное время впрыска, угол зажигания, разряжение, скорость двигателя на холостом ходу, температуру двигателя, температуру воздуха. Положение дросселя и признак наличия холостого хода.

По следующей картинке можно оценить топливную коррекцию, показание датчика кислорода, скорость автомобиля, положение мотора EGR.

Затем включение муфты кондиционера, клапана системы улавливания паров топлива, клапана VVTi, овердрайва, соленоидов в АКПП

Как видно по дате можно легко оценить работу и проверить функционирование практически всех основных датчиков и систем двигателя и АКПП. Если выстроить в ряд показания, то можно быстро оценить состояние двигателя и решить проблему неправильной работы.

В следующем фрагменте показано увеличенное время впрыска топлива. Дата получена сканером DCN-PRO.

А на следующем фрагменте, обрыв датчика температуры входящего воздуха (-40 градусов), и ненормально высокое время впрыска (1,4мс при стандарте 0,5-0,6мс) на прогретом моторе.

Ненормальная коррекция заставляет насторожиться и проверить первым долгом наличие бензина в масле.

Блок управления забедняет смесь(-80%)

Наиболее важными параметрами, которые достаточно полно отображают состояние двигателя, являются строчки с показаниями длинной и короткой топливной коррекции; напряжения датчика кислорода; разрежение во впускном коллекторе; скорость вращения двигателя (обороты); положение мотора EGR; положение дроссельной заслонки в процентах; угол опережения зажигания, и время впрыска топлива. Для более быстрой оценки режима работы двигателя строчки с этими параметрами можно выстроить на дисплее сканера. Ниже на фото пример фрагмента даты работы двигателя в обычном режиме. В этом режиме датчик кислорода переключается, разрежение в коллекторе 30 кПа, дроссель открыт на 13%; угол опережения 15 градусов. Клапан EGR закрыт. Такая компоновка и выбор параметров позволят сэкономить время на проверке состояния двигателя.

Вот основные строчки с параметрами для анализа двигателя.

А здесь дата в режиме обедненки. При переходе в обеднённый режим работы дроссель приоткрывается, открывается EGR, напряжение датчика кислорода около 0, разрежение 60 кПа, угол опережения 23 градуса. Таков режим работы в обеднённом режиме.

Для сравнения фрагмент даты обедненного режима снятой сканером DCN-PRO

Важно понимать, что если двигатель работает правильно, то при соблюдении определенных условий, он должен переходить в обеднённый режим работы. Переход происходит при полном прогреве двигателя и только после перегазовки. Много факторов определяют процесс перехода двигателя в обеднённый режим. При диагностировании следует учитывать и равномерность давления топлива, и давление в цилиндрах, и засаженность впускного коллектора, и правильную работу системы зажигания.

Теперь посмотрим дату с двигателя 1АZ-FSE.Разработчики исправили упущенные ошибки, есть строчка с давлением. Теперь можно без хлопот оценивать давление в различных режимах.

На следующей фотографии видим в обычном режиме давление топлива 120кг.

В обеднённом режиме давление снижено до 80 кг. А угол опережения задан 25 градусов.

Дата с двигателя 1JZ-FSE практически не отличается от даты 1AZ-FSE.Отличие работы только в том, что при обеднёнке давление понижено до 60-80 кг. В обычном режиме 80-120кг. При всей полноте даты, которые выдает сканер, по моему мнению, не достает одного очень важного параметра для оценки состояния долговечности насоса. Это параметр работы клапана регулятора давления. По скважности управляющих импульсов можно оценить «силу» насоса. Такой параметр есть в дате у Nissan.Ниже приведены фрагменты даты от двигателя VQ25 DD.

Здесь хорошо видно как происходит регулировка давления при изменении управляющих импульсов на регуляторе давления.

На следующей фотографии представлен фрагмент даты (основных параметров) двигателя 1JZ-FSE в обеднённом режиме.

Следует отметить, что двигатель 1JZ-FSE способен работать без высокого давления (в отличие от 4-х цилиндровых собратьев), автомобиль при этом способен передвигаться. Однако при возникновении любых серьезных, и не очень серьёзных помех (неисправностей) перехода в обедненный режим не произойдет. Грязная заслонка, проблемы в искрообразовании, топливоподаче, газораспределении не позволяют сделать переход. При этом давление блок управления понижает до 60 кг.

На этом фрагменте можно увидеть отсутствие перехода и приоткрытую заслонку, что говорит о загрязнении канала х\х. Обеднённого режима не будет. И для сравнения фрагмент даты в обычном режиме.




Конструктивное исполнение.

Топливная рейка, форсунки, ТНВД.

На первом двигателе с НВ конструкторы применили разборные инжекторы. Топливная рейка имеет 2х этажную конструкцию разных диаметров. Это необходимо для выравнивания давления. На следующем фото топливные элементы высокого давления двигателя3S-FSE.

Топливная рейка, датчик давления топлива на ней, клапан аварийного сброса давления, инжекторы, топливный насос высокого давления и магистральные трубки.

Здесь топливная рейка двигателя 1AZ-FSE,она имеет более простую конструкцию с одним проходным отверстием.

А на следующей фотографии представлена топливная рейка от двигателя 1JZ-FSE. Датчик и клапан расположены рядом, инжекторы отличаются от 1AZ-FSE только цветом пластика обмотки и производительностью.

В двигателях с НВ работа первого насоса не ограничена 3,0 килограммами. Здесь давление несколько выше порядка 4,0 - 4,5кг для обеспечения полноценного питания ТНВД на всех режимах работы. Замер давления при диагностике, можно производить манометром через входной порт прямо на ТНВД.

При запуске двигателя давление должно «набиваться» до своего пика за 2-3 секунды, иначе запуск будет долгим или его не будет вовсе. Ниже на фото замер давления на двигателе 1AZ-FSE

На следующем фото замер - давления первого насоса на двигателе 3S-FSE(давление ниже нормы, первый насос нужно заменить.)

Так как двигатели выпускались для внутреннего рынка Японии, то степень очистки топлива не отличается от обычных двигателей. Первый заслон сетка перед насосом.

Для сравнения грязная и новая сетки первого насоса двигателя 1AZ-FSE.При таких загрязнениях сетку нужно менять или чистить карбклинером. Бензиновые отложения очень плотно пакуют сетку, понижается давление первого насоса.

Затем второй заслон-фильтр тонкой очистки двигатель (3S-FSE) (кстати сказать, воду он не задерживает).

При замене фильтра нередки случаи неправильной сборки топливной кассеты. При этом происходит потеря давления и не запуск.

Так выглядит топливный фильтр в разрезе после 15 тысяч пробега. Очень приличный заслон бензиновому мусору. При грязном фильтре переход в обеднённый режим либо очень долгий, либо его нет вообще.

И последний заслон фильтрации топлива сетка на входе ТНВД. От первого насоса топливо с давлением примерно 4 Атм поступает в ТНВД,затем давление поднимается до 120 Атм и поступает в топливную рейку к инжекторам. Блок управления оценивает давление по сигналу датчика давления. ЕСМ корректирует давление, при помощи клапана регулятора на ТНВД. При аварийном повышении давления срабатывает редукционный клапан в рейке. Так вкратце организована топливная система на двигателе. Теперь подробнее о составляющих системы и о способах диагностирования и проверки.

ТНВД

Топливный насос высокого давления имеет достаточно простую конструкцию. Надежность и долговечность насоса зависят (как и многое у Японцев) от различных мелких факторов, в частности от прочности резинового сальника и механической прочности напорных клапанов и плунжера. Структура насоса обычная и очень простая. В конструкции нет революционных решений. Основа - плунжерная пара, сальник разделяющий бензин и масло, напорные клапана и электромагнитный регулятор давления. Основным звеном в насосе является 7мм плунжер. Как правило, в рабочей части плунжер не сильно изнашивается (если конечно не применяется абразивный бензин.) Основная проблема в насосе износ резинового сальника (срок жизни которого определяется не более 100тыс. км. пробега). Этот пробег, конечно же, занижает надежность двигателя. Сам же насос стоит безумных денег 18-20 тысяч рублей (Дальний Восток). На двигателях 3S-FSE применялись три различных ТНВД один с верхним расположением клапана регулятора давления и два с боковым.

Насос в разборе, напорные клапана, регулятор давления, сальник и плунжер, посадочное место сальника. Насос в разборе двигателя 3S-FSE.

При эксплуатации на низкокачественном топливе происходит коррозия деталей насоса, что приводит к ускоренному износу и потере давления. На фото видны следы износа в сердечнике клапана давления и упорной шайбе плунжера.

Способ диагностирования насоса по давлению и по протечке сальника.

На сайте я уже выкладывал методу проверки давления по напряжению датчика давления. Лишь напомню некоторые детали. Для контроля давления приходится использовать показания, снятые с электронного датчика давления. Датчик установлен на торце раздаточной топливной рейки. Доступ к нему ограничен и следовательно замеры легче производить на блоке управления. Для Тойоты Виста и Нади это вывод Б12 – ЭБУ двигателя (цвет провода коричневый с жёлтой полосой) Датчик питается напряжением 5в. При нормальном давлении показания датчика изменяются в диапазоне(3,7-2,0 в.)- сигнальный вывод на датчике PR. Минимальные показания, при которых двигатель еще способен работать на х\х -1,4 вольта. Если показания от датчика будут ниже 1,3 вольта в течение 8 секунд - блок управления зарегистрирует код неисправности Р0191 и остановит двигатель.

Правильные показания датчика на х\х -2,5 в. При обедненке - 2,11 в

Ниже на фотографии пример замера давления. Давление ниже нормы - причиной потери неплотность в напорных клапанах ТНВД.

Регистрировать протечку бензина в масло нужно при помощи газоанализа. Показания уровня СН в масле не должны превышать 400 единиц на прогретом двигателе. Идеальный вариант 200-250 единиц.

Нормальные показания.

Зонд газоанализатора при проверке вставляют в маслоналивную горловину, а саму горловину закрывают чистой ветошью.

Аномальные показания уровень СН-1400 единиц - насос требует замены. При протекании сальника в дате будет зарегистрирована очень большая минусовая коррекция.

А при полном прогреве, с протекающим сальником, обороты двигателя будут сильно прыгать на х\х, при перегазовках мотор периодически глохнет. При нагреве картера бензин испаряется и через линию вентиляции вновь попадает во впускной коллектор, дополнительно обогащая смесь. Датчик кислорода регистрирует богатую смесь, а блок управления пытается её забеднить. Важно понимать, что в такой ситуации совместно с заменой насоса необходимо сменить масло с промывкой двигателя.

На следующей фотографии фрагменты замера уровня СН в масле (завышенные значения)


Способы ремонта насоса.

Давление в насосе пропадает очень редко. Потеря давления происходит из-за выработки шайбы плунжера, либо из-за пескоструя клапана- регулятора давления. Из практики плунжера практически не изнашивались в рабочей зоне. Зачастую приходится приговаривать насос из-за проблем с сальником, который, стираясь, начинает пропускать топливо в масло. Проверить наличие бензина в масле не сложно. Достаточно померить СН в маслоналивной горловине на прогретом работающем двигателе. Как уже отмечалось ранее, показания должны быть не больше 400 единиц. Родной сальник осаживается в тело насоса. Это важно при изготовлении замены старому сальнику.

В работе участвует как внутренняя часть, так и наружная. Виктор Костюк из Читы предложил менять сальник на цилиндр с колечком.

Эта идея целиком принадлежит ему. Пытаясь воспроизводить сальник Виктора, мы столкнулись с некоторыми трудностями. Во - первых старый плунжер имеет заметный износ в районе работы сальника. Он составляет 0,01мм. Этого оказалось достаточно для разрезания резинки нового сальника. Вследствие чего происходил пропуск бензина в масло.

Во – вторых пока еще мы не можем найти оптимальный вариант внутреннего диаметра кольца. И ширины канавки. В третьих нас волнует вопрос о необходимости второй канавки. В родном сальнике два резиновых конуса. Если грамотно рассчитать все механические составляющие, трение, то можно будет продлить жизнь насоса на неопределённый срок. И избавить клиентов от грабительских цен на новый насос.

Ремонт же механической части насоса заключается в притирке напорных клапанов и шайбы от следов износа. Напорные клапана одинаковых размеров, они легко притираются любым доводочным абразивом для притирки клапанов.

На фото увеличенный клапан. Хорошо видна радиальная и выработка.

Я встречал один сомнительный вид ремонта насоса. Ремонтники приклеивали клеем на основной сальник насоса встык часть сальника от двигателя 5А. Внешне все было красиво, но только вот бензин обратная часть сальника не держала. Такой ремонт недопустим и может повлечь возгорание двигателя. На фотографии приклеенный сальник.

Следующее поколение насосов двигателей 1AZ и 1JZ несколько отличается от своего предшественника.

Изменён регулятор давления, оставлен лишь один напорный клапан и он не разборный, в сальник добавлена пружина, корпус насоса стал несколько меньше. Отказов и протеканий у этих насосов гораздо меньше, но все, же срок службы не большой.

Топливная рейка, инжекторы и клапан аварийного сброса давления.

На двигателях 3S-FSE японцы применили впервые разборную форсунку. Обычный инжектор способный работать при давлении 120 кг. Следует отметить, что массивный металлический корпус и проточки под захват подразумевали долговечное использование и обслуживание.

Рейка с инжекторами располагается в труднодоступном месте под впускным коллектором и шумовой защитой.

Но все же, демонтаж всего узла может быть легко осуществлен снизу двигателя, не прилагая больших усилий. Единственная проблема раскачать закисший инжектор специально изготовленным ключом. Ключ на 18 мм со сточенными краями. Все работы приходится производить через зеркало из-за труднодоступности.

Как правило, при демонтаже, всегда заметны следы закоксовки сопла. Эту картину можно увидеть при использовании эндоскопа, заглянув в цилиндры.

А при сильном увеличении четко видно практически полностью закрытое коксом сопло инжектора.

Естественно при загрязнении сильно изменяется распыл и производительность инжектора, оказывая влияние на работу всего двигателя в целом. Плюсом в конструкции, бесспорно, является тот факт, что форсунки отлично моются (отмечу, что промывка под высоким давлением на специальных промывочных установках не допустима из-за большой вероятности «убиения» инжектора) Инжекторы после промывки способны долго нормально работать без сбоев.

Проверку инжекторов можно осуществить на стенде на производительность налива за определенный цикл и на наличие неплотностей в игле при тесте пролива.

Разница налива на этом примере очевидна.

Форсунка не должна давать капель, иначе её просто следует заменить.

Конечно же, такие тесты форсунки при малом давлении являются не корректными, но все же многолетнее сравнение доказывает, что такой анализ имеет право на существование.

Возвращаясь к тому факту, что форсунка является разборной, а двигатель видавший виды - очень не рекомендуется производить разбор сопла, дабы не нарушить притертость соединений игла седло. Важен и тот факт, что сопло своеобразно сориентировано для правильного попадания заряда топлива, а нарушение ориентации приводит к неравномерной работе на х\х. При промывке вообще следует первый 10 минутный цикл производить без подачи импульсов открытия, затем, остудив инжектор, повторить промывку с управляющими импульсами. Ультразвук,как правило, не может полностью очистить, выбить отложения из инжектора. Правильней применять при очистке ещё и метод пропускной очистки. Закачивать агрессивный раствор под давлением во внутрь инжектора на время, а затем продувать сжатым воздухом с очистителем.

При диагностике системы питания и, в частности, инжекторов следует сопоставлять данные газоанализа в различных режимах работы двигателя. Как пример в обычном режиме уровень СО при времени впрыска 0,6-0,9 мс не должен превышать 0,3%(бензин Хабаровский), а уровень кислорода не должен превышать 1%;повышение кислорода говорит о недостатке топливоподачи, и как правило провоцирует блок управления увеличить подачу.

на фото показания газоанализа с различных автомобилей.

В обеднённом же режиме количество кислорода должно быть порядка 10%,а уровень СО в нулях (на то он и обеднённый впрыск).

Следует также учитывать и нагар на свечах. По нагару можно определить увеличенную или забеднённую подачу топлива.


Светлый железный (феррозный) нагар говорит о плохом качестве топлива и об уменьшенной подаче.

Напротив чрезмерный угольный нагар говорит о повышенной подаче. Свеча с таким нагаром не способна правильно работать, и при проверке на стенде показывает пробои по нагару, либо отсутствие искрообразования из-за пониженного сопротивления изолятора.

При монтаже инжекторов следует приклеивать солидолом отражательную и упорную шайбы.

Так как давление, подводимое к инжекторам, в несколько раз больше, чем на простых двигателях, для управления применили специальный усилитель. Управление осуществляется стовольтовыми импульсами. Это очень надежный электронный блок. За все время работы с двигателями был только один отказ, да и то из-за неудачных экспериментов с подачей питания на инжекторы.

На фото усилитель от двигателя 3S-FSE.

При диагностировании топливной системы следует обращать внимание (как уже упоминалось выше) на долговременную топливную коррекцию. Если показания выше 30-40процентов, следует проверить напорные клапана в насосе и на линии обратки. Нередки случаи, когда заменен насос, промыты форсунки, заменены фильтры, а перехода в обеднёнку не происходит. Давление топлива в норме (по показаниям датчика давления). В таких случаях следует заменить клапан аварийного сброса давления, установленного в топливной рейке. Если вы сами производите замену насоса, то обязательно диагностируйте состояние напорных клапанов и проверяйте наличие мусора на выходе насоса (грязь, ржа, топливный осадок).

Клапан не является разборным и при подозрениях на утечку его просто меняют.

Внутри клапана находится напорный клапан с мощной пружиной, рассчитанный на аварийный сброс давления.

На фото клапан в разборе. Отремонтировать его нет возможности

При увеличении можно разглядеть выработку в паре (игла седло)


При пропусках в соединениях клапана возникают потери давления, что сильно влияет на запуск двигателя. Долгое вращение, черный выхлоп и не запуск будут результатом неправильной работы клапана либо напорных клапанов в насосе. Этот момент можно проконтролировать вольтметром при запуске на датчике давления и оценить набивку давления за 2-3 секунды вращения стартером.

Следует отметить еще один важный момент необходимый для успешного запуска мотора3S-FSE. Стартовая форсунка осуществляет 2-3 секундную подачу топлива при холодном пуске во впускной коллектор. Начальное обогащение смеси задает именно она, пока происходит накачка давления в основной магистрали.

Форсунка также очень хорошо моется в ультразвуке, а после промывки долго и успешно работает.

Несколько иная конструкция у инжектора двигателя 1AZ-FSE.Инжекторы практически одноразовые. При жесткой промывке начинают течь. Их очень трудно извлекать из головки, имеют очень хрупкий пластик обмотки. А стоимость на экзисте одной форсунки составляет 13000 рублей.

На фотографии (снимок сделан через зеркало) топливная рейка с инжекторами в блоке.

Крупный план забитого сопла.

Распиленный инжектор от двигателя 1AZ-FSE.Съём инжектора, можно осуществить при помощи мощного крепления самого инжектора. Им можно раскачать инжектор без риска обломать обмотку.

Щелевидный распыл


Игла


На следующем фото инжекторы от двигателя 1JZ-FSE

На фотографии видно, что цвет обмотки изменился при эксплуатации. Это говорит о том, что обмотка при работе сильно греется. Этот перегрев пластика и является причиной отрыва контактной площадки при демонтаже инжектора. Момент перегрева необходимо учитывать и при очистке ультразвуком, без проточного охлаждения применять промывку в у\з ваннах с подогревом не рекомендуется. При заказе японцы предлагают инжекторы двух цветов коричневый и черный. Коричневый, соответствует серому цвету, черный – черному.

Впускной коллектор и очистка от сажи.

Практически любой диагност или механик, менявший свечи в двигателе 3S-FSE,сталкивался проблемой очистки впускного коллектора от сажи. Инженеры Тойоты организовали структуру впускного коллектора таким образом, чтобы большая часть продуктов полного сгорания не выбрасывалась в выпуск, а наоборот оставалась на стенках впускного коллектора.

Происходит чрезмерное накопление сажи во впускном коллекторе, что сильно душит двигатель и нарушает правильную работу систем.

На фотографиях верхняя и нижняя часть коллектора двигателя 3S-FSE,грязные заслонки. Справа на фото канал клапана EGR, все коксовые отложения берут начало именно отсюда. Существует много споров глушить или нет, этот канал в Российских условиях. Мое мнение, при закрытии канала страдает экономия по топливу. И это многократно проверено на практике.

При смене свечей обязательно необходимо чистить верхнюю часть впускного коллектора, иначе при установке кокс оторвется и попадет в нижнюю часть коллектора.

При монтаже коллектора железную прокладку достаточно только отмыть от отложений, герметик использовать нет необходимости, иначе последующиё съём будет проблематичным.

Такое количество отложений опасно для двигателя.

Очистка сажи в верхней части не решает практически проблему. Основная чистка необходима нижней части коллектора и впускных клапанов. Засаженность может достигать 70% от всего объёма прохода воздуха. При этом перестает работать правильно система изменяемой геометрии впускного коллектора. Сгорают щетки в моторе заслонок, отрываются магниты от чрезмерных нагрузок, пропадает переход в обеднёнку.





Дополнительную проблему составляет съём нижней части коллектора. (Речь идет о двигателе 3S-FSE) Ее невозможно провести без демонтажа опоры крепления двигателя, генератора, и выкручивания опорных шпилек (этот процесс очень трудоемкий). Мы используем дополнительный самодельный инструмент для выкручивания шпилек, позволяющий облегчить демонтаж нижней части, либо вообще используем контактную сварку или сварку полуавтоматом, для фиксации гаек на шпильках. Особую трудность для демонтажа коллектора представляет пластик электропроводки.

Приходится буквально изыскивать миллиметры для откручивания.

Коллектор после очистки.


Очищенные заслонки должны возвращаться под действием пружины без закусываний. В верхней части важно очистить каналы EGR.



Чистить также необходимо и надклапанное пространство вместе с клапанами. Далее на фотографиях грязные клапан и надклапанное пространство. При таких отложениях сильно страдает экономия топлива. Перехода в обеднённый режим нет. Запуск затруднен. О зимнем запуске можно даже не упоминать в таком положении.

Сложная конструкция коллектора и дополнительных заслонок была заменена более простым решением на двигателях АZ и JZ. Конструктивно были увеличены проходные каналы, сами заслонки управляются теперь простым сервоприводом и одним эл. клапаном.

На фото клапан управления заслонками вакуумный привод заслонок двигателя 1JZ-FSE.

Но всё же, необходимость в регулярной очистке полностью не исключена. На следующей фотографии грязные заслонки от двигателя 1JZ-FSE. Демонтаж коллектора здесь еще более неприятный. Если не отсоединить первые шесть инжекторов (проводку) есть большая вероятность их легкого отлома, а стоимость одного инжектора просто колоссальна.

На следующем фото заслонки двигателя 1АZ-FSE.Это самая надежная и более простая конструкция.

А для уменьшения отложений в коллекторе на АZ применили интересное решение конструкции системы EGR. Своеобразный мешок для сбора отложений. Коллектор меньше загрязняется. А «мешок» легко чистится.


Газораспределение

На двигателе 3S-FSE установлен ремень ГРМ. При обрыве ремня происходит неминуемая поломка головки блока и клапанов. Клапана встречаются с поршнем при обрыве. Состояние ремня следует проверять при каждой диагностике. Замена не составляет проблем за исключением маленькой детали. Натяжитель должен быть либо новый, либо взведенный перед снятием и установленный под чеку. Иначе снятый ролик будет очень трудно взвести. При снятии нижней шестерни важно не поломать зубья (обязательно открутить стопорный болт), иначе будет срыв запуска и неминуемая замена шестерни.

При смене ремня натяжитель лучше ставить новый, без компромиссов. Старый натяжитель ремня ГРМ, после повторного взвода и установки, легко входит в резонанс. (На промежутке 1,5 - 2,0 тысяч оборотов.)

Этот звук повергает в панику владельца. Двигатель при этом издает рычащий неприятный звук.

После очистки необходимо сбросить накопленные блоком управления данные о состоянии заслонки, отключением АКБ. Во вторых отказ датчиков АПС и ТПС. При замене АПС не нужны регулировки, а вот при замене ТРС придется повозиться. На сайте Антон и Арид уже выкладывали свои алгоритмы регулировки датчика. Но я пользуюсь дугой методой настройки. Я скопировал показания датчиков и упорных болтов с нового блока и пользуюсь этими данными как матрицей.

положения дросселя, установочная матрица и фото заслонки от двигателя 1AZ-FSE.

При нарушении проводимости подогревателя блок управления фиксирует ошибку, и перестает воспринимать показания датчика. Коррекции в этом случае равны нулю и перехода в обеднёнку нет.

Другим проблемным датчиком является датчик положения дополнительных заслонок.

Очень редко приходится приговаривать датчик давления, только если обнаружено большое количество мусора в рейке и следы наличия воды.

При замене маслосъёмных колпачков иногда ломают датчик распредвала. Запуск становится сильно затянутым 5-6 проворотов стартером. Блок управления регистрирует ошибку Р0340.

Контрольный разъём датчика распредвала находится в районе тосольных трубопроводов около блока заслонки. На разъёме можно легко проверить работоспособность датчика, применив осциллограф.

Несколько слов о катализаторе.

Их установлено два на двигателе. Один - непосредственно в выпускном коллекторе, второй под днищем автомобиля. При неправильной работе системы питания либо системы зажигания происходит оплавление, либо засаживание сот катализаторов. Пропадает мощность, происходят остановки двигателя при прогреве. Проверить проходимость можно датчиком давления через отверстие датчика кислорода. При повышенном давлении следует детально проверять оба ката. На фотографии место подключения манометра.

Если при подключении манометра давление выше 0,1 кг на х\х,а при перегазовках заваливает за 1,0 кг,то есть большая вероятность забитого выпускного тракта.

Внешний вид катализаторов двигатель 3S-FSE


На фото второй, оплавленный катализатор. Давление выхлопа доходило при перегазовках до 1,5 кг. На холостом ходу давление было 0.2 кг. В данной ситуации такой катализатор необходимо удалять, единственным препятствием является то, что катализатор необходимо вырезать, а на его место вваривать трубу соответствующего диаметра.


Несколько слов о проблемах (болезнях) двигателей.

На двигателях 1AZ-FSE часто приходится браковать инжекторы по причине изменения сопротивления обмотки. Блок управления регистрирует ошибку Р1215.


Но данная ошибка не всегда означает полный отказ инжектора, иногда достаточно помыть инжектор в ультразвуке и ошибка больше не возникает.

Часто приходится мыть заслонку, по причине заниженных оборотов.

На двигателях 1JZ-FSE на первом месте стоит отказ клапана управления заслонками во впускном коллекторе. В клапане отгорает контакт обмотки. Блок управления регистрирует ошибку.



Другая проблема отказ катушек зажигания из-за неисправных свечей.

Реже приходится браковать насосы по потере стартового давления.

Нередки отказы работы электронной заслонки из-за сбоев работы датчика положения заслонки.

Есть еще один момент с двигателями 1JZ-FSE. При полном отсутствии бензина в баке и при этом вращении стартером, (попытка запустить автомобиль) блок управления регистрирует ошибки бедной смеси и низкого давления в топливной системе. Что является логичным для блока управления. За бензином должен следить владелец, а вот за давлением бортовой компьютер. Транспарант контроля двигателя, после возникновения ошибок в такой банальной ситуации, раздражает владельца. А удалить ошибку можно либо сканером, либо отключением АКБ.

Из всего сказанного следует – не стоит эксплуатировать авто с минимальным уровнем топлива, тем самым можно сэкономить на визит к диагностам.

Несколько слов о новом двигателе, который пришёл на наш рынок совсем недавно 4GR-FSE. Это V-образная шестёрка с цепным ГРМ, с возможностью изменения фаз на каждом распредвале как на впускном, так и выпускном. На двигателе отсутствует привычная всем система EGR. Стандартного клапана EGR нет. Очень точно контролируется положение каждого вала четырьмя датчиками. Датчика абсолютного давления во впуске нет, есть датчик потока воздуха. Насос оставили прежней конструкции. Давление насоса снижено до 40 кг. В обеднённый режим двигатель переходит только в динамике. В дате время впрыска топлива отображается в мл.

Фото ТНВД.

Фрагмент даты с показанием давления.

В заключении хотел бы отметить, что приход на наш рынок двигателей с непосредственным впрыском сильно пугает владельцев ценой на детали при ремонтах и неумением ремонтников обслуживать данный тип впрыска. Но прогресс не стоит на месте и обычный впрыск постепенно вытесняется. Технологии усложняются, вредные выбросы уменьшаются даже при использовании низкокачественного топлива. Диагностам и ремонтникам в Союзе следует объединить усилия для восполнения пробелов по данному типу впрыска.


Бекренёв Владимир
г.Хабаровск
Легион-Автодата


Информацию по обслуживанию и ремонту автомобилей вы найдете в книге (книгах):

Подробности

Диагностика и ремонт систем впрыска и зажигания

Система непосредственного впрыска на Toyota D4 была представлена миру в начале 1996 года, в ответ на GDI от конкурентов ММС. В серию такой двигатель 3S-FSE был запущен с 1997 года на модели Corona (Premio T210), в 1998 двигатель 3S-FSE - начал устанавливаться на модели Vista и Vista Ardeo (V50). Позднее непосредственный впрыск появился на рядных шестерках 1JZ-FSE (2.5) и 2JZ-FSE (3.0), а с 2000 года, после замены серии S на серию AZ, был запущен и двигатель D-4 1AZ-FSE.

Мне пришлось увидеть в ремонте первый двигатель 3S-FSE в начале 2001 года. Это была Toyota Vista. Я менял маслосъёмные колпачки и попутно изучал новую конструкцию двигателя. Первая информация о нем появилась позднее в 2003 на просторах интернета. Первые удачные ремонты давали незаменимый опыт для работы с этим типом двигателей, которыми сейчас никого не удивишь. Двигатель был настолько революционным, что многие ремонтники просто отказывались от ремонтов. Применив бензиновый ТНВД, высокое давление впрыска топлива, два катализатора, блок электронного дросселя, шаговый мотор управления EGR, отслеживание положения дополнительных заслонок во впускном коллекторе, систему VVTi , и индивидуальную систему зажигания - разработчики показали, что наступила новая эра экономичных и экологичных двигателей. На фотографии общий вид двигателя 3S-FSE.

Конструктивные особенности:

Создан на базе 3S-FE,
- степень сжатия чуть более 10,
- топливная аппаратура Denso,
- давление впрыска - 120 бар,
- впуск воздуха - через горизонтальные "вихревые" порты,
- соотношение воздуха и топлива - до 50:1
(при максимально возможном для LB двигателей Toyota 24:1)
- VVT-i (система изменения фаз газораспределения непрерывного типа),
- система EGR обеспечивает подачу на впуск до 40% отработавших газов в режиме ПСО
- катализатор накопительного типа,
- заявленные улучшения: прирост момента на низких и средних оборотах - до 10%, экономия топлива до 30% (в японском смешанном цикле - 6,5 л/100 км).

Следует отметить следующие важные системы и их элементы, которые наиболее часто имеют дефекты.
Система топливоподачи: погружной электрический насос в баке с сеткой топливозаборника и топливным фильтром на выходе, топливный насос высокого давления, установленный на головке блока цилиндров с приводом от распредвала, топливная рампа с редукционным клапаном.
Система синхронизации: датчики коленвала и распредвала.
Система управления: ЕСМ
Датчики: массового расхода воздуха, температуры охлаждающей жидкости и впускаемого воздуха, детонации, положения педали газа и дроссельной заслонки, давления во впускном коллекторе, давления топлива в рампе, подогреваемые кислородные датчики;
Исполнительные устройства: катушки зажигания, блок управления форсунками и сами форсунки, клапан регулировки давления в рампе, вакуумный соленоид управления заслонками во впускном коллекторе, клапан управления муфтой VVT-i. При наличии в памяти кодов, начинать надо именно с них. Причём, если их много, анализировать их бессмысленно, надо переписать, стереть и отправить владельца в пробную поездку. Если загорится контрольная лампа, снова прочитать и анализировать уже более узкий перечень. Если нет – сразу переходить к анализу текущих данных. Коды неисправности сравниваются и расшифровываются по мануалу.

Таблица кодов ошибок двигатель 3S-FSE:

12 P0335 Датчик положения коленчатого вала
12 P0340 Датчик положения распределительного вала
13 P1335 Датчик положения коленчатого вала
14,15 P1300, P1305, P1310, P1315 Система зажигания (N1)(N2) (N3) (N4)
18 P1346 Система VVT
19 P1120 Датчик положения педали акселератора
19 P1121 Датчик положения педали акселератора
21 P0135 Кислородный датчик
22 P0115 Датчик температуры охлаждающей жидкости
24 P0110 Датчик температуры воздуха на впуске
25 P0171 Кислородный датчик (сигнал бедной смеси)
31 P0105 Датчик абсолютного давления
31 P0106 Датчик абсолютного давления
39 P1656 Система VVT
41 P0120 Датчик положения дроссельной заслонки
41 P0121 Датчик положения дроссельной заслонки
42 P0500 Датчик скорости автомобиля
49 P0190 Датчик давления топлива
49 P0191 Сигнал давления топлива
52 P0325 Датчик детонации
58 P1415 Датчик положения SCV
58 P1416 Клапан SCV
58 P1653 Клапан SCV
59 P1349 Сигнал VVT
71 P0401 Клапан системы EGR
71 P0403 Сигнал EGR
78 P1235 ТНВД
89 P1125 Привод ETCS*
89 P1126 Муфта ETCS
89 P1127 Реле ETCS
89 P1128 Привод ETCS
89 P1129 Привод ETCS
89 P1633 Электронный блок управления
92 P1210 Форсунка холодного пуска
97 P1215 Форсунки
98 C1200 Датчик разрежения в вакуумном усилителе тормозов

Компьютерная диагностика двигателя 3S-FSE

При диагностировании двигателя сканер выдает дату порядка восьмидесяти параметров для оценки состояния и анализа работы датчиков и систем двигателя. Следует отметить, что большим недостатком в дате у 3S-FSE являлось отсутствие в дате для оценки работы параметра – «давление топлива». Но, не смотря на это, дата очень информативна и, при правильном понимании, достаточно точно отражает работу датчиков и систем двигателя и АКПП. Для примера приведу фрагменты правильной даты и несколько фрагментов даты проблемами с мотора 3S-FSE. На фрагменте даты видим нормальное время впрыска, угол зажигания, разряжение, скорость двигателя на холостом ходу, температуру двигателя, температуру воздуха. Положение дросселя и признак наличия холостого хода. По следующей картинке можно оценить топливную коррекцию, показание датчика кислорода, скорость автомобиля, положение мотора EGR.

Далее видим включение сигнала стартера (важно при запуске) включение кондиционера, электрической нагрузки, гидроусилителя руля, педали тормоза, положение АКПП. Затем включение муфты кондиционера, клапана системы улавливания паров топлива, клапана VVTi, овердрайва, соленоидов в АКПП.Много параметров представлено для оценки работы блока заслонки (электронного дросселя).

Как видно по дате можно легко оценить работу и проверить функционирование практически всех основных датчиков и систем двигателя и АКПП. Если выстроить в ряд показания даты, то можно быстро оценить состояние двигателя и решить проблему неправильной работы. В следующем фрагменте показано увеличенное время впрыска топлива. Дата получена сканером DCN-PRO.

А на следующем фрагменте, обрыв датчика температуры входящего воздуха (-40 градусов), и ненормально высокое время впрыска (1,4мс при стандарте 0,5-0,6мс) на прогретом моторе.

Ненормальная коррекция заставляет насторожиться и проверить первым долгом наличие бензина в масле. Блок управления корректирует смесь(-80%).

Наиболее важными параметрами, которые достаточно полно отображают состояние двигателя, являются строчки с показаниями длинной и короткой топливной коррекции; напряжения датчика кислорода; разрежение во впускном коллекторе; скорость вращения двигателя (обороты); положение мотора EGR; положение дроссельной заслонки в процентах; угол опережения зажигания, и время впрыска топлива. Для более быстрой оценки режима работы двигателя строчки с этими параметрами можно выстроить на дисплее сканера. Ниже на фото пример фрагмента даты работы двигателя в обычном режиме. В этом режиме датчик кислорода переключается, разрежение в коллекторе 30 кПа, дроссель открыт на 13%; угол опережения 15 градусов. Клапан EGR закрыт. Такая компоновка и выбор параметров позволят сэкономить время на проверке состояния двигателя. Вот основные строчки с параметрами для анализа двигателя.

А здесь дата в режиме «обедненки». При переходе в обеднённый режим работы дроссель приоткрывается, открывается EGR, напряжение датчика кислорода около 0, разрежение 60 кПа, угол опережения 23 градуса. Таков обеднённый режим работы двигателя.


Если двигатель работает правильно, то при соблюдении определенных условий, блок управления двигателя программно переводит мотор в обеднённый режим работы. Переход происходит при полном прогреве двигателя и только после перегазовки. Много факторов определяют процесс перехода двигателя в обеднённый режим. При диагностировании следует учитывать и равномерность давления топлива, и давление в цилиндрах, и засаженность впускного коллектора, и правильную работу системы зажигания.


Конструктивное исполнение. Топливная рейка, инжекторы, ТНВД.

Топливная рейка

На первом двигателе с непосредственным впрыском конструкторы применили разборные низкоомные инжекторы, управляемые высоковольтным драйвером. Топливная рейка имеет 2х этажную конструкцию разных диаметров. Это необходимо для выравнивания давления. На следующем фото топливные элементы высокого давления двигателя 3S-FSE.
Топливная рейка, датчик давления топлива на ней, клапан аварийного сброса давления, инжекторы, топливный насос высокого давления и магистральные трубки.

В двигателях с непосредственным впрыском работа первого насоса не ограничена 3,0 килограммами. Здесь давление несколько выше порядка 4,0-4,5кг для обеспечения полноценного питания ТНВД на всех режимах работы. Замер давления при диагностике, можно производить манометром через входной порт прямо на ТНВД. При запуске двигателя давление должно «набиваться» до своего пика за 2-3 секунды, иначе запуск будет долгим или его не будет вовсе.Если давление превышает 6кг- то неизбежно двигатель будет очень тяжело запускаться на грячую.В движении неминуемодвигатель будет "спотыкаться",натыкаться при резких ускорениях
На фото замер - давления первого насоса на двигателе 3S-FSE(давление ниже нормы, первый насос нужно заменить.)Если же давление выше 4,5 кг, то необходимо обратить внимание на засоренность сетки на входе ТНВД.Либо на заклинивание напорного клапана "обратки" в ТНВД. Клапан демонтируют из насоса и отмывают в ультразвуке.На фото клапан обратки и место его установки в ТНВД.

После очистки сетки или ремонта клапана обратки давление становится правильным.

Так как двигатели выпускались для внутреннего рынка Японии, то степень очистки топлива не отличается от обычных двигателей. Первый заслон сетка перед насосом в топливном баке.

Затем второй заслон-фильтр тонкой очистки двигатель (3S-FSE) (кстати сказать, воду он не задерживает).
При замене фильтра нередки случаи неправильной сборки топливной кассеты. При этом происходит потеря давления и незапуск.

Так выглядит топливный фильтр в разрезе после 15 тысяч пробега. Очень приличный заслон бензиновому мусору. При грязном фильтре переход в обеднённый режим либо очень долгий, либо его нет вообще.

И последний заслон фильтрации топлива сетка на входе ТНВД. От первого насоса топливо с давлением примерно 4 кг поступает в ТНВД, затем давление поднимается до 120 кг и поступает в топливную рейку к инжекторам. Блок управления оценивает давление по сигналу датчика давления. ЕСМ корректирует давление, при помощи клапана регулятора на ТНВД. При аварийном повышении давления срабатывает редукционный клапан в рейке. Так вкратце организована топливная система на двигателе. Теперь подробнее о составляющих системы и о способах диагностирования и проверки.


Топливный насос высокого давления (ТНВД)

Топливный насос высокого давления имеет достаточно простую конструкцию. Надежность и долговечность насоса зависят (как и многое у Японцев) от различных мелких факторов, в частности от прочности резинового сальника и механической прочности напорных клапанов и плунжера. Структура насоса обычная и очень простая. В конструкции нет революционных решений. Основа - плунжерная пара, сальник разделяющий бензин и масло, напорные клапана и электромагнитный регулятор давления. Основным звеном в насосе является 7мм плунжер. Как правило, в рабочей части плунжер не сильно изнашивается (если конечно не применяется абразивный бензин.) Основная проблема в насосе износ резинового сальника (срок жизни которого определяется не более 100тыс. км. пробега). Этот ресурс, конечно же, занижает надежность двигателя. Сам же насос стоит безумных денег 20-25 тысяч рублей (Дальний Восток). На двигателях 3S-FSE применялись три различных ТНВД один с верхним расположением клапана регулятора давления и два с боковым.
Далее представлены фотографии насоса, и детали его составляющие.


Насос в разборе двигатель 3S-FSE, напорные клапана, регулятор давления, сальник и плунжер, посадочное место сальника.

При эксплуатации на низкокачественном топливе происходит коррозия деталей насоса, что приводит к ускоренному износу и потере давления. На фото видны следы износа в сердечнике клапана давления и упорной шайбе плунжера.


Способ диагностирования топливного насоса (ТНВД) по давлению, и по протечке сальника.

Для контроля давления приходится использовать показания, снятые с электронного датчика давления. Датчик установлен на торце раздаточной топливной рейки. Доступ к нему ограничен и, следовательно, замеры легче производить на блоке управления. Для TOYOTA VISTA и NADIA это вывод Б12 – ЭБУ двигателя (цвет провода коричневый с жёлтой полосой) Датчик питается напряжением 5в. При нормальном давлении показания датчика изменяются в диапазоне(3,7-2,0 в.)- сигнальный вывод на датчике PR. Минимальные показания, при которых двигатель еще способен работать на х\х -1,4 вольта. Если показания от датчика будут ниже 1,3 вольта в течение 8 секунд - блок управления зарегистрирует код неисправности Р0191 и остановит двигатель. Правильные показания датчика на х\х -2,5 в. В обедненном режиме - 2,11 в.

Ниже на фотографии пример замера давления. Давление ниже нормы - причиной потери неплотность в напорных клапанах ТНВД.Далее давление при работе мотора в обычном режиме и в обедненном режиме.



Регистрировать протечку бензина в масло нужно при помощи газоанализатора. Показания уровня СН в масле не должны превышать 400 единиц на прогретом двигателе. Идеальный вариант 200-250 единиц. На фото нормальные показания.

Зонд газоанализатора при проверке вставляют в маслоналивную горловину, а саму горловину закрывают чистой ветошью.


Аномальные показания уровень СН-1400 единиц – сальник насоса протекает, и насос требует замены. При протекании сальника в дате будет зарегистрирована очень большая минусовая коррекция.

А при полном прогреве, с протекающим сальником, обороты двигателя будут сильно прыгать на х\х, при перегазовках мотор периодически глохнет. При нагреве картера бензин испаряется и через линию вентиляции вновь попадает во впускной коллектор, дополнительно обогащая смесь. Датчик кислорода регистрирует богатую смесь, а блок управления пытается её забеднить. Важно понимать, что в такой ситуации совместно с заменой насоса необходимо сменить масло с промывкой двигателя. При использовании некоторых марок масел уровень СН из-за наличия агрессивных присадок будет повышен, что не является поводом для замены тнвд. Необходимо просто сменить масло и сделать контрольный заезд перед постановкой диагноза. На следующей фотографии фрагменты замера уровня СН в масле (завышенные значения)


Способы ремонта топливного насоса.

Давление в насосе пропадает очень редко. Потеря давления происходит из-за выработки шайбы плунжера, либо из-за пескоструя клапана - регулятора давления. Из практики плунжера практически не изнашивались в рабочей зоне. Выработка была только в рабочей зоне сальника.

Зачастую приходится приговаривать насос из-за проблем с сальником, который, стираясь, начинает пропускать топливо в масло. Проверить наличие бензина в масле не сложно. Достаточно померить СН в маслоналивной горловине на прогретом работающем двигателе. Как уже отмечалось ранее, показания должны быть не больше 400 единиц. К сожалению или к счастью производитель не допускает замену сальника, а только замену всего насоса целиком. Отчасти это правильное решение, велик риск неправильной сборки. Ремонт же механической части насоса заключается в притирке напорных клапанов и шайбы от следов износа. Напорные клапана одинаковых размеров, они легко притираются любым доводочным абразивом для притирки клапанов. На фото напорный клапан.

И далее увеличенный напорный клапан. Хорошо видна радиальная и выработка коррозия металла.

Я встречал один сомнительный вид ремонта насоса. Ремонтники приклеивали клеем на основной сальник насоса встык часть сальника от двигателя 5А. Внешне все было красиво, но только вот бензин обратная часть сальника не держала. Такой ремонт недопустим и может повлечь возгорание двигателя. На фотографии приклеенный сальник.

Если владелец продолжает эксплуатацию автомобиля с протекающим сальником в ТНВД,то бензин неизбежно пападает в масло.Разжиженное масло губит двигатель. Происходит глобальная выработка цилиндропоршневой группы. Звук мотора становится "дизельным" На видео пример работы изношенного мотора.

Топливная рейка, инжекторы и клапан аварийного сброса давления.

На двигателях 3S-FSE японцы применили впервые разборную форсунку. Обычный инжектор способный работать при давлении 120 кг. Массивный металлический корпус и проточки под захват подразумевали долговечное использование и обслуживание. Рейка с инжекторами располагается в труднодоступном месте под впускным коллектором и шумовой защитой.
Но все же, демонтаж всего узла может быть легко осуществлен снизу двигателя, не прилагая больших усилий. Единственная проблема раскачать закисший инжектор специально изготовленным ключом. Ключ на 18 мм со сточенными краями. Все работы приходится производить через зеркало из-за труднодоступности. При раскачке возможна раскрутка инжектора, поэтому при сборке нужно всегда проверять ориентацию сопла относительно обмотки.



Далее на фото общий вид демонтированного инжектора (инжекторов) двигателя 3S-FSE,вид загрязнённого сопла (распыла).




Как правило, при демонтаже, всегда заметны следы закоксовки сопла. Эту картину можно увидеть при использовании эндоскопа, заглянув в цилиндры.


А при сильном увеличении четко видно практически полностью закрытое коксом сопло инжектора.
Естественно при загрязнении сильно изменяется распыл и производительность инжектора, оказывая влияние на работу всего двигателя в целом. Плюсом в конструкции, бесспорно, является тот факт, что форсунки отлично моются. Инжекторы после промывки способны долго нормально работать без сбоев. Далее на фотографии инжектор в разборе двигателя 3S-FSE.

Проверку инжекторов можно осуществить на стенде на производительность налива за определенный цикл и на наличие неплотностей в игле при тесте пролива.

Разница налива на этом примере очевидна.

Форсунка не должна давать капель, иначе её просто следует заменить.

Конечно же, такие тесты форсунки при малом давлении являются не корректными, но все же многолетнее сравнение доказывает, что такой анализ имеет право на существование.
Возвращаясь к тому факту, что форсунка является разборной, а двигатель видавший виды - очень не рекомендуется производить разбор сопла, дабы не нарушить притертость соединений игла седло. Важен и тот факт, что сопло своеобразно сориентировано для правильного попадания заряда топлива, а нарушение ориентации приводит к неравномерной работе на х\х. При промывке в ультразвуке вообще следует первый 10 минутный цикл производить без подачи импульсов открытия. Затем, остудив инжектор, повторить промывку с управляющими импульсами. Ультразвук, как правило, не может полностью очистить, выбить отложения из инжектора. Правильней применять при очистке ещё и метод пропускной очистки. Закачивать агрессивный раствор под давлением внутрь инжектора на время, а затем продувать сжатым воздухом с очистителем.
Помимо механических проблем с инжекторами встречаются и электрические неисправности на двигателях 3S-FSE. Инжекторы имеют сопротивление обмотки 2.5 Ом. При изменении сопротивления обмотки инжектора блоком управления фиксируется ошибка: P1215 Форсунки.

При замыкании обмотки на корпус происходит отключение двух инжекторов. Управление инжекторами организовано попарно 1-4 и 2-3 цилиндры.

Пример замкнутого инжектора.

При диагностике системы питания и, в частности, инжекторов следует сопоставлять данные газоанализа в различных режимах работы двигателя. Как пример в обычном режиме уровень СО, при времени впрыска 0,6-0,9 мс, не должен превышать 0,3%(бензин Хабаровский), а уровень кислорода не должен превышать 1%;повышение кислорода говорит о недостатке топливоподачи и, как правило, провоцирует блок управления увеличить подачу.
на фото показания газоанализа с различных автомобилей.


В обеднённом же режиме количество кислорода должно быть порядка 10%,а уровень СО в нулях (на то он и обеднённый впрыск).


Следует также учитывать и нагар на свечах. По нагару можно определить увеличенную или забеднённую подачу топлива.


Светлый железный (феррозный) нагар говорит о плохом качестве топлива и о уменьшенной подаче.

Напротив чрезмерный угольный нагар говорит о повышенной подаче. Свеча с таким нагаром не способна правильно работать, и при проверке на стенде показывает пробои по нагару, либо отсутствие искрообразования из-за пониженного сопротивления изолятора. После очистки инжекторов и последующем монтаже инжекторов следует приклеивать солидолом отражательную и упорную шайбы.

Так как давление, подводимое к инжекторам, в несколько раз больше, чем на простых двигателях, для управления применили специальный усилитель. Управление осуществляется высоковольтными импульсами. Это очень надежный электронный блок. За все время работы с двигателями был только один отказ, да и то из-за неудачных экспериментов с подачей питания на инжекторы. На фото усилитель от двигателя 3S-FSE.


При диагностировании топливной системы следует обращать внимание (как уже упоминалось выше) на долговременную топливную коррекцию. Если показания выше 30-40процентов, следует проверить напорные клапана в насосе и на линии обратки. Нередки случаи, когда заменен насос, промыты форсунки, заменены фильтры, а перехода в обеднёнку не происходит. Давление топлива в норме (по показаниям датчика давления). В таких случаях следует заменить клапан аварийного сброса давления, установленного в топливной рейке. Если вы сами производите замену насоса, то обязательно диагностируйте состояние напорных клапанов и проверяйте наличие мусора на выходе насоса (грязь, ржа, топливный осадок). Клапан не является разборным и при подозрениях на утечку его просто меняют.
Внутри клапана находится напорный клапан с мощной пружиной, рассчитанный на аварийный сброс давления.
На фото клапан в разборе. Отремонтировать его нет возможности



При увеличении можно разглядеть выработку в паре (игла седло)

При пропусках в соединениях клапана возникают потери давления, что сильно влияет на запуск двигателя. Долгое вращение, черный выхлоп и не запуск будут результатом неправильной работы клапана либо напорных клапанов в насосе. Этот момент можно проконтролировать вольтметром при запуске на датчике давления и оценить набивку давления за 2-3 секунды вращения стартером.
Следует отметить еще один важный момент необходимый для успешного запуска мотора 3S-FSE. Стартовая форсунка осуществляет 2-3 секундную подачу топлива при холодном пуске во впускной коллектор. Начальное обогащение смеси задает именно она, пока происходит накачка давления в основной магистрали. Форсунка также очень хорошо моется в ультразвуке, а после промывки долго и успешно работает.

Впускной коллектор и очистка от сажи.

Практически любой диагност или механик, менявший свечи в двигателе 3S-FSE,сталкивался проблемой очистки впускного коллектора от сажи. Инженеры Тойоты организовали структуру впускного коллектора таким образом, чтобы большая часть продуктов полного сгорания не выбрасывалась в выпуск, а наоборот оставалась на стенках впускного коллектора. Происходит чрезмерное накопление сажи во впускном коллекторе, что сильно душит двигатель и нарушает правильную работу систем.

На фотографиях верхняя и нижняя часть коллектора двигателя 3S-FSE,грязные заслонки. Справа на фото канал клапана EGR, все коксовые отложения берут начало именно отсюда. Существует много споров глушить или нет, этот канал в Российских условиях. Мое мнение, при закрытии канала страдает экономия по топливу. И это многократно проверено на практике.

При смене свечей обязательно необходимо чистить верхнюю часть впускного коллектора, иначе при установке кокс оторвется и попадет в нижнюю часть коллектора.
При монтаже коллектора железную прокладку достаточно только отмыть от отложений, герметик использовать нет необходимости, иначе последующиё съём будет проблематичным.

Такое количество отложений опасно для двигателя.


Очистка сажи в верхней части не решает практически проблему. Основная чистка необходима нижней части коллектора и впускных клапанов. Засаженность может достигать 70% от всего объёма прохода воздуха. При этом перестает работать правильно система изменяемой геометрии впускного коллектора. Сгорают щетки в моторе заслонок, отрываются магниты от чрезмерных нагрузок, пропадает переход в обеднёнку. Далее на фотографиях уязвимые элементы мотора.

Дополнительную проблему составляет съём нижней части коллектора. Ее невозможно провести без демонтажа опоры крепления двигателя, генератора, и выкручивания опорных шпилек (этот процесс очень трудоемкий). Мы используем дополнительный самодельный инструмент для выкручивания шпилек, позволяющий облегчить демонтаж нижней части, либо вообще используем контактную сварку или сварку полуавтоматом, для фиксации гаек на шпильках. Особую трудность для демонтажа коллектора представляет пластик электропроводки. Приходится буквально изыскивать миллиметры для откручивания.

Коллектор после очистки.



Очищенные заслонки должны возвращаться под действием пружины без закусываний. В верхней части важно очистить каналы EGR.
Чистить также необходимо и надклапанное пространство вместе с клапанами. Далее на фотографиях грязные клапан и надклапанное пространство. Такие отложения сильно влияют на экономию топлива. Перехода в обеднённый режим нет. Запуск затруднен. О зимнем запуске можно даже не упоминать в таком положении.



Газораспределение.

На двигателе 3S-FSE установлен ремень ГРМ. При обрыве ремня происходит неминуемая поломка головки блока и клапанов. Клапана встречаются с поршнем при обрыве. Состояние ремня следует проверять при каждой диагностике. Замена не составляет проблем за исключением маленькой детали. Натяжитель должен быть либо новый, либо взведенный перед снятием и установленный под чеку. Иначе снятый ролик будет очень трудно взвести. При снятии нижней шестерни важно не поломать зубья (обязательно открутить стопорный болт), иначе будет срыв запуска и неминуемая замена шестерни. Далее фотография ремня ГРМ при проверке. Такой ремень требует замены.

При смене ремня натяжитель лучше ставить новый, без компромиссов. Старый натяжитель легко входит в резонанс, после повторного взвода и установки. (На промежутке 1,5 - 2,0 тысяч оборотов.) Этот звук повергает в панику владельца. Двигатель при этом издает рычащий неприятный звук.
Далее на фото установочные метки на новом ремне ГРМ,

Взведённый натяжитель и шестерня коленвала. Над шестерней отчетливо виден болт, который фиксирует её съём.





При обрыве ремня страдает головка с клапанами. Клапана неизбежно загибает при столкновении с поршнем.


Электронный дроссель.

На двигателе 3S-FSE впервые применили электронную дроссельную заслонку.


Есть несколько проблем связанных с неисправностью этого узла. Во – первых при загрязнении проходного канала уменьшаются обороты х\х и возможны остановки двигателя после перегазовок. Лечится очисткой карбклинером.
После очистки необходимо сбросить накопленные блоком управления данные о состоянии заслонки, отключением АКБ. Во вторых отказ датчиков АПС и ТПС. При замене АПС не нужны регулировки, а вот при замене ТРС придется повозиться. На сайте http://forum.autodata.ru диагносты Антон и Арид уже выкладывали свои алгоритмы регулировки датчика. Но я пользуюсь дугой методой настройки. Я скопировал показания датчиков и упорных болтов с нового блока и пользуюсь этими данными как матрицей. Далее на фото установочные метки привода мотора, деформированный неправильной установкой TPS.

Привод датчика положения дросселя, установочная матрица.

Проблемные датчики.

Основным проблемным датчиком, конечно же, является датчик кислорода со своей извечной проблемой обрыва подогревателя. При нарушении проводимости подогревателя блок управления фиксирует ошибку, и перестает воспринимать показания датчика. Коррекции в этом случае равны нулю и перехода в обеднёнку нет.


Другим проблемным датчиком является датчик положения дополнительных заслонок.

Очень редко приходится приговаривать датчик давления на двигателях 3S-FSE, только если обнаружено большое количество мусора в рейке и следы наличия воды.

При замене маслосъёмных колпачков иногда ломают датчик распредвала. Запуск становится сильно затянутым 5-6 проворотов стартером. Блок управления регистрирует ошибку Р0340.

Контрольный разъём датчика распредвала находится в районе тосольных трубопроводов около блока заслонки. На разъёме можно легко проверить работоспособность датчика, применив осциллограф.
Несколько слов о катализаторе. Их установлено два на двигателе. Один - непосредственно в выпускном коллекторе, второй под днищем автомобиля. При неправильной работе системы питания либо системы зажигания происходит оплавление, либо засаживание сот катализаторов. Пропадает мощность, происходят остановки двигателя при прогреве. Проверить проходимость можно датчиком давления через отверстие датчика кислорода. При повышенном давлении следует детально проверять оба ката. На фотографии место подключения манометра. Если при подключении манометра давление выше 0,1 кг на х\х,а при перегазовках заваливает за 1,0 кг,то есть большая вероятность забитого выпускного тракта.

Внешний вид верхних катализаторов двигатель 3S-FSE.

Нижний катализатор.


На фото второй, оплавленный катализатор. Давление выхлопа доходило при перегазовках до 1,5 кг. На холостом ходу давление было 0.2 кг. В данной ситуации такой катализатор необходимо удалять, единственным препятствием является то, что катализатор необходимо вырезать, а на его место вваривать трубу соответствующего диаметра.

Система зажигания.

На двигателе организована индивидуальная система зажигания. Для каждого цилиндра своя катушка. Блок управления двигателем научен контролировать работу каждой катушки зажигания. При неисправности фиксируются соответствующие цилиндру ошибки. При эксплуатации двигателей особых проблем системы зажигания не замечено. Проблемы возникают лишь по причине неправильных ремонтов. При замене ремня ГРМ и сальников ломают зубья маркерной шестерни коленвала.

При смене свечей зажигания рвут изоляционные наконечники катушек зажигания.


Это приводит к пропускам при разгоне автомобиля.
А при перетяжке верхних гаек свечных стаканов, в стаканы начинает проникать моторное масло. Что неминуемо приводит к разрушению резиновых наконечников катушек. При неправильной смене свечей из-за увеличения зазоров происходит электрический пробой вне цилиндра (токовые дорожки). Эти пробои разрушают и свечи и резину.


Заключение.

Приход на наш рынок автомобилей с двигателями, оснащенными непосредственным впрыском топлива, заставил сильно поволноваться неподготовленных владельцев. Отвыкшие, от нормального правильного обслуживания японских моторов, владельцы D-4 ,были не готовы к запланированным финансовым тратам и регулярной диагностики мотора. Из всех преимуществ - небольшого снижения расхода топлива в пробках, и разгонных характеристик. Было много недостатков. Невозможность гарантированного зимнего запуска моторов. Ежегодные чистки коллекторов и риски замены дорогостоящих деталей и непрофессионализм ремонтников - всё это породило народный негатив к новому типу впрыска. Но прогресс не стоит на месте и обычный впрыск постепенно вытесняется. Технологии усложняются, вредные выбросы уменьшаются даже при использовании низкокачественного топлива. Двигатель 3S-FSE сегодня уже почти не встретишь. Ему на смену пришёл новый двигатель D-4 1AZ-FSE. А в нем устранены многие недоработки, и он с успехом завоевывает новые рынки. Но это уже совсем другая история. На сайте имеется подробная фотогалерея систем и датчикоа двигателя 3S-FSE .

Все необходимые диагностические процедуры и ремонтные работы двигателя 3S-FSE можно произвести в автокомплексе Южный, по адресу г. Хабаровск ул. Суворова 80.

Бекренёв Владимир.

  • Назад
  • Вперёд

Добавлять комментарии могут только зарегистрированные пользователи.У вас нет прав оставлять комментарии.

Двигатель Toyota 3S-FSE оказался одним из самых технологичных во времена своего выпуска. Это первый агрегат, на котором японская корпорация опробовала непосредственный впрыск топлива D4 и создала целое новое направление в строительстве автомобильных моторов. Но технологичность оказалась палкой о двух концах, поэтому FSE получил тысячи негативных и даже гневных отзывов владельцев.

У многих автомобилистов вызывает определенное недоумение попытка ремонта своими руками. Даже снять поддон для замены масла в двигателе оказывается крайне сложно из-за специфических креплений. Мотор начали производить в 1997 году. Это время, когда специалисты Тойота начали активно превращать искусство автомобилестроения в хороший бизнес.

Основные технические характеристики мотора 3S-FSE

ВНИМАНИЕ! Найден совершенно простой способ сократить расход топлива! Не верите? Автомеханик с 15-летним стажем тоже не верил, пока не попробовал. А теперь он экономит на бензине 35 000 рублей в год!

Движок был разработан на базе 3S-FE – более простого и неприхотливого агрегата. Но количество изменений в новой версии оказалось довольно большим. Японцы сверкнули своим пониманием технологичности и установили в новую разработку практически все, что можно было назвать современным. Тем не менее, и в характеристиках можно найти определенные недостатки.

Вот основные параметры двигателя:

Рабочий объем 2.0 л
Мощность двигателя 145 л.с. при 6000 об/мин
Крутящий момент 171-198 Н*м при 4400 об/мин
Блок цилиндров чугунный
Головка блока алюминиевая
Количество цилиндров 4
Количество клапанов 16
Диаметр цилиндра 86 мм
Ход поршня 86 мм
Впрыск топлива непосредственный D4
Тип топлива бензин 95
Расход топлива:
- городской цикл 10 л / 100 км
- загородный цикл 6.5 л / 100 км
Привод системы ГРМ ремень

С одной стороны, этот агрегат имеет отличное происхождение и удачную родословную. Но он совершенно не гарантирует надежности в эксплуатации после 250 000 км. Это очень малый ресурс для моторов данной категории, да еще и тойотовского производства. Именно в этот момент начинаются проблемы.

Впрочем, капитальный ремонт провести можно, чугунный блок не является одноразовым. А для этого года производства и данный факт уже вызывает приятные эмоции.

Ставили данный двигатель на Toyota Corona Premio (1997-2001), Toyota Nadia (1998-2001), Toyota Vista (1998-2001), Toyota Vista Ardeo (2000-2001).

Преимущества двигателя 3S-FSE – в чем плюсы?

Замена ГРМ производится 1 раз в 90-100 тысяч км пробега. Это стандартный вариант, здесь стоит практичный и простой ремень, нет никаких проблем, характерных для цепи. Метки выставляются по мануалу, ничего выдумывать не нужно. Катушка зажигания взята с донора FE, она простая и работает долго без особых проблем.

В распоряжении данного силового агрегата находится несколько важных систем:

  • хороший генератор и в общем неплохое навесное оборудование, которое не вызывает проблем в эксплуатации;
  • пригодная к обслуживанию система ГРМ – достаточно взвести натяжной ролик, чтобы еще больше продлить работу ремня;
  • простая конструкция – на станции могут проверить двигатель вручную или считать коды ошибок с компьютерной системы диагностики;
  • надежная поршневая группа, которая известна отсутствием проблем даже при больших нагрузках;
  • удачно подобранные характеристики АКБ, достаточно следовать заводским рекомендациям производителя.


То есть, мотор нельзя назвать некачественным и ненадежным, если учитывать его преимущества. В процессе эксплуатации также водители отмечают низкий расход топлива, если не давить на гашетку слишком сильно. Радует и местоположение основных сервисных узлов. До них довольно просто добраться, что несколько снижает стоимость и срок обслуживания во время регулярных ТО. Но ремонтировать в гараже собственными силами будет непросто.

Минусы и недостатки FSE – главные проблемы

Известна отсутствием серьезных детских проблем, но модель FSE выделилась на фоне своих собратьев по концерну. Проблема в том, что на данную силовую установку специалисты Toyota решили установить все актуальные на то время наработки для экономичности и экологической чистоты. В итоге есть ряд проблем, которые никак не решаются в процессе использования двигателя. Вот лишь некоторые из популярных неполадок:

  1. Топливная система, а также свечи нуждаются в постоянном обслуживании, чистить форсунки приходится практически постоянно.
  2. Клапан EGR – ужасное нововведение, он постоянно засоряется. Лучшим решением будет заглушить ЕГР и удалить его из системы вывода отработанных газов.
  3. Плавают обороты. Это неизбежно случается с моторами, так как изменяемый впускной коллектор теряет свою эластичность работы в какой-то момент.
  4. Все датчики и детали электроники выходят из строя. На возрастных агрегатах проблема электрической части оказывается колоссальной.
  5. Мотор не заводится на холодную или не запускается на горячую. Стоит перебирать топливную рейку, чистить форсунки, ЕГР, смотреть на свечи.
  6. Насос выходит из строя. Помпа требует замены вместе с деталями системы ГРМ, что делает ее ремонт очень дорогим.

Если вы хотите знать, гнет ли клапана на 3S-FSE, лучше не проверять это на практике. Мотор не просто загибает клапана при обрыве ГРМ, вся ГБЦ после такого события идет на ремонт. А стоимость такого восстановление окажется чрезмерно высокой. Часто на морозе бывает такое, что двигатель не схватывает зажигание. Замена свечей может решить проблему, но также стоит проверить катушку и прочие электрические детали зажигания.

Ремонт и обслуживание 3S-FSE – основные моменты

В ремонте стоит учитывать сложность экологических систем. В большинстве случаев экономически выгоднее их отключить и удалить, чем ремонтировать и чистить. Набор уплотнителей, таких как прокладка блока цилиндров, стоит покупать перед капиталкой. Отдайте предпочтение наиболее дорогим оригинальным решениям.

Toyota Corona Premio с двигателем 3S-FSE


Работу лучше доверять профессионалам. Неправильный момент затяжки ГБЦ, к примеру, приведет к разрушению клапанной системы, поспособствует быстрому выходу из строя поршневой группы, повышенному износу.

Проследите за работой всех датчиков, особое внимание на датчик распредвала, автоматику в радиаторе и всей системе охлаждения. Правильная настройка дроссельной заслонки также может оказаться сложной.

Как произвести тюнинг этого мотора?

Не имеет никакого экономического и практического смысла увеличение мощности модели 3S-FSE. Сложные заводские системы, такие как цикличное изменение оборотов, к примеру, не будут работать. Стоковая электроника не справится с задачами, блок и ГБЦ также будут нуждаться в доработках. Так что устанавливать компрессор неразумно.

Также не стоит задумываться о чип-тюнинге. Мотор старый, рост его мощности закончится капитальным ремонтом. Многие владельцы жалуются, что после чип-тюнинга мотор гремит, изменяются заводские зазоры, повышается износ металлических деталей.


Разумный вариант тюнинга – банальный свап на 3S-GT или подобный вариант. С помощью сложных доработок можно получить до 350-400 лошадиных сил без ощутимой потери ресурса.

Выводы о силовой установке 3S-FSE

Данный агрегат полон сюрпризов, включая и не самые приятные моменты. Именно поэтому назвать его идеальным и оптимальным по всем статьям невозможно. Двигатель теоретически простой, но множество экологических дополнений, таких как EGR, дали невероятно плохие последствия в эксплуатацию агрегата.

Владельца может радовать расход топлива, но он также очень зависит от манеры поездки, от веса автомобиля, от возраста и износа.

Уже перед капиталкой мотор начинает кушать масло, потреблять на 50% больше топлива и звуковым сопровождением показывать владельцу, что сейчас самое время готовиться к ремонту. Правда, ремонту многие предпочитают свап на контрактный японский мотор, и это нередко дешевле капиталки.

Подробности

Диагностика и ремонт систем впрыска и зажигания

Система непосредственного впрыска на Toyota D4 была представлена миру в начале 1996 года, в ответ на GDI от конкурентов ММС. В серию такой двигатель 3S-FSE был запущен с 1997 года на модели Corona (Premio T210), в 1998 двигатель 3S-FSE - начал устанавливаться на модели Vista и Vista Ardeo (V50). Позднее непосредственный впрыск появился на рядных шестерках 1JZ-FSE (2.5) и 2JZ-FSE (3.0), а с 2000 года, после замены серии S на серию AZ, был запущен и двигатель D-4 1AZ-FSE.

Мне пришлось увидеть в ремонте первый двигатель 3S-FSE в начале 2001 года. Это была Toyota Vista. Я менял маслосъёмные колпачки и попутно изучал новую конструкцию двигателя. Первая информация о нем появилась позднее в 2003 на просторах интернета. Первые удачные ремонты давали незаменимый опыт для работы с этим типом двигателей, которыми сейчас никого не удивишь. Двигатель был настолько революционным, что многие ремонтники просто отказывались от ремонтов. Применив бензиновый ТНВД, высокое давление впрыска топлива, два катализатора, блок электронного дросселя, шаговый мотор управления EGR, отслеживание положения дополнительных заслонок во впускном коллекторе, систему VVTi , и индивидуальную систему зажигания - разработчики показали, что наступила новая эра экономичных и экологичных двигателей. На фотографии общий вид двигателя 3S-FSE.

Конструктивные особенности:

Создан на базе 3S-FE,
- степень сжатия чуть более 10,
- топливная аппаратура Denso,
- давление впрыска - 120 бар,
- впуск воздуха - через горизонтальные "вихревые" порты,
- соотношение воздуха и топлива - до 50:1
(при максимально возможном для LB двигателей Toyota 24:1)
- VVT-i (система изменения фаз газораспределения непрерывного типа),
- система EGR обеспечивает подачу на впуск до 40% отработавших газов в режиме ПСО
- катализатор накопительного типа,
- заявленные улучшения: прирост момента на низких и средних оборотах - до 10%, экономия топлива до 30% (в японском смешанном цикле - 6,5 л/100 км).

Следует отметить следующие важные системы и их элементы, которые наиболее часто имеют дефекты.
Система топливоподачи: погружной электрический насос в баке с сеткой топливозаборника и топливным фильтром на выходе, топливный насос высокого давления, установленный на головке блока цилиндров с приводом от распредвала, топливная рампа с редукционным клапаном.
Система синхронизации: датчики коленвала и распредвала.
Система управления: ЕСМ
Датчики: массового расхода воздуха, температуры охлаждающей жидкости и впускаемого воздуха, детонации, положения педали газа и дроссельной заслонки, давления во впускном коллекторе, давления топлива в рампе, подогреваемые кислородные датчики;
Исполнительные устройства: катушки зажигания, блок управления форсунками и сами форсунки, клапан регулировки давления в рампе, вакуумный соленоид управления заслонками во впускном коллекторе, клапан управления муфтой VVT-i. При наличии в памяти кодов, начинать надо именно с них. Причём, если их много, анализировать их бессмысленно, надо переписать, стереть и отправить владельца в пробную поездку. Если загорится контрольная лампа, снова прочитать и анализировать уже более узкий перечень. Если нет – сразу переходить к анализу текущих данных. Коды неисправности сравниваются и расшифровываются по мануалу.

Таблица кодов ошибок двигатель 3S-FSE:

12 P0335 Датчик положения коленчатого вала
12 P0340 Датчик положения распределительного вала
13 P1335 Датчик положения коленчатого вала
14,15 P1300, P1305, P1310, P1315 Система зажигания (N1)(N2) (N3) (N4)
18 P1346 Система VVT
19 P1120 Датчик положения педали акселератора
19 P1121 Датчик положения педали акселератора
21 P0135 Кислородный датчик
22 P0115 Датчик температуры охлаждающей жидкости
24 P0110 Датчик температуры воздуха на впуске
25 P0171 Кислородный датчик (сигнал бедной смеси)
31 P0105 Датчик абсолютного давления
31 P0106 Датчик абсолютного давления
39 P1656 Система VVT
41 P0120 Датчик положения дроссельной заслонки
41 P0121 Датчик положения дроссельной заслонки
42 P0500 Датчик скорости автомобиля
49 P0190 Датчик давления топлива
49 P0191 Сигнал давления топлива
52 P0325 Датчик детонации
58 P1415 Датчик положения SCV
58 P1416 Клапан SCV
58 P1653 Клапан SCV
59 P1349 Сигнал VVT
71 P0401 Клапан системы EGR
71 P0403 Сигнал EGR
78 P1235 ТНВД
89 P1125 Привод ETCS*
89 P1126 Муфта ETCS
89 P1127 Реле ETCS
89 P1128 Привод ETCS
89 P1129 Привод ETCS
89 P1633 Электронный блок управления
92 P1210 Форсунка холодного пуска
97 P1215 Форсунки
98 C1200 Датчик разрежения в вакуумном усилителе тормозов

Компьютерная диагностика двигателя 3S-FSE

При диагностировании двигателя сканер выдает дату порядка восьмидесяти параметров для оценки состояния и анализа работы датчиков и систем двигателя. Следует отметить, что большим недостатком в дате у 3S-FSE являлось отсутствие в дате для оценки работы параметра – «давление топлива». Но, не смотря на это, дата очень информативна и, при правильном понимании, достаточно точно отражает работу датчиков и систем двигателя и АКПП. Для примера приведу фрагменты правильной даты и несколько фрагментов даты проблемами с мотора 3S-FSE. На фрагменте даты видим нормальное время впрыска, угол зажигания, разряжение, скорость двигателя на холостом ходу, температуру двигателя, температуру воздуха. Положение дросселя и признак наличия холостого хода. По следующей картинке можно оценить топливную коррекцию, показание датчика кислорода, скорость автомобиля, положение мотора EGR.

Далее видим включение сигнала стартера (важно при запуске) включение кондиционера, электрической нагрузки, гидроусилителя руля, педали тормоза, положение АКПП. Затем включение муфты кондиционера, клапана системы улавливания паров топлива, клапана VVTi, овердрайва, соленоидов в АКПП.Много параметров представлено для оценки работы блока заслонки (электронного дросселя).

Как видно по дате можно легко оценить работу и проверить функционирование практически всех основных датчиков и систем двигателя и АКПП. Если выстроить в ряд показания даты, то можно быстро оценить состояние двигателя и решить проблему неправильной работы. В следующем фрагменте показано увеличенное время впрыска топлива. Дата получена сканером DCN-PRO.

А на следующем фрагменте, обрыв датчика температуры входящего воздуха (-40 градусов), и ненормально высокое время впрыска (1,4мс при стандарте 0,5-0,6мс) на прогретом моторе.

Ненормальная коррекция заставляет насторожиться и проверить первым долгом наличие бензина в масле. Блок управления корректирует смесь(-80%).

Наиболее важными параметрами, которые достаточно полно отображают состояние двигателя, являются строчки с показаниями длинной и короткой топливной коррекции; напряжения датчика кислорода; разрежение во впускном коллекторе; скорость вращения двигателя (обороты); положение мотора EGR; положение дроссельной заслонки в процентах; угол опережения зажигания, и время впрыска топлива. Для более быстрой оценки режима работы двигателя строчки с этими параметрами можно выстроить на дисплее сканера. Ниже на фото пример фрагмента даты работы двигателя в обычном режиме. В этом режиме датчик кислорода переключается, разрежение в коллекторе 30 кПа, дроссель открыт на 13%; угол опережения 15 градусов. Клапан EGR закрыт. Такая компоновка и выбор параметров позволят сэкономить время на проверке состояния двигателя. Вот основные строчки с параметрами для анализа двигателя.

А здесь дата в режиме «обедненки». При переходе в обеднённый режим работы дроссель приоткрывается, открывается EGR, напряжение датчика кислорода около 0, разрежение 60 кПа, угол опережения 23 градуса. Таков обеднённый режим работы двигателя.


Если двигатель работает правильно, то при соблюдении определенных условий, блок управления двигателя программно переводит мотор в обеднённый режим работы. Переход происходит при полном прогреве двигателя и только после перегазовки. Много факторов определяют процесс перехода двигателя в обеднённый режим. При диагностировании следует учитывать и равномерность давления топлива, и давление в цилиндрах, и засаженность впускного коллектора, и правильную работу системы зажигания.


Конструктивное исполнение. Топливная рейка, инжекторы, ТНВД.

Топливная рейка

На первом двигателе с непосредственным впрыском конструкторы применили разборные низкоомные инжекторы, управляемые высоковольтным драйвером. Топливная рейка имеет 2х этажную конструкцию разных диаметров. Это необходимо для выравнивания давления. На следующем фото топливные элементы высокого давления двигателя 3S-FSE.
Топливная рейка, датчик давления топлива на ней, клапан аварийного сброса давления, инжекторы, топливный насос высокого давления и магистральные трубки.

В двигателях с непосредственным впрыском работа первого насоса не ограничена 3,0 килограммами. Здесь давление несколько выше порядка 4,0-4,5кг для обеспечения полноценного питания ТНВД на всех режимах работы. Замер давления при диагностике, можно производить манометром через входной порт прямо на ТНВД. При запуске двигателя давление должно «набиваться» до своего пика за 2-3 секунды, иначе запуск будет долгим или его не будет вовсе.Если давление превышает 6кг- то неизбежно двигатель будет очень тяжело запускаться на грячую.В движении неминуемодвигатель будет "спотыкаться",натыкаться при резких ускорениях
На фото замер - давления первого насоса на двигателе 3S-FSE(давление ниже нормы, первый насос нужно заменить.)Если же давление выше 4,5 кг, то необходимо обратить внимание на засоренность сетки на входе ТНВД.Либо на заклинивание напорного клапана "обратки" в ТНВД. Клапан демонтируют из насоса и отмывают в ультразвуке.На фото клапан обратки и место его установки в ТНВД.

После очистки сетки или ремонта клапана обратки давление становится правильным.

Так как двигатели выпускались для внутреннего рынка Японии, то степень очистки топлива не отличается от обычных двигателей. Первый заслон сетка перед насосом в топливном баке.

Затем второй заслон-фильтр тонкой очистки двигатель (3S-FSE) (кстати сказать, воду он не задерживает).
При замене фильтра нередки случаи неправильной сборки топливной кассеты. При этом происходит потеря давления и незапуск.

Так выглядит топливный фильтр в разрезе после 15 тысяч пробега. Очень приличный заслон бензиновому мусору. При грязном фильтре переход в обеднённый режим либо очень долгий, либо его нет вообще.

И последний заслон фильтрации топлива сетка на входе ТНВД. От первого насоса топливо с давлением примерно 4 кг поступает в ТНВД, затем давление поднимается до 120 кг и поступает в топливную рейку к инжекторам. Блок управления оценивает давление по сигналу датчика давления. ЕСМ корректирует давление, при помощи клапана регулятора на ТНВД. При аварийном повышении давления срабатывает редукционный клапан в рейке. Так вкратце организована топливная система на двигателе. Теперь подробнее о составляющих системы и о способах диагностирования и проверки.


Топливный насос высокого давления (ТНВД)

Топливный насос высокого давления имеет достаточно простую конструкцию. Надежность и долговечность насоса зависят (как и многое у Японцев) от различных мелких факторов, в частности от прочности резинового сальника и механической прочности напорных клапанов и плунжера. Структура насоса обычная и очень простая. В конструкции нет революционных решений. Основа - плунжерная пара, сальник разделяющий бензин и масло, напорные клапана и электромагнитный регулятор давления. Основным звеном в насосе является 7мм плунжер. Как правило, в рабочей части плунжер не сильно изнашивается (если конечно не применяется абразивный бензин.) Основная проблема в насосе износ резинового сальника (срок жизни которого определяется не более 100тыс. км. пробега). Этот ресурс, конечно же, занижает надежность двигателя. Сам же насос стоит безумных денег 20-25 тысяч рублей (Дальний Восток). На двигателях 3S-FSE применялись три различных ТНВД один с верхним расположением клапана регулятора давления и два с боковым.
Далее представлены фотографии насоса, и детали его составляющие.


Насос в разборе двигатель 3S-FSE, напорные клапана, регулятор давления, сальник и плунжер, посадочное место сальника.

При эксплуатации на низкокачественном топливе происходит коррозия деталей насоса, что приводит к ускоренному износу и потере давления. На фото видны следы износа в сердечнике клапана давления и упорной шайбе плунжера.


Способ диагностирования топливного насоса (ТНВД) по давлению, и по протечке сальника.

Для контроля давления приходится использовать показания, снятые с электронного датчика давления. Датчик установлен на торце раздаточной топливной рейки. Доступ к нему ограничен и, следовательно, замеры легче производить на блоке управления. Для TOYOTA VISTA и NADIA это вывод Б12 – ЭБУ двигателя (цвет провода коричневый с жёлтой полосой) Датчик питается напряжением 5в. При нормальном давлении показания датчика изменяются в диапазоне(3,7-2,0 в.)- сигнальный вывод на датчике PR. Минимальные показания, при которых двигатель еще способен работать на х\х -1,4 вольта. Если показания от датчика будут ниже 1,3 вольта в течение 8 секунд - блок управления зарегистрирует код неисправности Р0191 и остановит двигатель. Правильные показания датчика на х\х -2,5 в. В обедненном режиме - 2,11 в.

Ниже на фотографии пример замера давления. Давление ниже нормы - причиной потери неплотность в напорных клапанах ТНВД.Далее давление при работе мотора в обычном режиме и в обедненном режиме.



Регистрировать протечку бензина в масло нужно при помощи газоанализатора. Показания уровня СН в масле не должны превышать 400 единиц на прогретом двигателе. Идеальный вариант 200-250 единиц. На фото нормальные показания.

Зонд газоанализатора при проверке вставляют в маслоналивную горловину, а саму горловину закрывают чистой ветошью.


Аномальные показания уровень СН-1400 единиц – сальник насоса протекает, и насос требует замены. При протекании сальника в дате будет зарегистрирована очень большая минусовая коррекция.

А при полном прогреве, с протекающим сальником, обороты двигателя будут сильно прыгать на х\х, при перегазовках мотор периодически глохнет. При нагреве картера бензин испаряется и через линию вентиляции вновь попадает во впускной коллектор, дополнительно обогащая смесь. Датчик кислорода регистрирует богатую смесь, а блок управления пытается её забеднить. Важно понимать, что в такой ситуации совместно с заменой насоса необходимо сменить масло с промывкой двигателя. При использовании некоторых марок масел уровень СН из-за наличия агрессивных присадок будет повышен, что не является поводом для замены тнвд. Необходимо просто сменить масло и сделать контрольный заезд перед постановкой диагноза. На следующей фотографии фрагменты замера уровня СН в масле (завышенные значения)


Способы ремонта топливного насоса.

Давление в насосе пропадает очень редко. Потеря давления происходит из-за выработки шайбы плунжера, либо из-за пескоструя клапана - регулятора давления. Из практики плунжера практически не изнашивались в рабочей зоне. Выработка была только в рабочей зоне сальника.

Зачастую приходится приговаривать насос из-за проблем с сальником, который, стираясь, начинает пропускать топливо в масло. Проверить наличие бензина в масле не сложно. Достаточно померить СН в маслоналивной горловине на прогретом работающем двигателе. Как уже отмечалось ранее, показания должны быть не больше 400 единиц. К сожалению или к счастью производитель не допускает замену сальника, а только замену всего насоса целиком. Отчасти это правильное решение, велик риск неправильной сборки. Ремонт же механической части насоса заключается в притирке напорных клапанов и шайбы от следов износа. Напорные клапана одинаковых размеров, они легко притираются любым доводочным абразивом для притирки клапанов. На фото напорный клапан.

И далее увеличенный напорный клапан. Хорошо видна радиальная и выработка коррозия металла.

Я встречал один сомнительный вид ремонта насоса. Ремонтники приклеивали клеем на основной сальник насоса встык часть сальника от двигателя 5А. Внешне все было красиво, но только вот бензин обратная часть сальника не держала. Такой ремонт недопустим и может повлечь возгорание двигателя. На фотографии приклеенный сальник.

Если владелец продолжает эксплуатацию автомобиля с протекающим сальником в ТНВД,то бензин неизбежно пападает в масло.Разжиженное масло губит двигатель. Происходит глобальная выработка цилиндропоршневой группы. Звук мотора становится "дизельным" На видео пример работы изношенного мотора.

Топливная рейка, инжекторы и клапан аварийного сброса давления.

На двигателях 3S-FSE японцы применили впервые разборную форсунку. Обычный инжектор способный работать при давлении 120 кг. Массивный металлический корпус и проточки под захват подразумевали долговечное использование и обслуживание. Рейка с инжекторами располагается в труднодоступном месте под впускным коллектором и шумовой защитой.
Но все же, демонтаж всего узла может быть легко осуществлен снизу двигателя, не прилагая больших усилий. Единственная проблема раскачать закисший инжектор специально изготовленным ключом. Ключ на 18 мм со сточенными краями. Все работы приходится производить через зеркало из-за труднодоступности. При раскачке возможна раскрутка инжектора, поэтому при сборке нужно всегда проверять ориентацию сопла относительно обмотки.



Далее на фото общий вид демонтированного инжектора (инжекторов) двигателя 3S-FSE,вид загрязнённого сопла (распыла).




Как правило, при демонтаже, всегда заметны следы закоксовки сопла. Эту картину можно увидеть при использовании эндоскопа, заглянув в цилиндры.


А при сильном увеличении четко видно практически полностью закрытое коксом сопло инжектора.
Естественно при загрязнении сильно изменяется распыл и производительность инжектора, оказывая влияние на работу всего двигателя в целом. Плюсом в конструкции, бесспорно, является тот факт, что форсунки отлично моются. Инжекторы после промывки способны долго нормально работать без сбоев. Далее на фотографии инжектор в разборе двигателя 3S-FSE.

Проверку инжекторов можно осуществить на стенде на производительность налива за определенный цикл и на наличие неплотностей в игле при тесте пролива.

Разница налива на этом примере очевидна.

Форсунка не должна давать капель, иначе её просто следует заменить.

Конечно же, такие тесты форсунки при малом давлении являются не корректными, но все же многолетнее сравнение доказывает, что такой анализ имеет право на существование.
Возвращаясь к тому факту, что форсунка является разборной, а двигатель видавший виды - очень не рекомендуется производить разбор сопла, дабы не нарушить притертость соединений игла седло. Важен и тот факт, что сопло своеобразно сориентировано для правильного попадания заряда топлива, а нарушение ориентации приводит к неравномерной работе на х\х. При промывке в ультразвуке вообще следует первый 10 минутный цикл производить без подачи импульсов открытия. Затем, остудив инжектор, повторить промывку с управляющими импульсами. Ультразвук, как правило, не может полностью очистить, выбить отложения из инжектора. Правильней применять при очистке ещё и метод пропускной очистки. Закачивать агрессивный раствор под давлением внутрь инжектора на время, а затем продувать сжатым воздухом с очистителем.
Помимо механических проблем с инжекторами встречаются и электрические неисправности на двигателях 3S-FSE. Инжекторы имеют сопротивление обмотки 2.5 Ом. При изменении сопротивления обмотки инжектора блоком управления фиксируется ошибка: P1215 Форсунки.

При замыкании обмотки на корпус происходит отключение двух инжекторов. Управление инжекторами организовано попарно 1-4 и 2-3 цилиндры.

Пример замкнутого инжектора.

При диагностике системы питания и, в частности, инжекторов следует сопоставлять данные газоанализа в различных режимах работы двигателя. Как пример в обычном режиме уровень СО, при времени впрыска 0,6-0,9 мс, не должен превышать 0,3%(бензин Хабаровский), а уровень кислорода не должен превышать 1%;повышение кислорода говорит о недостатке топливоподачи и, как правило, провоцирует блок управления увеличить подачу.
на фото показания газоанализа с различных автомобилей.


В обеднённом же режиме количество кислорода должно быть порядка 10%,а уровень СО в нулях (на то он и обеднённый впрыск).


Следует также учитывать и нагар на свечах. По нагару можно определить увеличенную или забеднённую подачу топлива.


Светлый железный (феррозный) нагар говорит о плохом качестве топлива и о уменьшенной подаче.

Напротив чрезмерный угольный нагар говорит о повышенной подаче. Свеча с таким нагаром не способна правильно работать, и при проверке на стенде показывает пробои по нагару, либо отсутствие искрообразования из-за пониженного сопротивления изолятора. После очистки инжекторов и последующем монтаже инжекторов следует приклеивать солидолом отражательную и упорную шайбы.

Так как давление, подводимое к инжекторам, в несколько раз больше, чем на простых двигателях, для управления применили специальный усилитель. Управление осуществляется высоковольтными импульсами. Это очень надежный электронный блок. За все время работы с двигателями был только один отказ, да и то из-за неудачных экспериментов с подачей питания на инжекторы. На фото усилитель от двигателя 3S-FSE.


При диагностировании топливной системы следует обращать внимание (как уже упоминалось выше) на долговременную топливную коррекцию. Если показания выше 30-40процентов, следует проверить напорные клапана в насосе и на линии обратки. Нередки случаи, когда заменен насос, промыты форсунки, заменены фильтры, а перехода в обеднёнку не происходит. Давление топлива в норме (по показаниям датчика давления). В таких случаях следует заменить клапан аварийного сброса давления, установленного в топливной рейке. Если вы сами производите замену насоса, то обязательно диагностируйте состояние напорных клапанов и проверяйте наличие мусора на выходе насоса (грязь, ржа, топливный осадок). Клапан не является разборным и при подозрениях на утечку его просто меняют.
Внутри клапана находится напорный клапан с мощной пружиной, рассчитанный на аварийный сброс давления.
На фото клапан в разборе. Отремонтировать его нет возможности



При увеличении можно разглядеть выработку в паре (игла седло)

При пропусках в соединениях клапана возникают потери давления, что сильно влияет на запуск двигателя. Долгое вращение, черный выхлоп и не запуск будут результатом неправильной работы клапана либо напорных клапанов в насосе. Этот момент можно проконтролировать вольтметром при запуске на датчике давления и оценить набивку давления за 2-3 секунды вращения стартером.
Следует отметить еще один важный момент необходимый для успешного запуска мотора 3S-FSE. Стартовая форсунка осуществляет 2-3 секундную подачу топлива при холодном пуске во впускной коллектор. Начальное обогащение смеси задает именно она, пока происходит накачка давления в основной магистрали. Форсунка также очень хорошо моется в ультразвуке, а после промывки долго и успешно работает.

Впускной коллектор и очистка от сажи.

Практически любой диагност или механик, менявший свечи в двигателе 3S-FSE,сталкивался проблемой очистки впускного коллектора от сажи. Инженеры Тойоты организовали структуру впускного коллектора таким образом, чтобы большая часть продуктов полного сгорания не выбрасывалась в выпуск, а наоборот оставалась на стенках впускного коллектора. Происходит чрезмерное накопление сажи во впускном коллекторе, что сильно душит двигатель и нарушает правильную работу систем.

На фотографиях верхняя и нижняя часть коллектора двигателя 3S-FSE,грязные заслонки. Справа на фото канал клапана EGR, все коксовые отложения берут начало именно отсюда. Существует много споров глушить или нет, этот канал в Российских условиях. Мое мнение, при закрытии канала страдает экономия по топливу. И это многократно проверено на практике.

При смене свечей обязательно необходимо чистить верхнюю часть впускного коллектора, иначе при установке кокс оторвется и попадет в нижнюю часть коллектора.
При монтаже коллектора железную прокладку достаточно только отмыть от отложений, герметик использовать нет необходимости, иначе последующиё съём будет проблематичным.

Такое количество отложений опасно для двигателя.


Очистка сажи в верхней части не решает практически проблему. Основная чистка необходима нижней части коллектора и впускных клапанов. Засаженность может достигать 70% от всего объёма прохода воздуха. При этом перестает работать правильно система изменяемой геометрии впускного коллектора. Сгорают щетки в моторе заслонок, отрываются магниты от чрезмерных нагрузок, пропадает переход в обеднёнку. Далее на фотографиях уязвимые элементы мотора.

Дополнительную проблему составляет съём нижней части коллектора. Ее невозможно провести без демонтажа опоры крепления двигателя, генератора, и выкручивания опорных шпилек (этот процесс очень трудоемкий). Мы используем дополнительный самодельный инструмент для выкручивания шпилек, позволяющий облегчить демонтаж нижней части, либо вообще используем контактную сварку или сварку полуавтоматом, для фиксации гаек на шпильках. Особую трудность для демонтажа коллектора представляет пластик электропроводки. Приходится буквально изыскивать миллиметры для откручивания.

Коллектор после очистки.



Очищенные заслонки должны возвращаться под действием пружины без закусываний. В верхней части важно очистить каналы EGR.
Чистить также необходимо и надклапанное пространство вместе с клапанами. Далее на фотографиях грязные клапан и надклапанное пространство. Такие отложения сильно влияют на экономию топлива. Перехода в обеднённый режим нет. Запуск затруднен. О зимнем запуске можно даже не упоминать в таком положении.



Газораспределение.

На двигателе 3S-FSE установлен ремень ГРМ. При обрыве ремня происходит неминуемая поломка головки блока и клапанов. Клапана встречаются с поршнем при обрыве. Состояние ремня следует проверять при каждой диагностике. Замена не составляет проблем за исключением маленькой детали. Натяжитель должен быть либо новый, либо взведенный перед снятием и установленный под чеку. Иначе снятый ролик будет очень трудно взвести. При снятии нижней шестерни важно не поломать зубья (обязательно открутить стопорный болт), иначе будет срыв запуска и неминуемая замена шестерни. Далее фотография ремня ГРМ при проверке. Такой ремень требует замены.

При смене ремня натяжитель лучше ставить новый, без компромиссов. Старый натяжитель легко входит в резонанс, после повторного взвода и установки. (На промежутке 1,5 - 2,0 тысяч оборотов.) Этот звук повергает в панику владельца. Двигатель при этом издает рычащий неприятный звук.
Далее на фото установочные метки на новом ремне ГРМ,

Взведённый натяжитель и шестерня коленвала. Над шестерней отчетливо виден болт, который фиксирует её съём.





При обрыве ремня страдает головка с клапанами. Клапана неизбежно загибает при столкновении с поршнем.


Электронный дроссель.

На двигателе 3S-FSE впервые применили электронную дроссельную заслонку.


Есть несколько проблем связанных с неисправностью этого узла. Во – первых при загрязнении проходного канала уменьшаются обороты х\х и возможны остановки двигателя после перегазовок. Лечится очисткой карбклинером.
После очистки необходимо сбросить накопленные блоком управления данные о состоянии заслонки, отключением АКБ. Во вторых отказ датчиков АПС и ТПС. При замене АПС не нужны регулировки, а вот при замене ТРС придется повозиться. На сайте http://forum.autodata.ru диагносты Антон и Арид уже выкладывали свои алгоритмы регулировки датчика. Но я пользуюсь дугой методой настройки. Я скопировал показания датчиков и упорных болтов с нового блока и пользуюсь этими данными как матрицей. Далее на фото установочные метки привода мотора, деформированный неправильной установкой TPS.

Привод датчика положения дросселя, установочная матрица.

Проблемные датчики.

Основным проблемным датчиком, конечно же, является датчик кислорода со своей извечной проблемой обрыва подогревателя. При нарушении проводимости подогревателя блок управления фиксирует ошибку, и перестает воспринимать показания датчика. Коррекции в этом случае равны нулю и перехода в обеднёнку нет.


Другим проблемным датчиком является датчик положения дополнительных заслонок.

Очень редко приходится приговаривать датчик давления на двигателях 3S-FSE, только если обнаружено большое количество мусора в рейке и следы наличия воды.

При замене маслосъёмных колпачков иногда ломают датчик распредвала. Запуск становится сильно затянутым 5-6 проворотов стартером. Блок управления регистрирует ошибку Р0340.

Контрольный разъём датчика распредвала находится в районе тосольных трубопроводов около блока заслонки. На разъёме можно легко проверить работоспособность датчика, применив осциллограф.
Несколько слов о катализаторе. Их установлено два на двигателе. Один - непосредственно в выпускном коллекторе, второй под днищем автомобиля. При неправильной работе системы питания либо системы зажигания происходит оплавление, либо засаживание сот катализаторов. Пропадает мощность, происходят остановки двигателя при прогреве. Проверить проходимость можно датчиком давления через отверстие датчика кислорода. При повышенном давлении следует детально проверять оба ката. На фотографии место подключения манометра. Если при подключении манометра давление выше 0,1 кг на х\х,а при перегазовках заваливает за 1,0 кг,то есть большая вероятность забитого выпускного тракта.

Внешний вид верхних катализаторов двигатель 3S-FSE.

Нижний катализатор.


На фото второй, оплавленный катализатор. Давление выхлопа доходило при перегазовках до 1,5 кг. На холостом ходу давление было 0.2 кг. В данной ситуации такой катализатор необходимо удалять, единственным препятствием является то, что катализатор необходимо вырезать, а на его место вваривать трубу соответствующего диаметра.

Система зажигания.

На двигателе организована индивидуальная система зажигания. Для каждого цилиндра своя катушка. Блок управления двигателем научен контролировать работу каждой катушки зажигания. При неисправности фиксируются соответствующие цилиндру ошибки. При эксплуатации двигателей особых проблем системы зажигания не замечено. Проблемы возникают лишь по причине неправильных ремонтов. При замене ремня ГРМ и сальников ломают зубья маркерной шестерни коленвала.

При смене свечей зажигания рвут изоляционные наконечники катушек зажигания.


Это приводит к пропускам при разгоне автомобиля.
А при перетяжке верхних гаек свечных стаканов, в стаканы начинает проникать моторное масло. Что неминуемо приводит к разрушению резиновых наконечников катушек. При неправильной смене свечей из-за увеличения зазоров происходит электрический пробой вне цилиндра (токовые дорожки). Эти пробои разрушают и свечи и резину.


Заключение.

Приход на наш рынок автомобилей с двигателями, оснащенными непосредственным впрыском топлива, заставил сильно поволноваться неподготовленных владельцев. Отвыкшие, от нормального правильного обслуживания японских моторов, владельцы D-4 ,были не готовы к запланированным финансовым тратам и регулярной диагностики мотора. Из всех преимуществ - небольшого снижения расхода топлива в пробках, и разгонных характеристик. Было много недостатков. Невозможность гарантированного зимнего запуска моторов. Ежегодные чистки коллекторов и риски замены дорогостоящих деталей и непрофессионализм ремонтников - всё это породило народный негатив к новому типу впрыска. Но прогресс не стоит на месте и обычный впрыск постепенно вытесняется. Технологии усложняются, вредные выбросы уменьшаются даже при использовании низкокачественного топлива. Двигатель 3S-FSE сегодня уже почти не встретишь. Ему на смену пришёл новый двигатель D-4 1AZ-FSE. А в нем устранены многие недоработки, и он с успехом завоевывает новые рынки. Но это уже совсем другая история. На сайте имеется подробная фотогалерея систем и датчикоа двигателя 3S-FSE .

Все необходимые диагностические процедуры и ремонтные работы двигателя 3S-FSE можно произвести в автокомплексе Южный, по адресу г. Хабаровск ул. Суворова 80.

Бекренёв Владимир.

  • Назад
  • Вперёд

Добавлять комментарии могут только зарегистрированные пользователи.У вас нет прав оставлять комментарии.

Дмитрий Смуров, Владивосток

В литературе не представлялось возможным найти какое-либо описание по двигателям непосредственного впрыска, за исключением информации, распложенной по адресу: www .alflash .narod .ru /d 4e .htm . Там представлено только общие слова, поэтому, при ремонте такого типа двигателей возникают определенные сложности. В большей мере, эти сложности связаны с малым объемом наших знаний о конструкции этих двигателей. Можно даже сказать, что с полным отсутствием этой информации. Поработав с этим двигателем, у меня появилось некоторое представление о конструкции автомобиля ² Corona -Premio ² с двигателем 3S -FSE , имеющий аббревиатуру –D -4. Я попробую описать то, что удалось узнать. Но в этом описании не хотелось бы претендовать на полное знание и полную достоверность информации. Это всего лишь предположения и ощущения. Что же представляет из себя двигатель 3S -FSE ? Двигатель 3S -FSE (D -4) – является двигателем непосредственного впрыска, в котором для реализации режимов работы с обеднением смеси, получения минимального выброса вредных веществ и реализации мощностного режима осуществляется впрыск непосредственно в камеру сгорания. При этом, для более полного наполнения цилиндров воздухом, используется режим изменения фаз газораспределения (VVT -i ) и режим изменения сечения впускного коллектора. Общий вид двигателя представлен на Фото 1. В режиме холостого хода реализуется экономичный режим работы, при котором соотношение топливо-воздушной смеси составляет 25-1, о чем свидетельствует лампочка на панели приборов ² ECONOM ² . При этом длительность импульса форсунок составляет, примерно, 0.6 мс. При увеличении нагрузки, двигатель переходит в работу в мощностном режиме, при котором соотношение уже составляет 13-1. Для увеличении времени открытия клапанов, что способствует увеличению объема воздуха, поступающего в цилиндры, включается в работу клапан VVT -i , который открывает масляный канал устройства изменения фаз газораспределения. Сам механизм изменения фаз газораспределения расположен под крышкой, где крепится топливный насос высокого давления (Фото 2). Технически, клапан VVT -i выполнен таким образом, что неисправность его может быть вызвана только обрывом обмотки. Каналы клапана достаточно большие, что привести к закоксовыванию их, практически, не возможно (если только вместо масла не использовать солидол). Так же, для увеличения объема воздуха, поступающего в цилиндры, используется система, регулирующая сечение впускного коллектора (переменное сечение впускного коллектора). Во впускном коллекторе находится вал с заслонками, которые приоткрываются, в зависимости от нагрузки двигателя. Управление заслонками осуществляется электродвигателем , а положение заслонок определяется трехпроводным датчиком (Фото 3). Самым неприятным в этом узле является то, что со временем вал заслонок может закоксовываться и начинать подклинивать. Хотя управление этим валом происходит электродвигателем посредством червячной передачи, подклинивание все-таки возможно. Результатом этого может быть нестабильность работы двигателя, неустойчивые обороты холостого хода (хотя это только предположение). Но то, что этот узел является наиболее подвержен закоксовыванию – это реальный факт . На двух машинах встречалась эта ситуация. Доступ к нему достаточно неудобный, но если делать, то приходиться делать. Первый раз, чтобы добраться до этого узла, ушел практически весь рабочий день. Разобрав несколько раз, время на демонтаж уже уходило около двух часов. Для снижения вредных веществ в отработанных газах используется система рециркуляции (EGR system ). Одним из элементов системы рециркуляции является сервомотор рециркуляции (Фото 4). Возможной неисправностью сервомотора является, также, закоксовывание клапана и как следствие – прорыв выхлопных газов во впускной коллектор. Конструкция сервомотора похожа на конструкцию сервомотора компании ММС. Электрически - он состоит из четырех обмоток, сопротивление которых составляет, порядка 34 – 38 Ом. Управляется – импульсными сигналами в определенной последовательности. Наиболее тонким узлом является узел дроссельной заслонки (Фото 5). Конструкция такого узла появилась не только на двигателях D-4, а на многих современных двигателях.

Датчик положения педали акселератора определяет степень нажатия водителем на педаль газа. По этому сигналу блок Управления Двигателем вырабатывает сигнал, поступающий на

электродвигатель дроссельной заслонки . Степень открытия дроссельной заслонки определяется датчиком положения дроссельной заслонки . Узел дроссельной заслонки очень тяжело поддается регулировке. Кроме, непосредственно, электрических возможных неисправностей датчиков и электродвигателя, возможной неисправностью является нарушение регулировки узла. Самое неприятное, если попробовать отрегулировать обороты холостого хода упорными винтами . Данные, которые удалось получить, конечно условны, но при отсутствии других, даже используя эти, удалось нормально отрегулировать узел дроссельной заслонки. Выход левого по Фото упорного винта от корпуса дроссельной заслонки составляет 8.7 мм, при этом зазор между дроссельной заслонкой и корпусом составляет 0.15 мм. Выход правого по Фото упорного винта от корпуса дроссельной заслонки составляет 7.2мм. Только после этого можно приступить к электрической регулировке. Так как датчик положения педали акселератора крепиться жестко, следовательно, он регулировке не подлежит. А вотрегулировка датчика положения дроссельной заслонки очень важна. Делаем это так:

  1. Включить зажигание (двигатель не заводить).
  2. Подключить вольтметр ко второму контакту снизу (я думаю, что он и является сигнальным), при этом вы можете услышать, что пересталработать электродвигатель дроссельной заслонки – возможно, что из-за шунтирования цепи прибором блок блокирует работу узла.
  3. Выставить напряжение на датчике 2.17 В (это данные для двигателя 3S -FSE на машине Corona -Premio . Для других моделей может и отличаться???).
Когда я занимался этой машиной, в то время, когда двигатель работал нестабильно, умудрился сбить регулировку. Потом довольно-таки долго я пытался отрегулировать узел. Все было безуспешно. И только отрегулировав весь узел так, как это описано, двигатель стал работать стабильно. Одним из больных вопросов в конструкции этого двигателя является система холодного пуска. В этом двигателе система холодного пуска реализована несколько другим способом, как это было ранее. Как вы помните, в систему холодного пуска, ранее, входил датчик холодного пуска. Управление форсункой холодного пуска (Фото 4) осуществляет блок управления двигателем по сигналу датчика температуры охлаждающей жидкости. Многие проблемы, связанные с холодным пуском двигателя, в большей степени, зависят от исправности форсунки холодного пуска . Этой зимой несколько раз приходилось сталкиваться с неисправностью форсунки . Результат удавалось получить, используя ультрозвуковую чистку. Интересным элементом конструкции этого двигателя является датчик давления топлива (Фото 6). Конструктивно, датчик давления топлива представляет собой трехпроводный датчик. По сигналу этого датчика, блок определяет значение высокого давления в топливной рейке. Так как значение давления влияет на количество топлива, поступающего в цилиндры – эта информация является значимой при определении длительности импульса открытияфорсунки (Фото 7) Кроме того, при отсутствии давления в топливной рейке, система блокирует запуск двигателя. У меня предположение, что блокируется управление форсунками, хотя проверить это не удалось. Во время работы с этим двигателем, появилось еще одно предположение. Измеряя значение напряжения на выходе датчика давления топлива , можно, хотя бы и относительно, судить о давлении топлива в топливной рейке. При нормальных условиях, напряжение на выходе датчика составляет 1.8 – 2.0 В. И теперь о самом интересном. Топливный насос высокого давления (Фото 2) и демонтированный(Фото8). Что же это такое? С чем его едят? Почему из-за него возникает столько проблем? Попробуем посмотреть конструкцию и представить, какие его узлы могут создать нам основные проблемы. Топливный насос высокого давления представляет собой устройство (если так можно его назвать), которое предназначено для того, чтобы создать определенное давление в топливной магистрали. Так как степень сжатия в этом двигателе составляет, примерно, 12 кг/см² и при этом, необходимо создать условия распыления топлива, следовательно, давление топлива в магистрали высокого давления должно превышать это значение в 4 – 5 раз, т.е. составлять 40 – 50 кг/см² (хотя кто-то из ребят в Сибири умудрился померить давление, которое составило около 120 кг/см²). Каким же образом создать такое высокое давление?Для этих целей и создан насос высокого давления. Подача топлива из бака осуществляется обычным погружным насосом. Давление в топливной магистрали низкого давления составляет 4 кг/см². Топливный насос высокого давления приводится в действие кулачком распредвала. А какова же конструкция самого насоса??? (Фото 9). После небольших экспериментов насос удалось разобрать, и что же мы там увидели? 1.Корпус топливного насоса высокого давления. В корпус насоса впрессована часть плунжерной пары (мама). Там же находиться сальник (Фото 10) (если его можно так назвать). Конструкция этого сальника чем-то похожа на маслоотражательный колпачок, но более сложной конструкции. Этот сальник одной своей частью (а) снимает масло со штока плунжера (или второй части плунжерной пары (папа)), а второй, внутренний сальник (б) предотвращает прорыв топлива. 1.Шток плунжера или ответная часть (или как-то по-другому) с пружиной, шайбой и опорным цилиндром, который опирается на кулачек распредвала. 2.Выходной штуцер магистрали высокого давления с запорным клапаном. 3.Этот элемент, как я представляю, является демпфером пульсации топлива. Может быть мое мнение и ошибочно, но другого назначения его я не придумал. 4.Шайба. Она изготовлена с высоким классом чистоты. Приводится в действие кулачком распредвала через шток плунжерной пары. За счет движения этой шайбы и создается давление в топливной магистрали и топливной рейке. (С конструкцией плунжеров я не знаком, поэтому все это мои предположения). 5.Электромагнитный клапан. (Его назначение я не придумал. Если его отключить во время работы двигателя – двигатель заглохнет. Если его отключить и попытаться завести машину – она заводиться, но двигатель работает не устойчиво, с перебоями.) Основной неисправностью Топливного насоса высокого давления является выработка на штоке плунжера (Фото11). Вот в результате этой выработки и происходит прорыв топлива в масляную систему. Что же будет, если топливо попадет в масло??? Холодный двигатель заводиться нормально, начинает прогреваться. При прогреве работает с незначительными перебоями. Самое интересное происходит, когда двигатель прогревается до температуры 82º С. При достижении температуры 82º С и выше, на холостых оборотах, двигатель работает нормально, не считая небольших сбоев, подтраивания. Если в это время плавно поднять обороты до 2000 об\мин или выше, или резко газануть, то обороты опускаются до отметки 1000 об\мин и при этом значении начинают скачкообразно изменяться. Чем выше температура, тем выше частота изменения оборотов. Во время скачкообразного изменения оборотов, длительность импульса на инжекторах составляет 0.4 мс, на сервомоторе рециркуляции постоянно присутствует сигнал управления. По диагностике – неисправностей в системе нет. Устранить неисправность возможно только заменой топливного насоса высокого давления на НОВЫЙ . Но дополнительно, после замены насоса, я считаю, что необходимо произвести промывку масляной системы, замену масла и почистить свечи (если они в нормальном состоянии). Это описание лишь попытка представить конструкцию двигателя. Не всему в этом описании можно верить, потому что это только мое представление о его принципах построения.
На