Устройство сочленения боковой рамы тележки с буксами колесных пар. Описать типы и классификацию тележек вагонов Узел сочленения для исполнительных механизмов

Обеспечивает взаимное перемещение модулей в трёх степенях свободы.

Состоит из шарниров (сферических или вилочных с крестовиной) и двух узлов крепления, которые устанавливаются на энергетическом и технологическом (боевом) модуле. Установка узла крепления на технологическом модуле не должна быть трудоёмкой и занимать не более 0,25 часа.

К узлам крепления через шаровые шарниры крепятся гидроцилиндры поворота и стабилизации. При соединении с энергетическим модулем гидроцилиндры позволяют упростить процесс крепления за счёт подвижности узла крепления.

Включение гидроцилиндра стабилизации (создание в нём замкнутого объёма) позволяет исключить взаимное перемещение секций. В таком режиме СТС становится единым целым, что позволяет преодолевать рвы, траншеи, трещины во льду.

Соединение электрической части – кабельные разъёмы со стороны энергетического и технологического модуля.

Облик УС – на рис.7.

Рисунок 7 – Узел сочленения с гидроцилиндрами поворота и стабилизации

У боевой СТС узел сочленения должен быть упругодемпфирующим и активным (т.е. менять свои свойства).


Помимо прямой связи силового элемента исполнительного механизма с регулирующим органом существуют следующие виды сочленений: рычажное, кулачковое, редукторное, тросовое.

Всегда желательно, чтобы характеристика регулирующего органа была линейной (Q-расход cреды). Если нелинейность характеристики РО неустранима, то она может быть компенсирована конструкцией сочленения.

Рычажные сочленения (рис. 3-4)бывают с линейной и нелинейной характеристикой.

Они просты по конструкции и надежны в эксплуатации, но применяются только в том случае, когда поворот выходного рычага сервопривода (1) и приводного рычага (2) регулирующего органа осуществляется в одной плоскости, и при условии, что угол поворота выходного рычага, равный 90° обеспечивает максимальное открытие регулирующего органа. Применение рычажного соединения ограничивается также расстоянием между сервоприводом и регулирующим органом.

Кулачковое соединение (рис. 3-5) позволяет использовать сервоприводы с углом поворота выходного вала до 360° , при этом плоскости вращения кулачка и приводного рычага РО могут не совпадать.

Существенным преимуществом этого сочленения является возможность изменения характеристики в широких пределах путем различного профилирования кулачка. Это позволяет добиться линейности характеристики РО при любом виде характеристики . Кулачковые соединения применяют при сравнительно небольших перестановочных усилиях и совместном расположении ИМ и РО.

Редукторное сочленение электрического сервопривода с РО применяется в случае больших перестановочных усилий при перемещениях РО (например, при регулировании питания водой мощных паровых котлов высокого и сверхвысокого давления). Угол поворота выходного вала редуктора практически не ограничен, его передаточные характеристики линейны.

Тросовое соединение в случае необходимости позволяет устанавливать сервопривод на значительном расстоянии от регулирующего органа, но все же это расстояние ограничивается вытяжкой троса. Угол поворота выходного вала ИМ может изменяться от 0 до 270. Повороты диска, укрепленного на выходном валу и приводного рычага, РО могут совершаться в различных плоскостях. Требуемую расходную характеристику РО можно получить, изменяя профиль приводного диска. Для надежности сочленения соединительный трос прокладывается в защитных трубах.

В. Орлов, инженер городского транспорта, Минск

В августе 1997 г. автобусное отделение МАЗ пополнило выпускаемое семейство новой моделью – сочлененной особо большой вместимости, получившей обозначение 105. На городской маршрут первый такой автобус вышел весной 1999 г. Автобус спроектирован по «тянущей» схеме – с ведущим средним мостом. Конструкция имеет заметную отличительную особенность: двигатель, расположенный в «тягаче» (первой секции), установлен вертикально слева. Помимо того, что нет необходимости в сложном и дорогостоящем узле сочленения (противоскладывания), увеличилась сцепная масса, т. е. улучшилась проходимость и устойчивость, а сцепное устройство на основе сферического шарнира обеспечивает секциям три степени свободы. Принятая компоновка позволила понизить уровень пола салона до 600 мм по всей длине, а дверные проемы имеют одну ступеньку. В 2002 г. на московском Мотор-шоу Ликинский автобусный завод представил сочлененный автобус ЛиАЗ-6212 с расположением двигателя в базе (горизонтально). В настоящее время автобус выпускают серийно. Механизм его противоскладывания разработан конструкторами ЛиАЗа самостоятельно. Следует заметить, что собственные разработки таких узлов есть всего лишь у нескольких компаний в мире. В 2005 г. собрана опытная низкопольная «гармошка» мод. 6213 (с покупным узлом противоскладывания), и в настоящее время опытные образцы автобуса проходят эксплуатационные испытания.
Достоин одобрения сегодняшний шарнирно-сочлененный автобус Львовского автобусного завода «Сити» ЛАЗ-20 который поставляется и в варианте троллейбуса. Удачными являются самостоятельно разработанный кузов и схема его окраски. Длина машины, превышающая «стандартные» 18 м, ставит ее в ряд новейших «гармошек» всемирно известных изготовителей – EvoBus (мод. CapaCity) и NeoMAN (GXL).
В 1993 г. завод из г. Ликино-Дулёво представил городской сочлененный автобус большой вместимости ЛиАЗ-6220. Заводские конструкторы самостоятельно разработали ранее не выпускавшийся в СНГ типоразмер автобуса (сочлененный), причем новой, заднемоторной компоновки по так называемой «толкающей» схеме. Изучение условий обеспечения устойчивости и управляемости принципиально новой машины и разработку соответствующих механизмов конструкторы ЛиАЗа вели совместно со специалистами Московского автомеханического института (МГТУ МАМИ). Их выводы не противоречили опыту коллег из промышленно развитых стран (там сочлененные автобусы появились раньше), особенно учитывая, что для автобусов такого типоразмера эти задачи и на Западе не решены окончательно.
Узел сочленения секций при «толкающей» схеме имеет только две степени свободы (т. е. не позволяет им закручиваться друг относительно друга при движении по неровным дорогам или повреждении элементов пневмоподвески одного борта), что приводит к возникновению дополнительных нагрузок на кузов и сочленение, снижающих их ресурс. Было установлено: для предотвращения «складывания» секций автобуса в поворотах (и при движении на скользкой дороге) в конструкции заднемоторных «сочлененников» требуется применять специальное устройство. Возможностей АБС тормозов, помогающей избежать складывания при торможении, для сочлененного автобуса с приводом на третий мост недостаточно. Установка в узле сочленения гидравлического (нерегулируемого) демпфера в целом обеспечивает устойчивость движения автобуса, гася поперечные колебания секций и предотвращая их раскачку. Вместе с тем опасность складывания сохранялась. Для ее предотвращения или снижения до безопасной величины использовали демпфер с золотниковым клапаном переменного диаметра. Забегая вперед, скажем, что задачей максимум являлась увязка работы демпфера с угловой скоростью, величиной поворота (и буксования) управляемых колес, учет коэффициента сцепления с дорогой. Кроме этого, был необходим концевой датчик, при угле складывания секций 45º (максимально допустимом для различных конструкций узла) подающий команду в систему противоскладывания и тем самым предотвращающий дальнейшее увеличение угла поворота. Основу устройства противоскладывания составляют гидроцилиндры двойного действия, еще называемые гидравлическими амортизаторами с изменяющимся сопротивлением. Однако для регулирования величины их сопротивления требовался специальный электронный блок.
Остается сказать, что стоимость системы противоскладывания или обеспечения устойчивости заднеприводного автобуса, представляющей собой сложное электронно-гидравлическое устройство, сопоставима со стоимостью современного двигателя и гидромеханической коробки передач!
В сочлененных автобусах промышленно развитых стран, имеющих «толкающую» схему, использован более сложный механизм противоскладывания секций. В упоминавшейся мод. О305G устройство состояло из двух датчиков угла поворота, встроенных в рулевой механизм, и дросселей с электромагнитными клапанами, встроенных в трубопроводы, связывающие гидроцилиндры (по два на каждую секцию автобуса). При увеличении угла складывания дроссели усиливали сопротивление потоку жидкости между гидроцилиндрами. Если угол складывания превышал 45º, электромагнитные клапаны блокировали перетекание жидкости, запирая гидроцилиндры. Бортовая электронная система сравнивала частоту вращения колес средней и задней осей, отключая подачу топлива при превышении допустимых значений соотношения между ними. Все колеса комплектовали датчиками бокового скольжения, сигнал которых вызывал соответствующие управляющие воздействия на механизм противоскладывания. Как бы то ни было, отечественная разработка узла противоскладывания и системы его управления стала настоящим успехом ЛиАЗа.
C чем связана популярность особо больших городских автобусов с толкающей задней секцией? Раньше – с возможностью их унификации с одиночными городскими автобусами и снижением уровня шума двигателя в салоне, сейчас – со снижением высоты пола, поскольку под полом салона нет силовой установки. Иначе говоря, главный недостаток сочлененных автобусов с горизонтальным расположением двигателя в базе и средней ведущей осью (схемы, до недавних пор считавшейся классической) на сегодняшний день связан со сравнительно высокими полом и шумом в салоне при такой компоновке. В целом современные шарнирно-сочлененные автобусы различаются приводом на колеса и расположением двигателя (горизонтальное или вертикальное).
Также известны сочлененные автобусы с двигателем, расположенным в задней части и средней ведущей осью (мод. SG24OH MAN, мод. 260-SH170 Magirus-Deutz, некоторые другие), а в ряде случаев с ведущими задним и средним мостами (либо передним и средним при установке одноосной секции перед двухосным заднемоторным автобусом). При этом крутящий момент от двигателя передается многосекционным карданным валом через узел сочленения на ведущую ось передней секции. Как отмечали специалисты МГТУ МАМИ, передача крутящего момента через место сочленения в данном случае, при ведущих задних колесах передней секции (среднем мосте), значительно усложняет конструкцию автобуса. Конструкторам требовалось тщательнейшим образом проработать место прохода карданного вала через узел сочленения. Такому автобусу еще необходима более полная нагрузка средней (ведущей) оси, для чего в ряде случаев приходилось отделять коробку передач от двигателя, устанавливая ее в передней части автобуса. К тому же применение такой конструкции вело к разунификации с базовой (одиночной) моделью.
Преимущество автобусов со средней ведущей осью и «задним» двигателем – отсутствие механизма управления складыванием.
Компании EvoBus и NeoMAN в 2007 г. практически одновременно представили новейшие сочлененные автобусы. Их главной особенностью стала нестандартная для двухсекционной конструкции длина, в свою очередь обусловившая:
изготовление автобусов по схеме «одиночный» + «прицеп» в виде ходовой части 15-метрового «трехосника»;
необходимость использования во 2-й секции двух осей;
возможность использовать оба (3-й и 4-й) ведущих моста «прицепа», поскольку 4-я ось является подруливающей.
Вместе с тем худшая компоновка «кормовой» части автобусов CapaCity – 2 ступеньки 4-й двери, думаю, заставит пассажиров вспомнить о пословице: «Не все то золото, что блестит». «Изюминкой» же GXL от NeoMAN является прозрачный гофр над узлом сочленения. Чем ответит IrisBus?
Что касается заокеанских автобусостроителей, то хотя и считается, что «гармошки» появились в США в 1930-е годы, сегодня на европейском континенте их парк и популярность значительно выше.
Уже отмечалось, что среди различных компоновочных схем сочлененных автобусов наибольшее распространение, несмотря на все сложности, получила заднемоторная схема как раз из-за возможности понизить высоту пола салона. К выполненным по «толкающей» схеме «сочлененникам» перешли, но добились ли при этом низкой высоты пола салона? И как это обеспечивается в рассмотренных моделях?
В МАЗ-105 удалось обеспечить одинаковую по всей длине салона высоту пола (600 мм) при наличии одной ступеньки на каждом входе.
Автобусы с бесступенчатыми входами называются низкопольными. Обеспечить отсутствие ступенек у всех дверей в «гармошках» оказывается значительно сложнее, чем в одиночных моделях. Так, в ЛиАЗ-6213 и «Сити» ЛАЗ-20 А292 нет ступенек только у первой и второй дверей (в передней секции). Почему? В зоне последней двери высота пола увеличена, для того чтобы разместить главную передачу и двигатель, а в зоне третьей двери высота пола зависит от расположения под полом механизмов устройства противоскладывания.
«Частичная низкопольность» характерна не только для техники СНГ. В новейшей «гармошке» CapaCity от EvoBus из задней двери в салон ведут… две ступеньки. Чтобы исключить такую «лестницу», четвертую дверь сочлененных автобусов европейских изготовителей (Neoplan, Setra, Volvo) ранее нередко «зашивали».
Чтобы обеспечить бесступенчатый вход во вторую секцию либо уменьшить число ступенек до одной, некоторые автобусостроители, в частности IrisBus, отдельные элементы механизма противоскладывания размещают над гофром узла сочленения (в этом случае возвышается часть крыши).
Остается добавить, что в сочлененных троллейбусах бесступенчатый вход можно обеспечить даже при расположении тягового двигателя в передней секции, поскольку габариты его небольшие, особенно если двигатель переменного тока. Так, в изготовленной заводом «Белкоммунмаш» (Белоруссия) еще весной 1998 г. «гармошке» мод. 333 в передней секции (напротив второй двери) был установлен не только электродвигатель, но и вспомогательная дизель-генераторная установка (для передвижений без питания «от проводов»). В этой модели ступеньки отсутствовали у всех четырех дверей, а напротив третьей была устроена накопительная площадка. Известны и троллейбусы с размещением тягового электродвигателя в задней секции и применением узла противоскладывания.


ЛиАЗ-6212

ЗИС-155+Аремкуз 2ПН-4

ЛАЗ A-291

ЛиАЗ-6213

ЛАЗ-6205

Ikarus C83

ЛиАЗ-6213

ЛАЗ A-292

Сзади, во 2-й секции, с приводом на задний мост

Двигатель Renault ОМ906 Catepillar Deutz/МАN
Коробка передач (число ступеней и тип) Praga/ ZF/ Voith (5Р/ 6Р/ 3А) Voith (3А) ZF (6А)
Ведущий мост МАЗ Raba ZF
Расположение пола салона Пониженное, на высоте одной ступеньки по всей длине В передней секции – бесступенчатое
Объемы выпуска, ед.* 2003 г. – 47
2004 г. – 123
2005 г. – 115
2006 г. – 192
2007 г. – 202
2003 г. – 50
2004 г. – 269
2005 г. – 69
2006 г. – 34
2007 г. – 376
н. д.
* По данным ОАО «АСМ-Холдинг».

СОЮЗ СОВЕТСКИХСОЦИАЛИСТИЧЕСКИХРЕСПУБЛИК А 1 О 51)5 В 61 Р 15 10 ОСУДАРСТВЕНКЫЙ КОМИТЕТО ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМРИ ГКНТ СССР ОПИСАНИЕ ИЗОБРЕТЕНИЯ А ВТОРСКОМУ СВИДЕТЕЛЬСТВУ(54) УСТРОИСТВО СОЧЛЕНЕНИЯ БОКОВОЙ РАМЫ ТЕЛЕЖКИ С БУКСАМИ КОЛЕСНЫХ ПАР(57) Изобретение относится к железнодорожному транспорту и позволяет улучшить ходовые качества тележки за счет снижения силового воздействия на тележку и путь. Устройство содержит промежуточный опорный элемент 3, имеющий конечную упругость (гибкость) в вертикальном направлении, выпукло-вогнутая форма которого обеспечивает возможность маятниковых колебаний боковой рамы 1 относительно корпуса оуксы 2 в вертикальной поперечной плоскости, возможность относительного смешения (сдвига или поворота) по любой из двух опорных поверхностей и возможность увеличения подвижности тележки в горизонтальной плсскости. 3 и,.1585194 Изобретение относится к железнодорожному транспорту и касается конструкции тележки грузовых вагонов.Цель изобретения - улучшение ходовых Качеств тележки за счет снижения силового Воздействия на тележку и путь,На фиг. 1 показано устройство сочлеНения, вид спереди; на фиг, 2 - то же, вид верху; на фиг. 3 - опорный элемент.Устройство сочленения боковой рамы 1 теежки с буксами 2 колесных пар содержит 10 ромежуточный опорный элемент 3, устаовленный с зазором на плоскую круговую лощадку 4 буксы, ограниченную с двух стоон концентричными с ней боковыми ребра- и - выступами 5. Формула изобретения Устройство сочленения боковой рамы тележки с буксами колесных пар, содержащее установленный в буксовом проеме боковой рамы на горизонтальной поверхности буксы выпуклый опорный элемент, ограниченный выступами на горизонтальной поверхности буксы, отличающееся тем, что, с целью улуч щения ходовых качеств тележки за счет снижения силового воздействия на тележку и путь, опорный элемент установлен с зазором относительно выступов, выполнен в плане в виде диска, а его выпуклая поверхность образована верхним плоским горизонтальным участком и сопряженным с ним кольцевым сферическим участком, при этом указанная поверхность боковой рамы выполнена горизонтальной. Опорный элемент 3 выполнен в виде круглой пластины, верхняя опорная поверхность которой имеет сферическую форму 6, срезаную горизонтальной плоскостью 7, а нижняя порная поверхность - плоскую кольцевую.При действии в горизонтальной поперечой плоскости динамических сил, передаюихся от кузова вагона на тележку и вызывающих отклоняющий момент, происходят относительные перемещения боковой рамы и буксы. Благодаря плоскосферической форме опорного элемента 3 маятниковые колебания боковой рамы относительно корпуса буксы Начнутся только после преодоления определенного удерживающего момента (реактивного усилия), величина которого зависит от размера (диаметра) плоской части этой поверхности, т. е. происходит уменьшение жесткости восприятия тележкой боковых сил. Кроме того, обеспечивается возможность относительного перемещения как по верхней, так и по нижней опорным поверхностям опорного элемента, чем обуславливается уменьшение сил трения между боковой рамой и буксой.нияшска нт,Саста витель М Техред А. Кравчук Тираж 397 комитета по изобрет осква, Ж - 35, Рау ьский комбинат Пат

Заявка

4483715, 27.07.1988

ВСЕСОЮЗНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ВАГОНОСТРОЕНИЯ

КУЗЬМИЧ ЛЕОНИД ДМИТРИЕВИЧ, ЗАВТ БОРИС САМУИЛОВИЧ, СЫЧЕВ ВАЛЕРИЙ АЛЕКСЕЕВИЧ, КАШКИН АЛЕКСЕЙ ИЛЬИН, ДВУХГЛАВОВ ВЯЧЕСЛАВ АЛЕКСАНДРОВИЧ, ГЕЙЛЕР МОИСЕЙ ПЕТРОВИЧ, БАРБАШОВ ВАЛЕНТИН МИХАЙЛОВИЧ

МПК / Метки

Код ссылки

Устройство сочленения боковой рамы тележки с буксами колесных пар

Похожие патенты

Изображен узелсочленения буксы с боковой рамой тележ ки 10грузового вагона в сечении по горизонтальной оси колесной пары (два варианта выполнения узла) .Приведены два варианта выполнения узла сочленения с одним ограничительнымвыступом (на сечении справа от оси) илис двумя ограничительными выступами (насечении слева от оси). Узел сочленения буксы 1 с боковой рамой 2 тележки содержитнасаженные на ось колесной пары 3 подшипники 4, установленные в буксе 1, имею1 цей челюсти 5 с упорами 6, охватывающими направляющие буксового проема боковой рамы 2 тележки, причем челюсти 5снабжены вертикальными пазами 8, в которые входят вертикальные ограничительныеребра 9, выполненные на направляющих 725буксового проема с зазорами а, б, превышаюшими...

Другарычагов 5, 6 и 7, 8.Свободные концы рычагов 5, 6 и7, 8 попарно соединены между собойосями 9 и 10, на концах которых установлены элементы 11 вращения, наприммер подшипники качения, расположенные на расстоянии, превышающим ширину буксового проема боковой рамы 12,Воспринимающий нагрузку блок 13 установлен в месте соединения звеньев2 иЗ.Устройство работает следующим образомм. Рычажную передачу 1 устанавпивагот в буксовом проеме боковой рамы 12, при этом элементы 11 вращения устанавливаются на горизонтальную опорную поверхность основания 14 таким, образом, чтобы оси 9 и 10 упирались в челюстные направляющие 15 и 16, После этого на груэовоспринимающий блок 13,устанавливают жесткий П-образный элемент 17, посредством которого переменное...

Для пружин рессорного комплекта, и колонки, где требуется установка площадок и направляющих для клиньев гасителя колебаний, а также кронштейнов для крепления подвесок триангеля. Указанное можно выполнить только ручной сваркой, Также трудоемкой является зона буксового проема, где сварочные работы также в основном могут быть выполнены вручную.Цель и.:обретения - повышение технологичностиснижение трудоемкости изготовления боковой рамы.Поставленная цель достигается тем, что в известной боковой раме, содержащей жестко связанные между собой верхний и нижний с поддоном для установки пружин рессорного комплекта пояса, соединяющие 5 10 15 20 25 30 35 40 45 их колонки и наклонные пояса, сопряженные с концевыми частями для букс, нижний...

Исполнительные устройства предназначены для преобразования управляющих (командных) сигналов в регулирующие воздействия на объект управления. Практически все виды воздействий сводятся к механическому, т. е. к изменению величины перемещения, усилия к скорости возвратно-поступательного или вращательного движения. Исполнительные устройства являются последним звеном цепи автоматического регулирования и в общем случае состоят из блоков усиления, исполнительного механизма, регулирующего и дополнительных (обратной связи, сигнализации конечных положений и т. п.) органов. В зависимости от условий применения рассматриваемые устройства могут существенно различаться между собой. К основным блокам исполнительных устройств относят исполнительные механизмы и регулирующие органы.

Исполнительные механизмы классифицируют по ряду признаков: – по виду используемой энергии - электрические, пневматические, гидравлические и комбинированные; – по конструктивному исполнению - мембранные и поршневые; – по характеру обратной связи - периодического и непрерывного действия.

Электрические исполнительные механизмы являются наиболее распространенными и включают в себя электродвигатели и электромагнитный привод. В общем случае эти механизмы состоят из электродвигателя, редуктора, тормоза, соединительных муфт, контрольно-пусковой аппаратуры и специальных устройств для перемещения рабочих органов.

В исполнительных механизмах применяют электродвигатели переменного (в основном асинхронные с короткозамкнутым ротором) и постоянного тока. Наряду с электродвигателями массового изготовления используют и специальные конструкции позиционного и пропорционального действия, с контактным и бесконтактным управлением.

По характеру изменения положения выходного органа электродвигательные исполнительные механизмы могут быть постоянной и переменной скорости, а также шаговыми.

По назначению их делят на одно-оборотные (до 360°), многооборотные и прямоходные.

Рис. 10.21. Пропорциональный исполнительный механизм

Пропорциональный исполнительный механизм (рис. 10.21) по конструкции похож на двухпозиционный двигатель. Однако возможность пропорционального регулирования достигается установкой на одном валу двух электродвигателей. Первый вращает вал в одном направлении, второй - в противоположном. Кроме того, исполнительный механизм включает в себя редуктор, муфту и зубчатую рейку. Пропорциональное регулирование (например, газового вентиля в дорожных ремонтерах) обеспечивается потенциометром, используемым для создания обратной связи в схеме.

Электродвигательные исполнительные механизмы применяют в основном при усилии не более 53 кН.

Рис. 10.22. Электромагнитный управляющий элемент

Рис. 10.23. Электромашинный толкатель

Электромагнитный привод используется для управления механизмами в гидро- и пневмоприводах, а также различными вентилями и заслонками. Принцип работы этого привода (рис. 10.22) состоит в поступательном перемещении на величину L металлического якоря относительно электромагнитного вала катушки, расположенной в корпусе. Различают электромагнитные приводы одно- и двустороннего действия. В первом исполнении возврат якоря в исходное положение производится с помощью пружины, во втором - изменением направления управляющего сигнала. По типу приложения нагрузки привод бывает периодического и непрерывного действия. С его помощью осуществляется релейное (открыто - закрыто) и линейное управление.
Электромагнитные вентили (для открывания в трубопроводах клапанов) по виду используемых чувствительных элементов делят на поршневые и мембранные. При значительных усилиях и длине перемещений используют электромашинный толкатель (рис. 10.23). Принцип его действия основан на поступательном перемещении в обе стороны оси - винта относительно вращающейся, однако закрепленной, гайки. Вращение гайки, являющейся одновременно ротором, производится при включении в цепь питания трехфазной статорной обмотки. На конце винта расположен прямой участок, представляющий собой шток (толкатель), перемещающийся в направляющих и воздействующий на конечный выключатель управляемого механизма. При необходимости толкатель работает с установленным редуктором.
Пневматические и гидравлические исполнительные механизмы, использующие энергию сжатого воздуха и минеральных масел (несжимаемой жидкости), делят на самостоятельные и на работающие совместно с усилителями . Так как принцип действия этих двух видов механизмов схож между собой, рассмотрим их совместно.
К самостоятельным механизмам относят цилиндры с поршнем и штоком одно- и двустороннего действия.
Исполнительные механизмы, объединенные с усилителями, имеют различные конструктивные решения, часть из которых рассмотрим ниже.
Основным в таком приводе является регулирование скорости движения штока, выполняемое с дроссельным или объемным регулированием.
При управлении с дроссельным регулированием используют золотниковые распределители или «сопло-заслонку». Работа гидропривода с дроссельным регулированием позволяет изменять величину перекрытия отверстий (т. е. дросселировать), через которые жидкость попадает в рабочий цилиндр (рис. 10.24, а). Перемещение золотниковой пары вправо позволяет маслу из напорной линии через канал попасть в полость А рабочего цилиндра и поршень будет перемещаться вправо. При этом масло, находящееся в полости Б, будет сливаться через канал в бак. Перемещение золотника влево переместит в ту же сторону и поршень, а отработавшее масло будет сливаться из полости А в бак через канал. При расположении золотниковой пары в среднем положении (так, как показано на рисунке) оба канала, соединяющих золотниковое устройство с рабочим цилиндром, перекрыты и поршень неподвижен.

Рис. 10.24. Поршневые исполнительные механизмы с усилителями

Работа пневмопривода с помощью «сопло-заслонки» (рис. 10.24, б) производится путем изменения давления в рабочем цилиндре и перемещения поршня на величину у за счет перемещения регулируемой заслонки. Через дроссель постоянного сопротивления воздух подается в камеру под постоянным давлением Рн. В то же время давление в камере зависит от расстояния х между соплом (дросселем переменного сопротивления) и заслонкой, так как с увеличением этого расстояния давление снижается и наоборот. Воздух под давлением Р поступает из камеры в нижнюю полость цилиндра, а в верхней расположена пружина, создающая за счет силы упругой деформации противоположное давление, равное Рн. Созданная разность давлений позволяет перемещать поршень вверх или вниз. Вместо пружины в цилиндр может подаваться воздух или рабочая жидкость под давлением Рн. В соответствии с этим поршневые исполнительные механизмы называются механизмами одно-или двустороннего действия и обеспечивают усилия до 100 кН при перемещении поршня до 400 мм.
При управлении с дроссельным регулированием входным управляющим сигналом является величина перемещения золотниковой пары или открытия дросселя, а выходным - перемещение поршня в гидроцилиндре.
Гидро- и пневмопривод обеспечивают объекту управления возвратно-поступательное и вращательное движение.
При управлении с объемным регулированием управляющими устройствами являются насосы переменной производительности, выполняющие и функции усилительно-исполнительного механизма. Входным сигналом является подача насоса. Большое распространение в качестве гидравлического исполнительного механизма имеют аксиально-поршневые двигатели, обеспечивающие плавное изменение угловой скорости выходного вала и количества подаваемой жидкости.
Наряду с рассмотренными выше поршневыми устройствами пневматические исполнительные механизмы выполняют мембранными, сильфонными и лопастными.
Мембранные устройства делят на беспружинные и пружинные. Беспружинные мембранные устройства (рис. 10.25, а) состоят из рабочей полости А, в которую поступает управляющий воздух под давлением Ру, и эластичной резиновой мембраны, соединенной посредством жестких центров со штоком. Возвратно-поступательное движение штока осуществляется путем подачи в подмембранную полость Б сжатого воздуха с давлением Ро и за счет перемещения мембраны. Наиболее распространенными являются мембранно-пружинные устройства (рис. 10.25, б), в которых результирующая сила Рр уравновешивается давлением на мембрану управляющего воздуха Ру и силой упругой деформации пружины 4-Fn. При необходимости совершать поворотные движения в прямоходных исполнительных механизмах шток соединяется с шарнирно-рычажной передачей, показанной на рис. 10.25, б штриховой линией.
Мембранные исполнительные механизмы применяют для управления регулирующими органами с перемещением штока до 100 мм и допустимым давлением в рабочей полости до 400 кПа.
Сильфонные устройства (рис. 10.25, в) применяют редко. Они состоят из подпружиненного штока, перемещающегося вместе с герметичной гофрированной камерой за счет давления управляющего воздуха Ру. Их используют в регулирующих органах с перемещениями до 6 мм.

Рис. 10.25. Пневматические исполнительные механизмы

В лопастных исполнительных устройствах (рис. 10.25, г) прямоугольная лопасть перемещается внутри камеры за счет давления управляющего воздуха Ру, поступающего попеременно в одну или другую полость камеры. Эти устройства используют в исполнительных органах с углом поворота затвора на 60° или 90°.
В связи с тем, что практически ни один из приведенных приводов автоматических систем управления не применяют в настоящее время без ряда других элементов, служащих для регулирования привода, то в основном используют комбинированные исполнительные механизмы (электромагнитные золотниковые распределители пневмо- и гидропривода, электромагнитные муфты с электродвигателями и т. д.).
При выборе исполнительных устройств учитывают требования, предъявляемые к ним условиями эксплуатации. Основными из них являются: вид применяемой вспомогательной энергии, величина и характер требуемого выходного сигнала, допускаемая инерционность, зависимость рабочих характеристик от внешних влияний, надежность работы, габариты, масса и т. п.

Монтаж исполнительных и регулирующих устройств выполняется в точном соответствии с проектными материалами и инструкциями заводов-изготовителей.

Качество работы автоматической системы регулирования или дистанционного управления в значительной мере зависит от способа сочленения исполнительного механизма (ИМ) с регулирующим органом (РО) и правильности его выполнения. Способы сочленения ИМ и РО определяются в каждом конкретном случае в зависимости от типа и конструкции РО и ИМ, их взаимного расположения, требуемого характера перемещения РО и других условий. Существует довольно много способов таких сочленений.

Следует убедиться, что сальниковое (или другое) уплотнение оси мотылька или других движущихся частей не пропускает регулируемую среду, а движущиеся части имеют свободный ход. Необходимо проследить, чтобы имеющаяся на оси регулирующего органа риска была достаточно четко выбита, а ее положение соответствовало положению регулирующего органа. За этим надо следить в процессе установки регулирующего органа или до его установки.
Затем необходимо проверить, выполнены ли байпасные (обводные) линии в тех случаях, когда это предусмотрено проектом.
Монтаж исполнительных механизмов производится на заранее подготовленных фундаментах, кронштейнах или конструкциях. Следует отметить, что работы должны выполняться специализированной организацией.
Сочленение с регулирующим органом осуществляется тягами (жесткое) или тросом (в этом случае устанавливают противовес, действующий па открывание).
Крепление исполнительного механизма должно быть безусловно жестким, а все узлы сочленения исполнительного механизма с регулирующим органом не должны иметь люфтов.
Электрические исполнительные механизмы монтируются так же, как и гидравлические, но с учетом требований правил устройства электроустановок (ПУЭ). Провода к электрическим исполнительным механизмам подводятся так же, как к приборам. Электрические исполнительные механизмы обязательно должны быть заземлены.