Общее устройство рулевого управления. Сошка рулевого управления - что делать, если она сломалась

Рулевое управление состоит из рулевого механизма и рулевого привода.

Рулевой механизм включает в себя рулевое колесо, рулевые валы, редуктор и детали крепления.

Рулевое колесо насажено на шлицевой конец верхнего рулевого вала и закреплено гайкой. На колесе установлен выключатель звуковых сигналов, закрытый пластмассовой крышкой.

Нижняя шлицевая часть верхнего рулевого вала соединяется со шлицевым концом вала редуктора через промежуточный вал с двумя карданными шарнирами. Шлицевые соединения карданных шарниров стянуты клеммами с болтами. Верхний рулевой вал установлен в трубе кронштейна крепления на двух игольчатых подшипниках. На трубе кронштейна установлены подрулевые переключатели.

Верхняя часть кронштейна рулевого вала закреплена на кузове двумя гайками, а нижняя - двумя винтами со срезными головками. В гнезде кронштейна установлен выключатель зажигания с блокирующим механизмом. Кронштейн и верхняя часть рулевого вала закрыты пластмассовыми кожухами.

Картер редуктора рулевого механизма закреплен тремя болтами на левом лонжероне кузова внутри моторного отсека.

Глобоидальный червяк , который находится в зацеплении с роликом вала сошки, установлен в картере редуктора на двух радиально-упорных (регулируемых) шариковых подшипниках. Осевой зазор в подшипниках червяка регулируется подбором прокладок между картером и крышкой.

Вал сошки вращается в двух бронзовых втулках, запрессованных в картер. На верхнем конце вала сошки установлен на шариковых подшипниках двухгребневой ролик, а на нижнем на конических шлицах закреплена сошка рулевого механизма. Зацепление ролика с червяком регулируется винтом, установленным в верхней крышке картера.

Рулевой привод состоит из трех тяг, маятникового рычага, поворотных кулаков и их рычагов.

Средняя рулевая тяга шарнирами соединена с маятниковым рычагом и сошкой рулевого механизма. Боковые тяги состоят из двух резьбовых наконечников, соединенных между собой резьбовой муфтой. Муфты фиксируются на тягах стяжными хомутами. При вращении резьбовых муфт изменяется длина тяг и соответственно - угол схождения колес.

В наконечниках тяг также установлены шаровые шарниры для соединения с рычагами поворотных кулаков, сошкой рулевого механизма и маятниковым рычагом.

Кронштейн маятникового рычага закреплен двумя болтами на правом лонжероне кузова в моторном отсеке. В кронштейне установлены две пластмассовые втулки, в которых поворачивается ось рычага.

Угол поворота колес ограничен двумя упорами на сошке, которые при максимальных углах поворота рулевого колеса упираются в корпус редуктора.

ОБЩЕЕ УСТРОЙСТВО РУЛЕВОГО УПРАВЛЕНИЯ

Рулевое управление (рис. 5.3) современных автомобилей с поворотными колесами включа­ ет в себя следующие элементы:

Рулевое колесо с рулевым валом (рулевой колонкой);

Рулевой механизм;

Рулевой привод (может содержать усилитель и (или) амортизаторы).

Рулевое колесо находится в кабине водителя и расположено под таким углом к вертика­ ли, который обеспечивает наиболее удобный охват его обода руками водителя. Чем больше диаметр рулевого колеса, тем при прочих равных условиях меньше усилия на ободе рулево­ го колеса, но при этом уменьшается возможность быстрого поворота руля при выполнении резких маневров. Диаметр рулевого колеса современных легковых автомобилей лежит в пределах 380-425 мм, тяжелых грузовых и автобусов - 440-550 мм, наименьшие диа­ метры имеют рулевые колеса спортивных автомобилей.

Рулевой механизм представляет собой механический редуктор, его основная за­ дача - увеличение приложенного к рулевому колесу усилия водителя, необходимого для поворота управляемых колес. Рулевые управления без рулевых механизмов, когда водитель непосредственно поворачивает управляемое колесо, сохранились лишь на очень легких транспортных средствах, например на мотоциклах. Рулевой механизм имеет достаточно большое передаточное число, поэтому для поворота управляемых колес на максимальный угол 30-45 ° необходимо сделать несколько оборотов рулево­ го колеса.

Рулевой вал соединяет рулевое колесо с рулевым механизмом и часто выполняется шар­ нирным, что позволяет более рационально компоновать элементы рулевого управления, а для грузовых автомобилей применять откидывающуюся кабину (рис. 5.4).

Кроме того, шарнирный рулевой вал повышает травмобезопасность рулевого колеса при авариях, уменьшая перемещение рулевого колеса внутрь салона и возможность травмиро­ вания грудной клетки водителя.

С этой же целью в рулевой вал иногда встраивают сминаемые элементы (рис. 5.5), а ру­ левое колесо покрывают относительно мягким материалом, не дающем при разрушении ост­ рых осколков.


Рис. 5.3 Рулевое управление с гидроусилителем: 1 - рулевая сошка; 2 - продольная ру­ левая тяга; 3 - рулевой механизм; 4 - всасывающий шланг; 5 - сливной шланг; 6 - ба­ чок; 7 - правая боковая рулевая тяга; 8 - правый маятниковый рычаг; 9 - поперечная рулевая тяга; 10 - входной вал рулевого механизма; 11 - нижний карданный шарнир; 12 - карданный вал; 13 - верхний карданный шарнир; 14 - вал рулевой колонки; 15 - ру­ левое колесо; 16 - левый маятниковый рычаг; 17, 21 - наконечники левой боковой тяги; 18 - хомут регулировочной трубки; 19 - левый рычаг рулевой трапеции; 20 - чехол шар­ нира; 22 - шарнир; 23 - нагнетательный шланг; 24 - насос гидроусилителя

Рулевой привод представляет собой систему тяг и шарниров, связывающих рулевой ме­ ханизм с управляемыми колесами. Поскольку рулевой механизм закреплен на несущей сис­ теме автомобиля, а управляемые колеса при движении перемещаются на подвеске вверх и вниз относительно несущей системы, рулевой привод обязан обеспечить необходимый угол поворота колес независимо от вертикальных перемещений подвески (согласованность кинематики рулевого привода и подвески). В связи с этим конструкция рулевого привода,


Рис. 5.4. Шарнирный рулевой вал грузо­ вого автомобиля


Рис. 5.5. Рулевой вал со сминаемыми при ударе элементами: 1 - вал до удара; 2 - вал в процессе смятия; 3 - полностью «сложенный» вал; 4 - максимальный ход рулевого вала


а именно количество и расположение рулевых тяг и шарниров, зависит от типа применяемой подвески автомобиля. Наиболее сложным рулевой привод имеют автомобили с нескольки­ ми управляемыми мостами.

Для дополнительного уменьшения усилий, необходимых для поворота рулевого колеса, в рулевом приводе применяют усилители рулевого управления. Источником энергии для ра­ боты усилителя является, как правило, двигатель автомобиля. Первоначально усилители применялись лишь на тяжелых грузовых автомобилях и автобусах, в настоящее время ис­ пользуются и на легковых.

Для смягчения рывков и ударов, которые передаются на рулевое колесо при движении по неровной дороге, в рулевой привод иногда встраивают гасящие элементы - аморти­ заторы рулевого управления. Конструкция указанных амортизаторов принципиально не от­ личается от конструкции амортизаторов подвески.

РУЛЕВОЙ МЕХАНИЗМ

К рулевому механизму предъявляются следующие требования:

Оптимальное передаточное число, определяющее соотношение между необходимым уг­ лом поворота рулевого колеса и усилием на нем;

Незначительные потери энергии при работе (высокий КПД);

Возможность самопроизвольного возврата рулевого колеса в нейтральное положе­ ние, после того как водитель перестал удерживать рулевое колесо в повернутом по­ ложении;

Незначительные зазоры в подвижных соединениях для обеспечения малого люфта или свободного хода рулевого колеса;

Высокая надежность.

Наибольшее распространение на легковых автомобилях сегодня получили реечные руле­ вые механизмы (рис. 5.6).


Конструкция такого механизма включает в себя шестерню, установленную на валу рулево­ го колеса, и связанную с ней зубчатую рейку. При вращении рулевого колеса рейка переме­ щается вправо или влево и через присоединенные к ней тяги рулевого привода поворачивает управляемые колеса.

Причинами широкого применения на легковых автомобилях именно такого механизма явля­ ются: простота конструкции, малые масса и стоимость изготовления, высокий КПД, небольшое число тяг и шарниров. Кроме того, расположенный поперек автомобиля корпус реечного рулево­ го механизма оставляет достаточно места в моторном отсеке для размещения двигателя, транс­ миссии и других агрегатов автомобиля. Реечное рулевое управление обладает высокой жестко­ стью, что обеспечивает более точное управление автомобилем при резких маневрах.

Вместе с тем реечный рулевой механизм обладает и рядом недостатков: повышенная чувствительность к ударам от дорожных неровностей и передача этих ударов на рулевое ко­ лесо; склонность к виброактивности рулевого управления, повышенная нагруженность дета­ лей, сложность установки такого рулевого механизма на автомобили с зависимой подвес­ кой управляемых колес. Это ограничило сферу применения такого типа рулевых механизмов только легковыми (с вертикальной нагрузкой на управляемую ось до 24 кН) автомобилями с независимой подвеской управляемых колес.

Легковые автомобили с зависимой подвеской управляемых колес, малотоннажные гру­ зовые автомобили и автобусы, легковые автомобили высокой проходимости оснащаются, как правило, рулевыми механизмами типа «глобоидальный червяк-ролик» (рис. 5.7).

Ранее такие механизмы применялись и на легковых автомобилях с независимой подвеской (например, семейство ВАЗ-2105, -2107), но в настоящее время их практически вытеснили реечные рулевые механизмы.


Рис. 5.6 а. Реечный рулевой механизм без гидроусилителя: 1 - чехол; 2 - вкладыш; 3 - пружина; 4 - шаровой палец; 5 - шаровой шарнир; 6 - упор; 7 - рулевая рейка; 8 - шестерня




Рис. 5.6 б, в. Реечный рулевой механизм с гидроусилителем: 1 - жидкость под высоким давлением; 2 - поршень; 3 - жидкость под низким давлением; 4 - шестерня; 5 - рулевая рейка; 6 - распределитель гидроусилителя; 7 - рулевая колонка; 8 - насос гидроуси­ лителя; 9 - резервуар для жидкости; 10 - элемент подвески



Рис. 5.7. Рулевой механизм типа «глобоидальный червяк-ролик» без гидроусилителя:

1 - ролик; 2 - червяк

Механизм типа «глобоидальный червяк-ролик» представляет собой разновидность червячной передачи и состоит из соединенного с рулевым валом глобоидального червяка (червяка с перемен­ ным диаметром) и ролика, установленного на вале. На этом же вале вне корпуса рулевого механиз­ ма установлен рычаг (сошка), с которым связаны тяги рулевого привода. Вращение рулевого коле­ са обеспечивает обкатывание ролика по червяку, качание сошки и поворот управляемых колес.

В сравнении с реечными рулевыми механизмами червячные механизмы имеют меньшую чувствительность к передаче ударов от дорожных неровностей, обеспечивают большие мак­ симальные углы поворота управляемых колес (лучшая маневренность автомобиля), хорошо компонуются с зависимой подвеской, допускают передачу больших усилий. Иногда червяч­ ные механизмы применяют на легковых автомобилях высокого класса и большой собствен­ ной массы с независимой подвеской управляемых колес, но в этом случае усложняется конструкция рулевого привода - добавляется дополнительная рулевая тяга и маятниковый рычаг. Кроме того, червячный механизм требует регулировки и дорог в изготовлении.

Наиболее распространенным рулевым механизмом для тяжелых грузовых автомобилей и ав­ тобусов является механизм типа «винт-шариковая гайка-рейка-зубчатый сектор» (рис. 5.8).

Иногда рулевые механизмы такого типа можно встретить на больших и дорогих легковых автомобилях (Mercedes, Range Rover и др.).

При повороте рулевого колеса вращается вал механизма с винтовой канавкой и переме­ щается надетая на него гайка. При этом гайка, имеющая на внешней стороне зубчатую рей­ ку, поворачивает зубчатый сектор вала сошки. Для уменьшения трения в паре винт-гайка передача усилий в ней происходит посредством шариков, циркулирующих в винтовой канав­ ке. Данный рулевой механизм имеет те же преимущества, что и рассмотренный выше чер­ вячный, но имеет большой КПД, позволяет эффективно передавать большие усилия и хоро­ шо компонуется с гидравлическим усилителем рулевого управления.

Ранее на грузовых автомобилях можно было встретить и другие типы рулевых механиз­ мов, например «червяк-боковой сектор», «винт-кривошип», «винт-гайка-шатун-рычаг». На современных автомобилях такие механизмы из-за их сложности, необходимости регули­ ровки и низкого КПД практически не применяются.



Рис. 5.8. Рулевой механизм типа «винт-шариковая гайка-рейка-зубчатый сектор» без гидроусилителя (а): 1 - картер; 2 - винт с шариковой гайкой; 3 - вал-сектор; 4 - проб­ ка заливного отверстия; 5 - регулировочные прокладки; 6 - вал; 7 - уплотнитель рулево­ го вала; 8 - сошка; 9 - крышка; 10 - уплотнитель вала-сектора; 11 - наружное кольцо подшипника вала-сектора; 12 - стопорное кольцо; 13 - уплотнительное кольцо; 14 - бо­ ковая крышка; 15 - пробка; со встроенным гидроусилителем (б): 1 - регулировочная гайка; 2 - подшипник; 3 - уплотнительное кольцо; 4 - винт; 5 - картер; 6 - поршень-рей­ ка; 7 - гидравлический распределитель; 8 - манжета; 9 - уплотнитель; 10 - входной вал; 11 - вал-сектор; 12 - защитная крышка; 13 - стопорное кольцо; 14 - уплотнительное кольцо; 15 - наружное кольцо подшипника вала-сектора; 16 - боковая крышка; 17 - гай­ ка; 18 - болт


РУЛЕВОЙ ПРИВОД

Рулевой привод должен обеспечивать оптимальное соотношение углов поворота разных уп­ равляемых колес, не вызывать поворотов колес при работе подвески, иметь высокую на­ дежность.

Наиболее распространен механический рулевой привод, состоящий из рулевых тяг, руле­ вых шарниров и, иногда, промежуточных (маятниковых) рычагов.

Поскольку рулевой шарнир должен, как правило, работать в нескольких плоскостях он делается сферическим (шаровым). Такой шарнир состоит из корпуса с вкладышами и шаро­ вого пальца с надетым на него эластичным защитным чехлом (рис. 5.9 и см. рис. 5.6а).

Вкладыши выполняются из материала с антифрикционными свойствами. Чехол предот­ вращает попадание грязи и воды внутрь шарнира.

Рулевой привод многоосных автомобилей с несколькими передними управляемыми ося­ ми принципиально не отличается от привода автомобиля с одной управляемой осью, но име­ ет большее количество тяг, шарниров и рычагов (рис. 5.10).



Рис. 5.9. Шарнир рулевого привода с шаровым пальцем


Рис. 5.10. Рулевой привод многоосных автомобилей



Рис. 5.11. Рулевой привод задних управляемых колес грузового автомобиля: 1 - рулевой механизм; 2 - датчик угла поворота колес; 3 - датчик частоты вращения коленчатого вала; 4 - аварийная лампа; 5 - датчик частоты вращения колеса; 6 - электронный блок управле­ ния; 7 - гидроцилиндр; 8 - управляющий клапан; 9 - фильтр; 10 - насос; 11 - масляный бак



Рис. 5.12. Рулевой привод задних управляемых колес автомобиля

Как было сказано выше, основная цель дополнительного поворота задних колес автомобиля - повышение маневренности, причем задние колеса должны повора­ чиваться в другом направлении, нежели передние. Создать механический рулевой привод, который обеспечивал бы указанный характер поворота, несложно, но ока­ залось, что автотранспортные средства с таким управлением склонны к рысканью при движении по прямой и плохо управляются при входе в скоростные повороты. Поэтому в рулевой привод современных автомобилей с задними управляемыми колесами устанавливают устройства, которые отключают поворот задних колес при скоростях выше 20-3 0 км/ч. В связи с этим привод задних колес делается гидрав­ лическим или электрическим (рис. 5.11).

В ряде случаев задние колеса легковых автомобилей делаются поворотными не столько для повышения маневренности, сколько для подруливания при прохождении поворотов на большой скорости. Механический, гидравлический или электрический рулевой приводы (рис. 5.12) обеспечивают поворот задних колес в ту или иную сторону на небольшие углы (не более 2-3°), что улучшает управляемость на высоких скоростях.

Снятие. Отсоедините провода от аккумуляторной батареи и снимите крышку выключателя сигнала.

Снимите рулевое колесо. Снимите обе половины облицовочного кожуха вала рулевого управления.

ПРИМЕЧАНИЕ

Если необходимо снять только картер рулевого механизма, отверните болты крепления кронштейна и болт, крепящий вал рулевого управления на валу червяка, а затем слегка сдвиньте вал рулевого управления с кронштейном внутрь салойа и поставьте под вал подставку, чтобы он не висел на проводах.

Снимите щиток приборов и отсоедините штепсельные колодки переключателя указателей поворота и света фар от штепсельных колодок пучка проводов.

Отсоедините провода от клемм выключателя зажигания и, отвернув винты крепления и утопив фиксатор замка, снимите выключатель зажигания.

Ослабьте хомут крепления трубы верхней опоры вала рулевого управления и снимите ее вместе с переключателем указателей поворота и света фар, предварительно разблокировав вал рулевого управления от противоугонного устройства.

Рис. 6.3. Детали рулевого управления: 1 - каргер рулевого механизма; 2 - болт крепления картера рулевого механизма к кузову; 3 - регулировочная шайба; 4 - плоская шайба; 5 - гайка; 6 - пружинная шайба; 7 - болт крепления наконечника вала рулевого управления на валу червяка; 8 - уплотнитель вала; 9 - болт крепления резинового уплотнителя к кузову; 10 - вал рулевого управления; 11 - болт крепления кронштейна вала рулевого управления; 12 - кронштейн вала рулевого управления; 13 - рулевое колесо; 14 - гайка крепления рулевого колеса

Снимите кронштейн 12 (рис. 6.3) крепления вала рулевого механизма. Снимите уплотнитель 8 вала рулевого механизма.

Отвернув болт 7 крепления вала рулевого управления к валу червяка, выньте вал рулевого управления в салон кузова.

Съемником А.47035 выпрессуйте шаровые пальцы рулевых тяг из отверстия в сошке.

Снимите картер рулевого механизма.

ПРИМЕЧАНИЕ

Снимая картер рулевого механизма, отметьте количество и размещение шайб 3 между лонжероном и картером, чтобы установить их на прежнее место при установке картера. Это необходимо для сохранения соосности вала рулевого управления и вала червяка.

Рис. 6.4. Установка рулевого механизма на автомобиль: 1 - болты крепления картера рулевого механизма к кузову; 2 - болт крепления вала рулевого управления к валу червяка; 3 - болты крепления кронштейна вала рулевого управления к кузову; 4 - пластмассовая втулка; 5 - кронштейн крепления вала рулевого управления; 6 - регулировочные шайбы для обеспечения соосности вала червяка и вала рулевого управления

Установку рулевого механизма проводите в последовательности, обратной снятию. При этом, прежде чем окончательно затягивать болты 1 и 3 (рис. 6.4) крепления картера рулевого механизма и кронштейна вала рулевого управления, временно наденьте рулевое колесо на вал, поверните вал два или три раза влево и вправо. При этом вал и другие детали принимают правильное положение (самоустанавливаются) благодаря овальным отверстиям нз картере и на кронштейне.

ПРИМЕЧАНИЕ

Можно отдельно собрать вал рулевого механизма с уплотнителем, кронштейном, выключателем зажигания, переключателем указателей поворота и света фар, рулевым колесом и установить этот узел на автомобиль.

Разбопка и сбоока рулевого механизма

Разборка . Слейте масло из картера рулевого механизма. Закрепите картер на кронштейне A.74076/R с опорой А.74076/1.

Рис. 6.5. Снятие сошки: 1 - съемник А.47043; 2 - вал сошки рулевого управления; 3 - сошка; 4 - кронштейн A.74076/R

Рис. 6.6. Детали редуктора рулевого механизма: 1 - картер; 2 - сошка; 3 - нижняя крышка картера; 4 - регулировочные прокладки; 5 - наружное кольцо подшипника вала червяка; 6 - сепаратор с шариками; 7 - вал сошки; 8 - регулировочный винт; 9 - регулировочная пластина; 10-стопорная шайба; 11-вал червяка; 12 - верхняя крышка картера; 13 - уплотнительная прокладка; 14 - втулка вала сошки; 15 - сальник вала червяка; 16 - сальник вала сошки

Отвернув гайку крепления рулевой сошки 3 и сняв пружинную шайбу съемником А.47043 снимите сошку (рис. 6.5). Отвернув болты крепления, снимите крышку 12 (рис. 6.6) картера рулевого механизма вместе с регулировочным винтом 8, регулировочной пластиной 9, стопорной шайбой 10 и контргайкой. Выньте из картера 1 вал 7 сошки в сборе с роликом.

Отвернув болты крепления, снимите крышку 3 упорного подшипника вала червяка вместе с регулировочными прокладками 4.

Валом 11 червяка вытолкните из картера наружное кольцо 5 подшипника и выньте вал вместе с сепараторами б подшипников. Сни
мите сальник 15 вала червяка и сальник 16 вала сошки.

Рис. 6.7. Снятие наружного кольца верхнего подшипника червяка: 1 - картеррулевого механизма; 2 - наружное кольцо верхнего подшипника червяка; 3 - оправка 67.7853.9541

Оправкой 67.7853.9541 выпрессуйте наружное кольцо верхнего подшипника (рис. 6.7).

Сборку рулевого механизма проводите на кронштейне A.74076/R в последовательности, обратной разборке. Наружное кольцо верхнего подшипника червяка запрессовывайте оправкой 67.7853.9541, переставив насадку на ручке оправки обратной стороной.

Рис. 6.8. Установка червяка рулевого механизма: 1 - крышка подшипника; 2 - регулировочные прокладки; 3 - червяк

Рис. 6.9. Контроль момента трения червяка динамометром: 1 - червяк; 2 - головка А.95697/5; 3-динамометр 02.7812.9501; 4 - кронштейн стенда для ремонта картера рулевого механизма; 5 - картер рулевого механизма

После установки червяка в картер рулевого механизма и закрепления нижней крышки, проверьте с помощью динамометра 02.7812.9501 и головки А.95697/5 (рис. 6.9) момент трения вала червяка; он должен находиться в пределах 19,6-49 Н*см (2-5 кгс*см). Если момент окажется меньше указанного, уменьшите толщину регулировочных прокладок 2 (рис. 6.8) и если больше - увеличьте.

После установки вала сошки проверьте отсутствие зазора и зацепления ролика с червяком в положениях вала червяка, повернутого вправо и влево на 30° от нейтрального положения сошки. Возможный зазор в зацеплении устраните регулировочным винтом 2 (рис. 6.2) и затяните контргайку 3.

После регулировки зазора в зацеплении ролика и червяка проверьте динамометром момент трения вала червяка, который должен быть равен 88,2-117,6 Н*см (9-12 кгс*см) при повороте вала червяка на 30° как влево, так и вправо от среднего положения и должен снижаться плавно до 68,6 Н*см (7 кгс*см) при повороте от угла 30° до упора.

По окончании сборки проверьте углы поворота сошки от нейтрального положения, которые должны составлять 32° 10"±1" как влево, так и вправо до упора сошки в головки болтов, залейте в картер рулевого механизма 0,215 л трансмиссионного масла ТАД-17и.

Проверка и ремонт

Тщательно осмотрите, нет ли на рабочих поверхностях ролика и червяка следов износа, заедания, вмятин или рисок. Изношенные и поврежденные детали замените.

Проверьте величину зазора между втулками и валом сошки, который не должен превышать 0,10 мм. Если зазор больше указанного, замените втулки, пользуясь оправкой А.74105.

На внутренней поверхности втулок вала сошки имеются спиральные канавки, которые выходят только на одну сторону втулки. При запрессовке втулки располагайте так, чтобы их торцы, имеющие выход канавок, находились внутри отверстия картера, а выходы канавок были расположены друг против друга. Торцы втулок должны утопать в отверстии картера на 1,5 мм.

Новые втулки перед запрессовкой смажьте трансмиссионным маслом.

После запрессовки в картер окончательно обработайте втулки разверткой А.90336 до размера 28,698-28,720 мм. Монтажный зазор между валом сошки и втулками должен быть в пределах 0,008-0,051 мм.

Проверьте легкость вращения ролика вала сошки.

Подшипники червяка и ролика должны вращаться свободно, без заедания и на поверхности колец и шариков не должно быть износа и повреждений.

Проверьте биение опорной шейки вала рулевого механизма относительно среднего диаметра шлицевого отверстия наконечника вала. Для проверки нижний конец вала надевают на специальную оправку, которая устанавливается на призму. При проворачивании оправки на призме биение опорной шейки вала не должно превышать 3 мм. Если вал деформирован, то его выправьте на ручном прессе.

Проверьте осевой зазор между головкой регулировочного винта 8 (рис. б.б) и пазом вала сошки 7. Зазор не должен превышать 0,05 мм. Если он больше, замените регулировочную пластину 9 на пластину большей толщины.

ПРИМЕЧАНИЕ
В запасные части поставляются регулировочные пластины одиннадцати размеров, толщиной от 1,95 до 2,20 мм; увеличение каждого размера составляет 0,025 мм.

Рисунок 1. Рулевое управление

1 - боковая тяга; 2 - сошка; 3 - средняя тяга; 4 - маятниковый рычаг; 5 - регулировочная муфта; 6 - нижний шаровой шарнир передней подвески; 7 - правый поворотный кулак; 8 - верхний шаровой шарнир передней подвески; 9 - правый рычаг поворотного кулака; 10 - подшипник верхнего вала рулевого управления; 11 - кронштейн крепления вала рулевого управления; 12 - труба кронштейна крепления вала рулевого управления; 13 - верхний вал рулевого управления; 14 - кронштейн маятникового рычага; 15 - ось маятникового рычага; 16 - картер рулевого механизма; 17 - уплотнитель вала; 18 - вал червяка; 19 - карданный шарнир; 20 - промежуточный вал рулевого управления; 21 - облицовочный кожух; 22 - рычаг переключателя стеклоочистителей и смывателей ветрового стекла и блок-фары; 23 - рычаг переключателя света фар; 24 - рычаг переключателя указаний поворота; 25 - рулевое колесо; 26 - фиксирующая пластина передка кронштейна; 27 - стяжной болт крепления карданного шарнира; 28 - лонжерон кузова

Особенности устройства

На автомобиле ВАЗ-2105 устанавливается рулевое управление с червячным редуктором и травмобезопасной рулевой колонкой. Вал рулевого управления является составным, состоит из верхнего 13 (рисунок 1) и промежуточного 20 валов. Верхний вал 13 и вал 18 червяка соединяются между собой промежуточным валом 20 с карданными шарнирами на концах. Шарниры на игольчатых подшипниках конструктивно являются неразъемными.

Верхний вал устанавливается в трубе кронштейна 11 на двух игольчатых подшипниках с резиновыми втулками. Подшипники в трубе завальцованы. Кронштейн 11 закрепляется к кронштейну панели кузова в четырех точках: снизу болтами с фиксирующими пластинами 26, сверху - на приварных болтах гайками с шайбами.

В случае лобового столкновения края фиксирующих пластин деформируются и проскакивают сквозь отверстия кронштейна 11. За счет возможности складывания вала рулевого управления, рулевое колесо уходит из зоны грудной клетки водителя. Это снижает вероятность и тяжесть его травмирования.

Вал червяка, у этого типа рулевого управления, имеет большую длину. В нижней части вала червяка, а так же на торце картера 7 (рисунок 2) рулевого механизма выполнены метки в виде рисок "В" и "С", при совпадении которых ролик вала сошки устанавливается по средине червяка. При этом ступица рулевого колеса должна распологаться горизонтально.

Рисунок 2. Разрез картера рулевого механизма

1 – пластина регулировочного винта вала сошки; 2 – регулировочный винт вала сошки; 3 – гайка регулировочного винта; 4 – пробка маслоналивного отверстия; 5 – крышка картера механизма; 6 – червяк; 7 – картер рулевого механизма; 8 – сошка; 9 – гайка крепления сошки к валу; 10 – шайба пружинная гайки крепления сошки; 11 – сальник вала сошки; 12 – бронзовая втулка вала сошки; 13 – вал сошки; 14 – ролик вала сошки; 15 – вал червяка; 16 – верхний шарикоподшипник; 17 – нижний шарикоподшипник; 18 – регулировочные прокладки; 19 – нижняя крышка подшипника червяка; 20 – ось ролика; 21 – игольчатый подшипник; 22 – сальник вала червяка; В, С – метки А – совпадение меток

Картер рулевого механизма прикрепляется к левому лонжерону 28 кузова автомобиля с внутренней стороны отсека двигателя тремя болтами.

В картере 7 (рисунок 2) находится червяк 6, который находится в зацеплении с двухгребневым роликом 14 вала 13 сошки. Передаточное число червячной пары 16,4. Червяк вращается в верхнем 16 и нижнем 17 подшипниках, шарики которых расположены на беговых дорожках торцев червяка. Осевой зазор в подшипниках червяка регулируется подбором прокладок 18 между картером и крышкой 19. Вал сошки вращается в двух втулках 12, запрессованных в картер рулевого механизма. На верхнем конце вала, на игольчатом подшипнике вращается ролик 14, а на нижний конец вала, имеющий конические шлицы надевается сошка 8 и крепится гайкой 9. В шлицевом отверстии сошки сделаны две сдвоенные впадины, а на валу выполнены два сдвоенных выступа. Поэтому сошку можно установить на вал только в одном положении.

Зацепление ролика с червяком регулируется винтом 2. Осевой зазор между головкой винта и пазом вала устраняется подбором регулировочных пластин 1.

Рулевой привод включает в себе три тяги - среднюю 3 (рисунок 1) и две крайние 1, а также сошку 2, маятниковый рычаг 4 с кронштейном 14 и поворотные рычаги 9 поворотных кулаков 7. Средняя тяга изготовлена цельной. Она имеет по концам шаровые шарниры для соединения с маятниковым рычагом и рулевой сошкой. Каждая боковая тяга конструктивно состоит из двух наконечников с резьбой, соединенных между собой регулировочной муфтой 5. Муфты фиксируются на тягах с помощью стяжных хомутов. Вращением муфты 5 регулируется длина боковой тяги при регулировке схождения передних колес. Наконечники крайних тяг с помощью шарниров присоединяются к рычагам 9 поворотных кулаков, к маятниковому рычагу 4 и к рулевой сошке 2.

Шаровой шарнир тяг состоит из стального пальца сферическая головка которого охватывается коническим разрезным пластмассовым вкладышем, который поджимается пружиной к корпусу, за счет этого создается натяг в соединении пальца с вкладышем и наконечником тяги.

Кронштейн 14 (смотрите рисунок 1) маятникового рычага закреплен двумя болтами к правому лонжерону кузова автомобиля, напротив картера рулевого механизма. В кронштейне установлены две пластмассовые втулки, в которых вращается ось. Торцевое уплотнение втулок обеспечивается уплотнителями и шайбами.

Одной из основных систем, обеспечивающих безопасность передвижения на автомобиле, является рулевое управление. Назначение рулевого управления автомобиля - возможность менять направление движения, совершать повороты и маневры при объезде препятствий или обгоне. Эта составляющая также важна, как и тормозная система. Доказательством тому является предписание ПДД, эксплуатация автомобиля с неисправными указанными механизмами категорически запрещена.

Особенности узла и конструкция

На автомобилях используется кинематический способ смены направления движения, подразумевающий, что осуществление поворота происходит за счет смены положения управляемых колес. Обычно управляемой является передняя ось, хотя существуют и авто с так называемой системой подруливания. Особенность работы в таких авто заключается в том, что колеса задней оси тоже поворачиваются при изменении направления, хоть и на меньший угол. Но пока эта система широкого распространения не получила.

Помимо кинематического способа на технике используется еще и силовой. Особенность его заключается в том, что для совершения поворота колеса одной стороны притормаживаются, в то время, как с другой стороны они продолжают двигаться с прежней скоростью. И хоть этот способ изменения направления на легковых авто распространения не получил, на них он все же используется, но в несколько ином качестве – как система курсовой устойчивости.

Этот узел автомобиля состоит из трех основных элементов:

  • рулевая колонка;
  • рулевой механизм;
  • привод (система тяг и рычагов);

Рулевой узел

У каждой составляющей – своя задача.

Рулевая колонка

Выполняет передачу вращательного усилия, которое создает водитель для изменения направления. Состоит она из рулевого колеса, располагаемого в салоне (на него и воздействует водитель, вращая его). Оно жестко посажено на вал колонки. В устройстве этой части рулевого управления очень часто используется вал, разделенный на несколько частей, соединенных между собой карданными шарнирами.

Такая конструкция сделана не просто так. Во-первых, это позволяет менять угол положения рулевого колеса относительно механизма, смещать его в определенную сторону, что нередко необходимо при компоновке составных частей авто. В дополнение такая конструкция позволяет повысить комфортабельность салона – водитель может менять положение рулевого колеса по вылету и наклону, обеспечивая максимально удобное его положение.

Во-вторых, составная рулевая колонка имеет свойство «ломаться» в случае ДТП, снижая вероятность травмирования водителя. Суть такова – при фронтальном ударе двигатель может сместиться назад и толкнуть рулевой механизм. Если бы вал колонки был цельным, изменение положения механизма привело бы к выходу вала с рулевым колесом в салон. В случае же со составной колонкой, перемещение механизма будет сопровождаться всего лишь изменением угла одной составляющей вала относительно второй, а сама колонка остается неподвижной.

Рулевой механизм

Предназначен для преобразования вращения вала рулевой колонки в поступательные движения элементов привода.

Наибольшее распространение на легковых автомобилях получили механизмы типа «шестерня-зубчатая рейка». Ранее же использовался еще один вид – «червяк-ролик», который сейчас в основном используется на грузовых авто. Еще один вариант для грузовиков – «винтовой».

«шестерня-рейка»

Распространение тип «шестерня-рейка» получил благодаря сравнительно простому устройству рулевого механизма. Состоит этот конструктивный узел из трех основных элементов – корпус, в котором размещается шестерня и перпендикулярно ей – рейка. Между двумя последними элементами имеется постоянное зубчатое зацепление.


Работает этот вид механизма так: шестерня жестко связана с рулевой колонкой, поэтому она вращается вместе с валом. Из-за зубчатого соединения вращение передается на рейку, которая при таком воздействии смещается внутри корпуса в ту или иную сторону. Если водитель вращает рулевое колесо влево, взаимодействие шестерни с рейкой приводит к тому, что последняя перемещается вправо.

Зачастую на авто применяются механизмы «шестерня-рейка» с фиксированным передаточным числом, то есть диапазон поворота рулевого колеса для изменения угла колес одинаков при всех их положениях. Для примера, предположим, что для поворота колес на угол 15° необходимо сделать 1 полный оборот руля. Так вот, неважно, в каком положении находятся управляемые колеса (крайнее, прямолинейное), для поворота на указанный угол придется сделать 1 оборот.

Но некоторые автопроизводители устанавливают на свои авто механизмы с меняющимся передаточным числом. Причем достигается это достаточно просто – изменением угла положения зубьев на рейке в определенных зонах. Эффект от этой доработки механизма такой: если колеса стоят прямо, то для изменения их положения на те же 15° (пример) требуется 1 оборот. Но если они находятся в крайнем положении, то из-за измененного передаточного числа, колеса повернуться на указанный угол уже через пол-оборота. В результате диапазон поворота руля «от края до края» значительно меньше, чем в механизме с фиксированным передаточным числом.


Рейка с переменным передаточным числом

Помимо простоты устройства тип «шестерня-рейка» используется еще потому, что в такой конструкции возможна реализация исполнительных механизмов гидроусилителя (ГУР) и электроусилителя (ЭУР), а также электрогидравлического (ЭГУР).

«червяк-ролик»

Следующий тип – «червяк-ролик», менее распространен и на легковых авто сейчас практически не используется, хотя его можно встретить на автомобилях ВАЗ классического семейства.

В основе этого механизма положена червячная передача. Представляет червяк собой винт с резьбой особого профиля. Этот винт располагается на валу, соединенном с рулевой колонкой.

С резьбой этого червяка контактирует ролик, соединенный с валом, на который посажена сошка – рычаг, взаимодействующий с элементами привода.


Червячный рулевой механизм

Суть работы механизма такова: при вращении вала, винт вращается, что приводит к продольному перемещению ролика по его резьбе. А поскольку ролик установлен на валу, то это смещение сопровождается поворотом последнего вокруг своей оси. Это в свою очередь приводит к полукруговому движению сошки, которая и воздействует на привод.

От механизма типа «червяк-ролик» на легковых авто отказались в пользу «шестерни-рейки» из-за невозможности интегрировать в него гидроусилитель (на грузовых авто он все же имелся, но исполнительный механизм был вынесенным), а также достаточно сложной конструкции привода.

Винтовой тип

Конструкция винтового механизма – еще сложнее. В ней также имеется винт с резьбой, но контактирует он не с роликом, а со специальной гайкой, на внешней стороне которой нанесен зубчатый сектор, взаимодействующий с таким же, но сделанным на валу сошки. Также существуют механизмы с промежуточными роликами между гайкой и зубчатым сектором. Принцип же действия такого механизма практически идентичен червячному – в результате взаимодействия вал проворачивается и тянет сошку, а та в свою очередь – привод.


Винтовой рулевой механизм

На винтовой механизм можно установить гидроусилитель (гайка выполняет роль поршня), но на легковых авто он не применяется из-за массивности конструкции, поэтому и используется он только на грузовиках.

Привод

Привод в конструкции рулевого управления используется для передачи перемещения рейки или сошки на управляемые колеса. Причем в задачу этой составляющей входит изменение положения колес на разные углы. Обусловлено это тем, что колеса при повороте движутся по разным радиусам. Поэтому колесо с внутренней стороны при изменении траектории движения должно поворачиваться на больший угол, чем внешнее.

Конструкция привода зависит от используемого механизма. Так, если на авто используется «шестерня-рейка», то привод состоит всего лишь из двух тяг, соединенных с поворотным кулаком (роль которого выполняет амортизационная стойка) посредством шарового наконечника.

К рейке эти тяги могут крепиться двумя способами. Менее распространенным является жесткая фиксация их болтовым соединением (в некоторых случаях соединение осуществляется через сайлент-блок). Для такого соединения в корпусе механизма проделано продольное окно.

Более распространенный метод соединения тяг – жесткое, но подвижное соединение с концами рейки. Для обеспечения такого соединения на конце обеих тяг сделан шариковый наконечник. Посредством гайки этот шар прижимается к рейке. При передвижении последней тяга меняет свое положение, что и обеспечивает имеющееся соединение.


В приводах, где используется механизм «червяк-ролик», конструкция значительно сложнее и представляет собой целую систему рычагов и тяг, получивших называние рулевой трапеции. Так, к примеру, на ВАЗ-2101 привод состоит из двух боковых тяг, одной средней, маятникового рычага и поворотных кулаков с рычагами. При этом для обеспечения возможности изменения угла положения колеса поворотный кулак крепиться к рычагам подвески при помощи двух шаровых опор (верхней и нижней).

Большое количество составных элементов, а также соединений между ними делает такой тип привода более подверженным износу и возникновению люфтов. Этот факт - еще одна причина отказа от червячного механизма в пользу реечного.

«Обратная связь»

Стоит отметить, что в рулевом механизме существует еще и так называемая «обратная связь». Водитель не только воздействует на колеса, а посредством ее же получает информацию об особенностях движения колес по дороге. Проявляется это в виде вибраций, рывков, создания определенно направленных усилий на руле. Эта информация считается очень важной для правильной оценки поведения авто. Доказательством тому является тот факт, что в авто, оснащаемых ГУР и ЭУР, конструкторы сохранили «обратную связь».

Передовые разработки

Этот узел продолжают совершенствовать, так самыми последними достижениями являются системы:

  • Активного (динамического) рулевого управления. Она позволяет изменять передаточное число механизма в зависимости от скорости автомобиля. Также выполняет и дополнительную функцию – корректировка угла передних колес в поворотах и при торможении на скользкой дороге.
  • Адаптивного рулевого управления (управление по проводам). Это самая новая и перспективная система. В ней отсутствует прямая связь между рулем и колесами, всё работает за счёт датчиков и исполнительных устройств (сервоприводов). Большое распространение система ещё не получила по причине психологического и экономического факторов.


Система «рули по проводам»

Заключение

В целом механизм является достаточно надежным узлом, не требующим никакого обслуживания. Но при этом эксплуатация рулевого управления автомобиля подразумевает проведение своевременной диагностики для выявления неисправностей.

Конструкция этого узла состоит из множества элементов с подвижными соединениями. А где такие соединения есть, со временем из-за износа контактирующих элементов, в них появляются люфты, которые в значительной мере могут повлиять на управляемость авто.

Сложность диагностики рулевого управления зависит от его конструктивного исполнения. Так в узлах с механизмом «шестерня-рейка» соединений, которые необходимо проверять не так уж и много: наконечники, зацепление шестерни с рейкой, карданы рулевой колонки.

А вот с червячным механизмом из-за сложной конструкции привода точек диагностики значительно больше.

Что касается ремонтных работ при нарушении работоспособности узла, то наконечники при сильном износе просто заменяются. В рулевом механизме на начальном этапе люфт удается убрать регулировкой зацепления, а если это не помогло – переборкой узла с использованием ремкомплектов. Карданы колонки, как и наконечники – просто заменяются.