В бесконтактной системе зажигания высокое напряжение образуется. Система зажигания. Принцип работы катушки зажигания

Главной функцией системы зажигания в бензиновом двигателе, является подача искры на свечи зажигания во время определенного такта его работы. Система зажигания дизельного двигателя устроена по-другому, оно происходит момент, когда топливо впрыскивается в такт сжатия.

Виды

В зависимости от того, как происходит процесс образования искры, выделяют несколько систем: бесконтактная (с участием транзистора), электронная (с помощью микропроцессора) и контактная.

Важно! В бесконтактной схеме, для взаимодействия с датчиком импульсов, использован транзисторный коммутатор, выполняющий функцию прерывателя. Высокое напряжение регулирует механический распределитель.

Электронная система зажигания двигателя накапливает и распределяет электрическую энергию с помощью электронного блока управления. Ранее конструктивная особенность этого варианта позволяла электронному блоку отвечать одновременно за систему зажигания и за систему впрыска топлива. Сейчас система зажигания является элементом системы управления двигателем.

В контактной системе электрическая энергия распределяется с помощью механического устройства - прерывателя-распределителя. Дальнейшим ее распространением занимается контактная транзисторная система.

Конструкция системы зажигания

Все виды системы зажигания автомобиля разные, но все же у них есть и общие элементы, из которых образуется система:


Принцип работы

Рассмотрим подробнее распределитель зажигания, чтобы определить технологию направления электрического импульса на каждый цилиндр отдельно. Сняв крышку трамблера можно увидеть вал с пластиной в центре и расположенные по кругу медные контакты. Эта пластина и есть бегунок, он обычно пластиковый или текстолитовый и в нем стоит предохранитель. Медный наконечник с одного края бегунка по очереди касается медных контактов, раздавая электрические разряды на провода к цилиндрам в необходимое время такта работы двигателя. Пока бегунок совершает свое движение от одного контакта к другому, в цилиндрах готовится новая порция горючей смеси для воспламенения.

Важно! исключить постоянную подачу тока, в трамблер устанавливается прерыватель - контактная группа. Кулачки расположены на валу эксцентрично, и при вращении замыкают и размыкают электрическую сеть.

Необходимым условием правильной работы и эффективного сгорания смеси является произошедшее строго в определенный момент самовозгорание. Процесс возгорания очень сложен с технической точки зрения, так как в цилиндрах образуется большое количество дуговых разрядов, которые зависят от оборотов двигателя. Разряды должны быть так же равны определенным значениям: от 0,2 мдж и выше (в зависимости от топливной смеси). В случае недостаточной энергии, смесь не загорится, и появятся перебои в работе двигателя, он может не запуститься или заглохнуть. Работа катализатора так же зависит от исправности системы зажигания двигателя. Если система работает с перебоями, остатки топлива будут попадать в катализатор и догорать там, что приведет к перегреву и прогоранию металла катализатора как снаружи, так и выходу из строя внутренних перегородок. Прогоревший внутри катализатор не сможет выполнять свои функции и потребуется замена.

Возможные неисправности

Установка различных систем: контактной, бесконтактной, электронной, на современные автомобили, все же подчиняется общим правилам, поэтому можно выделить следующие основные неисправности системы зажигания:

  • нерабочие свечи;
  • не работает катушка;
  • нарушено соединение цепи (прогорание провода, окисление контакта, плохое соединение).

Для бесконтактной системы зажигания двигателя характерны также и поломки коммутатора, крышки датчика распределителя, вакуума трамблера, датчика Холла.

Внимание! Электронный блок управления сам может выйти из строя. Также к неправильной работе приведут неисправные входные датчики.

Признаки

Самыми частыми причинами поломки в системе зажигания являются:

  • установка некачественных запчастей (свечей, катушек, свечных проводов, кулачков трамблера, крышек распределителя, датчиков);
  • механические повреждения узлов деталей;
  • неправильная эксплуатация (низкокачественное топливо, непрофессиональное обслуживание).

Диагностировать неисправность системы зажигания возможно и по внешним признакам. Хотя симптомы могут быть схожи с проблемами в топливной системе и системе впрыска.

Совет! Правильнее будет диагностировать эти две системы параллельно.


Определить самостоятельно, что поломка касается именно зажигания, можно по следующим внешним признакам:

  • двигатель запускается не с первых кручений стартера;
  • на холостом ходу (иногда и под нагрузкой) работа двигателя неустойчивая, как говорят мастера - мотор «троит»;
  • приемистость двигателя снижается;
  • увеличивается расход топлива.

Если нет возможности сразу обратиться в сервис, то можно попробовать самостоятельно определить причину сбоя и отремонтировать систему зажигания, так как некоторые запчасти относятся к расходным материалам и продаются в любом магазине автозапчастей. Первым делом можно выкрутить и проверить свечи. Если электроды обгорели и между ними образовался нагар, то необходимо заменить свечи. Для работы понадобится один свечной ключ и новый набор свечей, которые подбираются по необходимым параметрам зазора и размерам резьбы.

Также в темное время суток или в закрытом гараже можно открыть капот и при пробивании высоковольтных проводов увидеть слабое свечение и искрение в одном или нескольких проводах. Тогда потребуется их замена, которую несложно провести самостоятельно. Главное, выбрать нужные по длине, с чем без труда справится продавец-консультант, если вы назовете ему марку машины.

Остальные виды диагностики системы зажигания (проверка датчиков, катушки и прочих электронных приборов) лучше доверить профессионалам.

Заключение

При самостоятельной диагностике помните, что нельзя касаться элементов двигателя, когда он запущен. Не проверяйте искрообразование на включенном моторе. Если зажигание включено, не снимайте штекерный разъем коммутатора, так как это может вывести из строя конденсатор.

Для точного выявления неисправности можно воспользоваться осциллографом, с помощью которого вывести на экран осциллограмму всей системы зажигания. О том, как правильно пользоваться прибором узнаем в следующем видео:

Без чего никогда не обойдется бензиновый двигатель, так это без искры, в момент когда нужно поджечь топливную смесь в цилиндре. Для этого создана система зажигания автомобиля. Еще её называют Искровая система зажигания.

Эволюция этой системы происходила от простой контактной системы зажигания, затем с развитием технического прогресса появились бесконтактная, транзисторная. И венцом нашего времени пока является электронная система зажигания.
Все эти способы управления искрой мы рассмотрим в статьях.

А пока кратко пробежимся по основным принципам каждой системы.

Главный узел в этой системе, это прерыватель-распределитель. В этой системе происходит все механическим способом.

Контактная группа (прерыватель), пробегая по выступам кулачкового вала, прерывает контакты. В зависимости от того, какова частота вращения вала, импульсы низкого напряжения подаются на катушку-преобразователь, напряжение преобразуется в высокое и подается на свечи зажигания.

Этот ток распределяется на каждый цилиндр тоже механическим узлом – распределителем. Скомпонован этот узел в один механизм прерыватель-распределитель (трамблер)

Контактно-транзисторная система зажигания

Следующим этапом развития искрообразования явилась транзисторная схема управления высоким напряжением.

Транзистор, пропуская через себя низкое напряжение, идущее от контактной группы, управляет работой преобразователя токов (катушка) и преобразует их в ток до 30 тыс. вольт, для получения мощной искры.

Такая система позволила снизить напряжение на контактах, увеличив срок их службы. Позволила увеличить мощь искры и её стабильность, что соответственно сказалось на надежности и стабильности работы двигателя.

Бесконтактная система зажигания автомобиля

В этой системе зажигания роль прерывателя выполняет специальный коммутатор, который взаимодействуя с датчиком, генерирует импульсы управляющего низкого напряжения.

Затем эти импульсы подаются, как в контактной и контактно-транзисторной системах, на преобразователь напряжения (катушку) и далее через механический распределитель к свечам.

Такая система по сути исключила всякий механический контакт при прерывании тока. Контакты прерывателя, доставлявшие не мало хлопот автомобилистам, оказались не нужны и следовательно отпала необходимость в их обслуживании.

А надежность и стабильность работы двигателя увеличилась в разы. Повысилась мощность и экологичность бензиновых двигателей.

Но прогресс не стоит на месте, и с развитием электроники, появилась система высочайшего уровня – электронная.

Электронная система зажигания

Такая система уже работает вместе с другими системами управления двигателем.

Многочисленные датчики отслеживают все режимы работы двигателя, вплоть до состояния выхлопных газов, фиксируют и выдают информацию блоку управления двигателем.

Электронный блок управления обрабатывает сигналы и посылает управляющее наряжение на управляющий транзистор, который в свою очередь осуществляет в нужное время отсечки в первичной обмотке катушки. Во вторичной обмотке наводится высокое напряжение и образуется искра.

Датчики, следящие за частотой вращения коленчатого вала и датчики положения распредвалов передают информацию ЭБУ, которая перерабатывается и выдается команда на соответствующий угол опережения зажигания.

Так же, если на двигатель увеличивается нагрузка, датчик расхода воздуха посылает команду на ЭБУ, который расчитывает оптимальный угол опережения зажигания на соответствующую нагрузку.

Такая система совершенна во всех отношениях. Она позволяет:

  • использовать её на любых карбюраторных двигателях;
  • увеличить в полтора раза напряжение искры, мощность которой будет до 30 киловатт, на любых режимах работы двигателя;
  • исключить износ прерывателей;
  • увеличить зазор на контактах свечей до 1,2 мм.;
  • облегчить заводку в холодное время года;
  • исключает регулировочные и профилактические работы.

Единственный недостаток такой системы, это удорожание. Хотя оно того стоит!

На этом всё, надеюсь понятно что такое система зажигания автомобиля.

Будьте здоровы и следите за публикациями!

Системы зажигания сравнивают по следующим характеристикам:

Зависимости вторичного напряжения U 2 m от частоты разрядов f ;

Потребляемой мощности;

Продолжительности искрового разряда (индуктивной составляющей);

Скорости нарастания высокого напряжения, определяющей чувствительность системы зажигания к шунтированию искрового промежутка свечи;

Надежности системы зажигания;

Потребности в обслуживании;

Наличию в выхлопных газах токсичных веществ.

Наибольшее значение из приведенных выше характеристик имеет зависимость вторичного напряжения U 2 m от частоты f .

Частота разрядов пропорциональна частоте вращения n и числу цилиндров двигателях

где τ равно 2 - для 4-тактных двигателей и 1 - для 2-тактных.

На рис. 4.8 представлена зависимость вторичного напряжения, развиваемого различными системами зажигания, от частоты разрядов (искрообразования). Наибольшее снижение вторичного напряжения (рис.4.8, кривая 1) при увеличении частоты искрообразования происходит в контактной батарейной (классической) системе зажигания из–за уменьшения тока разрыва в первичной обмотке катушки зажигания. Максимальная частота разрядов контактной батарейной системы зажигания 300 искр в секунду. В этой системе зажигания при пуске двигателя также понижается вторичное напряжение.

Рис. 4.8. Зависимость вторичного напряжения различных систем зажигания от частоты разрядов: 1 - контактная батарейная (классическая); 2 - контактно–транзисторная; 3 - тиристорная (конденсаторная).

Контактно–транзисторные системы зажигания вследствие четкого разрыва увеличенного тока (до 10 А) первичной цепи развивают более высокое вторичное напряжение и повышенную бесперебойную частоту разрядов – 350 искр в секунду.

У тиристорных систем зажигания вторичное напряжение не зависит от частоты разрядов, так как накопительный конденсатор успевает зарядиться до максимального (расчетного) напряжения (частота разрядов порядка 600 искр в секунду).

Шунтирование искрового промежутка свечи, вследствие загрязнений и нагара на изоляторе приводит к снижению вторичного напряжения. Наиболее устойчивой к шунтированию искрового промежутка является тиристорная система зажигания (рис. 4.9, кривая 1) благодаря быстрому нарастанию вторичного напряжения. Больше всех теряет напряжения при шунтировании искрового промежутка контактная батарейная (классическая) система зажигания (рис. 4.9, кривая 3).

Рис. 4.9. Процентное изменение вторичного напряжения в зависимости от шунтирующего сопротивления искрового промежутка свечи в различных системах зажигания: 1 – тиристорная; 2 – контактно–транзисторная; 3 – контактная батарейная (классическая)


Мощность, потребляемая различными системами зажигания, неодинакова, причем с изменением частоты вращения коленчатого вала двигателя она не остается постоянной.

Наибольшую мощность потребляет контактно - транзисторная система зажигания (около 60 Вт) на пусковой частоте вращения, а при максимальной частоте вращения она снижается до 40 Вт. Контактная батарейная система зажигания имеет пониженную потребляемую мощность (18 - 20 Вт при пусковой и 7 - 9 Вт при максимальной частоте вращения).

Уменьшение потребляемой мощности названными системами зажигания происходит вследствие снижения тока разрыва с увеличением частоты вращения коленчатого вала двигателя.

Наиболее трудоемка в обслуживании контактная батарейная (классическая) система зажигания. Неисправности в ней возникают примерно через 10 000 км пробега.

Продолжительность искрового разряда между электродами свечи зажигания характеризует его энергию и оказывает существенное влияние на полноту сгорания рабочей смеси, а, следовательно, и на состав выхлопных газов. Допустимое время разряда считается от 0,2 до 0,6 мс. При времени разряда меньше 0,2 мс ухудшается пуск двигателя, а при длительности разряда более 0,6 мс возрастает электрическая эрозия электродов свечи зажигания. Чем больше искровой промежуток между электродами свечи зажигания, тем меньше длительность разряда.

Напряжение, подводимое к первичной обмотке катушки зажигания конденсаторных систем зажигания, должно находиться в пределах 290 - 400 В, так как вторичное высокое напряжение связано с напряжением в первичной обмотке через коэффициент трансформации катушки зажигания и при отклонении первичного напряжения ниже 290 В зажигание будет не надежным, а при отклонении выше 400 В может быть пробита изоляция обмотки катушки зажигания или крышки распределителя.

Основными условиями воспламенения смеси являются превышение высокого (вторичного) напряжения над напряжением пробоя и достаточность энергии искрового разряда, выделяемой в искровом промежутке зажигательной свечи. Искровой разряд имеет емкостную и индуктивную фазы. Длительность емкостной фазы невелика и составляет 1-3 мкс. Поэтому энергия, выделяемая в данной фазе искрового разряда, обеспечивает воспламенение лишь однородной и полностью газифицированной рабочей смеси. При пуске холодного двигателя, когда паровой части топлива в смеси недостаточно, а температура ее низка, для воспламенения рабочей смеси кроме емкостной фазы разряда требуется индуктивная. Длительность индуктивной фазы искрового разряда существенно больше, чем емкостной, что способствует улучшению прогрева смеси и ее испарению. Это обеспечивает более качественное воспламенение смеси, находящейся по своему составу у границ воспламеняемости.

У систем зажигания, предназначенных для двигателей с Э > 9, энергия искрового разряда достигает 0,05 Дж, а длительность 2,5 мс. При этом повышение вторичного напряжения над напряжением пробоя, характеризуемого коэффициентом запаса, составляет 1,4-1,5.

Величина напряжения пробоя при пуске двигателя (особенно холодного) всегда больше, чем на его рабочих режимах. Это связано с низкой температурой электрода свечи и рабочей смеси в цилиндре. Напряжение пробоя зависит от давления сжатия в момент пробоя искрового промежутка и расстояния между электродами свечи. На величину напряжения пробоя влияет форма электродов свечи (результат электрической эрозии), при изменении которой оно увеличивается на 3-4 кВ за первые 25 тыс. км пробега автомобиля.

Величина вторичного напряжения, развиваемого системой зажигания, зависит от конструктивных и эксплуатационных факторов.

При пусковых частотах вращения коленчатого вала двигателя время замкнутого состояния контактов прерывателя достаточно велико, и сила тока в первичной электроцепи достигает максимального значения. При малой частоте размыкания контактов и большой силе тока разрыва, индуктируемого в первичной обмотке катушки, возможен пробой искрового воздушного промежутка между контактами, что вызывает ухудшение параметров искрового разряда.

Вторичное напряжение уменьшается при снижении напряжения на зажимах аккумуляторной батареи, которое обусловливается низкой температурой аккумуляторной батареи и степенью ее разряженности. Для компенсации снижения напряжения в первичную электроцепь систем зажигания у отечественных автомобилей вводится дополнительный резистор, замыкаемый накоротко в момент включения стартера.

Необходимо отметить влияние неравномерности электрострартерного прокручивания коленчатого вала на снижение вторичного напряжения систем зажигания. Вторичное напряжение падает при неравномерном прокручивании коленчатого вала на 0,2-1,5 кВ по сравнению с равномерным прокручиванием. Уменьшение вторичного напряжения возможно и при увеличении шунтирующего сопротивления и зазора между электродами . Шунтирование свечей при пуске двигателя происходит в результате переобогащения смеси и попадания между электродами влаги и остатков продуктов сгорания. Наибольшее шунтирование свечей наблюдается у роторно-поршневых двигателей (в силу конструктивных особенностей расположения свечи) и у двухтактных двигателей из-за плохой организации процесса смесеобразования и плохой очистки цилиндров от остаточных газов. Увеличить энергию искрового разряда и величину вторичного напряжения у систем зажигания можно только увеличением силы тока разрыва первичной электроцепи катушки зажигания. В классических электромеханических системах такая возможность ограничивается сроком службы контактов прерывателя. Наибольшая эксплуатационная надежность контактов имеет место при силе тока 1 А.

Проблема роста вторичного напряжения и энергии искрового разряда за счет увеличения силы тока разрыва первичной цепи решается с помощью схем контактно-транзисторных и бесконтактных систем зажигания.

Обеспечивают более легкие условия работы контактов прерывателя при одновременном повышении силы тока разрыва первичной цепи.

Вторичное напряжение, развиваемое контактно-транзисторной системой зажигания двигателя ЗИЛ-508.1000400, составляет 25 кВ, что обеспечивает коэффициент запаса 1,7-1,8 (1,35 для классической системы). Сила тока в первичной цепи катушки зажигания составляет около 7 А и разрываемого контактами прерывателя — 0,7-0,9 А. Положительным качеством контактно-транзисторной системы является увеличение по сравнению с классической длительностью и энергии искрового разряда (энергия до 0,024-0,025 Дж и длительность до 2,0-2,3 мс). К недостаткам данных систем относится влияние на их характеристики напряжения в первичной цепи и л, хотя оно несколько меньше, чем у классической системы.

Лучшими системами с точки зрения пуска являются электронные бесконтактные системы с электронными или электромеханическими автоматами опережения зажигания, имеющие бесконтактное управление моментом зажигания с нормированным временем накопления энергии в магнитном поле. В таких системах время накопления энергии почти не зависит от п, что улучшает условия пуска двигателя. Энергия индуктивной фазы на пусковых режимах двигателя для отечественных электронных систем (бесконтактной и микропроцессорной) составляет от 0,03 до 0,05 Дж, а длительность разряда от 2,0 до 1,7 мс.

Широко применяются электронные системы с накоплением энергии в электростатическом поле конденсатора и коммутирующем элементе (тиристоре). Резкий рост вторичного напряжения обеспечивает малую чувствительность к шунтированию свечей зажигания. Такой характер возрастания напряжения тиристорной системы, несмотря на малую длительность индуктивной составляющей, позволяет повысить надежность воспламенения топливомасляных смесей двухтактных и роторно-поршневых двигателей, а также газовоздушных смесей газовых двигателей.

Двухтактные пусковые двигатели оборудуются системами зажигания от магнето, особенностью которых являются более низкие вторичное напряжение и энергия искрового разряда по сравнению с батарейной системой зажигания, особенно в интервале пусковых частот вращения коленчатого вала 200-300 мин-1. Для повышения коэффициента запаса по вторичному напряжению приходится повышать пусковую частоту вращения коленчатого вала, что ухудшает экономические показатели пусковой системы.

Неравномерность вращения коленчатого вала пусковых двигателей при электростартерном пуске (5 достигает 1,85-1,90) приводит к снижению вторичного напряжения на 0,3-4,5 кВ. Это необходимо учитывать при выборе параметров систем зажигания от магнето.

Улучшить пуск пусковых двигателей можно за счет применения электронных систем зажигания, минимальная частота устойчивого искрообразования которых должна составлять не более 100-150 мин

Система зажигания обеспечивает работу двигателя и является составной частью «Электрооборудования автомобиля».

Система зажигания предназначена для создания тока высокого напряжения и распределения его по свечам цилиндров. Импульс тока высокого напряжения подается на свечи в строго определенный момент времени, который меняется в зависимости от частоты вращения коленчатого вала и нагрузки на двигатель. В настоящее время на автомобилях может устанавливаться контактная система зажигания или бесконтактная электронная система.

Контактная система зажигания.

Источники электрического тока (аккумуляторная батарея и генератор) вырабатывают ток низкого напряжения. Они «выдают» в бортовую электрическую сеть автомобиля 12 - 14 вольт. Для возникновения же искры между электродами свечи на них необходимо подать 18 - 20 тысяч вольт! Поэтому в системе зажигания имеются две электрические цепи - низкого и высокого напряжений. (рис. 1)

Контактная система зажигания (рис. 2) состоит из:
. катушки зажигания,
. прерывателя тока низкого напряжения,
. распределителя тока высокого напряжения
. вакуумного и центробежного регуляторов опережения зажигания,
. свечей зажигания,
. проводов низкого и высокого напряжения,
. включателя зажигания.

Катушка зажигания предназначена для преобразования тока низкого напряжения в ток высокого напряжения. Как и большинство приборов системы зажигания, она располагается в моторном отсеке автомобиля. Принцип работы катушки зажигания очень прост. Когда по обмотке низкого напряжения протекает электрический ток, то вокруг нее создается магнитное поле. Если же прервать ток в этой обмотке, то исчезающее магнитное поле индуцирует ток уже в другой обмотке (высокого напряжения).

За счет разницы в количестве витков обмоток катушки, из 12-ти вольт мы получаем необходимые нам 20 тысяч вольт! Это как раз то напряжение, которое в состоянии пробить воздушное пространство (около миллиметра) между электродами свечи зажигания.

Прерыватель тока низкого напряжения - нужен для того,чтобы размыкать ток в цепи низкого напряжения. Именно при этом во вторичной обмотке катушки зажигания индуцируется ток высокого напряжения, который затем поступает на центральный контакт распределителя.
Контакты прерывателя находятся под крышкой распределителя зажигания. Пластинчатая пружина подвижного контакта постоянно прижимает его к неподвижному контакту. Размыкаются они лишь на короткий срок, когда набегающий кулачок приводного валика прерывателя-распределителя надавит на молоточек подвижного контакта.

Параллельно контактам включен конденсатор. Он необходим для того, чтобы контакты не обгорали в момент размыкания. Во время отрыва подвижного контакта от неподвижного, между ними хочет проскочить мощная искра, но конденсатор поглощает в себя большую часть электрического разряда и искрение уменьшается до незначительного. Конденсатор еще участвует и в увеличении напряжения во вторичной обмотке катушки зажигания. Когда контакты прерывателя полностью размыкаются, конденсатор разряжается, создавая обратный ток в цепи низкого напряжения, и тем самым, ускоряет исчезновение магнитного поля. А чем быстрее исчезает это поле, тем больший ток возникает в цепи высокого напряжения.

Прерыватель тока низкого напряжения и распределитель высокого напряжения расположены водном корпусе и имеют привод от коленчатого вала двигателя (рис. 3). Часто водители называют этот узел коротко - «прерыватель-распределитель» (или еще короче -«трамблер»).


Крышка распределителя и распределитель (ротор) тока высокого напряжения (рис. 2 и 3) предназначены для распределения тока высокого напряжения по свечам цилиндров двигателя.
После того, как в катушке зажигания образовался ток высокого напряжения, он попадает (по высоковольтному проводу) на центральный контакт крышки распределителя, а затем через подпружиненный контактный уголек на пластину ротора. Во время вращения ротора ток «соскакивает» с его пластины, через небольшой воздушный зазор, на боковые контакты крышки. Далее, через высоковольтные провода, импульс тока высокого напряжения попадает к свечам зажигания.
Боковые контакты крышки распределителя пронумерованы и соединены (высоковольтными проводами) со свечами цилиндров в строго определенной последовательности.

Таким образом устанавливается «порядок работы цилиндров», который выражается рядом цифр. Как правило, для четырехцилиндровых двигателей, применяется последовательность: 1 -3 - 4 - 2. Это означает, что после воспламенения рабочей смеси в первом цилиндре, следующее воспламенение произойдет в третьем, потом в четвертом и, наконец, во втором цилиндре. Такой порядок работы цилиндров установлен для равномерного распределения нагрузки на коленчатый вал двигателя.
Подача высокого напряжения на электроды свечи зажигания должна происходить в конце такта сжатия, когда поршень не доходит до верхней мертвой точки примерно 4О - 6О, измеряя по углу поворота коленчатого вала. Этот угол называют углом опережения зажигания.

Необходимость опережения момента зажигания горючей смеси обусловлена тем, что поршень движется в цилиндре с огромной скоростью. Если смесь поджечь несколько позже, то расширяющиеся газы не будут успевать делать свою основную работу, то есть давить на поршень в должной степени. Хотя горючая смесь и сгорает в течение 0,001 - 0,002 секунды, поджигать ее надо до подхода поршня к верхней мертвой точке. Тогда в начале и середине рабочего хода поршень будет испытывать необходимое давление газов, а двигатель будет обладать той мощностью, которая требуется для движения автомобиля.
Первоначальный угол опережения зажигания выставляется и корректируется с помощью поворота корпуса прерывателя-распределителя. Тем самым мы выбираем момент размыкания контактов прерывателя, приближая их или наоборот, удаляя от набегающего кулачка приводного валика прерывателя-распределителя.
Однако, в зависимости от режима работы двигателя, условия процесса сгорания рабочей смеси в цилиндрах постоянно меняются. Поэтому для обеспечения оптимальных условий, необходимо постоянно менять и указанный выше угол (4 о - 6 о). Это обеспечивают центробежный и вакуумный регуляторы опережения зажигания.

Центробежный регулятор опережения зажигания предназначен для изменения момента возникновения искры между электродами свечей зажигания, в зависимости от скорости вращения коленчатого вала двигателя. При увеличении оборотов коленчатого вала двигателя, поршни в цилиндрах увеличивают скорость своего возвратно-поступательного движения. В тоже время скорость сгорания рабочей смеси остается практически неизменной. Это означает, что для обеспечения нормального рабочего процесса в цилиндре, смесь необходимо поджигать чуть раньше. Для этого искра между электродами свечи должна проскочить раньше, а это возможно лишь в том случае, если контакты прерывателя разомкнутся тоже раньше. Вот это и должен обеспечить центробежный регулятор опережения зажигания (рис. 4).



Центробежный регулятор опережения зажигания находится в корпусе прерывателя-распределителя (см. рис. 3 и 4). Он состоит из двух плоских металлических грузиков, каждый из которых одним из своих концов закреплен на опорной пластине, жестко соединенной с приводным валиком. Шипы грузиков входят в прорези подвижной пластины, на которой закреплена втулка кулачков прерывателя. Пластина с втулкой имеют возможность проворачиваться на небольшой угол относительно приводного валика прерывателя-распределителя. По мере увеличения числа оборотов коленчатого вала двигателя, увеличивается и частота вращения валика прерывателя-распределителя. Грузики, подчиняясь центробежной силе, расходятся в стороны, и сдвигают втулку кулачков прерывателя «в отрыв» от приводного валика. То есть набегающий кулачок поворачивается на некоторый угол по ходу вращения навстречу молоточку контактов. Соответственно контакты размыкаются раньше, угол опережения зажигания увеличивается. При уменьшении скорости вращения приводного валика, центробежная сила уменьшаются и, под воздействием пружин, грузики возвращаются на место - угол опережения зажигания уменьшается.

Вакуумный регулятор опережения зажигания предназначен для изменения момента возникновения искры между электродами свечей зажигания, в зависимости от нагрузки на двигатель.
На одной и той же частоте вращения коленчатого вала двигателя, положение дроссельной заслонки (педали газа) может быть различным. Это означает, что в цилиндрах будет образовываться смесь различного состава. А скорость сгорания рабочей смеси как раз и зависит от ее состава.
При полностью открытой дроссельной заслонке смесь сгорает быстрее, и поджигать ее можно и нужно попозже. То есть угол опережения зажигания надо уменьшать. И наоборот, когда дроссельная заслонка прикрыта, скорость сгорания рабочей смеси падает, поэтому угол опережения зажигания должен быть увеличен.


Вакуумный регулятор (рис. 6) крепится к корпусу прерывателя - распределителя (рис. 3). Корпус регулятора разделен диафрагмой на два объема. Один из них связан с атмосферой, а другой, через соединительную трубку, с полостью под дроссельной заслонкой. С помощью тяги, диафрагма регулятора соединена с подвижной пластиной, на которой располагаются контакты прерывателя.
При увеличении угла открытия дроссельной заслонки (увеличение нагрузки на двигатель) разряжение под ней уменьшается. Тогда, под воздействием пружины, диафрагма через тягу сдвигает на небольшой угол пластину вместе с контактами в сторону от набегающего кулачка прерывателя. Контакты будут размыкаться позже - угол опережения зажигания уменьшится. И наоборот - угол увеличивается, когда вы уменьшаете газ, то есть, прикрываете дроссельную заслонку. Разряжение под ней увеличивается, передается к диафрагме и она, преодолевая сопротивление пружины, тянет на себя пластину с контактами. Это означает, что кулачок прерывателя раньше встретится с молоточком контактов и разомкнет их. Тем самым мы увеличили угол опережения зажигания для плохо горящей рабочей смеси.


Свеча зажигания (рис. 7) необходима для образования искрового разряда и зажигания рабочей смеси в камере сгорания двигателя. Надеюсь, вы помните, что свеча устанавливается в головке
цилиндра. Когда импульс тока высокого напряжения от распределителя попадает на свечу зажигания, между ее электродами проскакивает искра. Именно эта «искорка» воспламеняет рабочую смесь и обеспечивает нормальное прохождение рабочего цикла двигателя.
Высоковольтные провода служат для подачи тока высокого напряжения от катушки зажигания
к распределителю и от него на свечи зажигания.

Основные неисправности контактной системы зажигания.

Отсутствует искра между электродами свечей из-за обрыва или плохого контакта проводов в цепи низкого напряжения, обгорания контактов прерывателя или отсутствия зазора между ними,
«пробоя» конденсатора. Также искра может отсутствовать при неисправности катушки зажигания, крышки распределителя, ротора, высоковольтных проводов или самой свечи.
Для устранения этой неисправности необходимо последовательно проверить цепи низкого и высокого напряжения. Зазор в контактах прерывателя следует отрегулировать, а неработоспособные элементы системы зажигания заменить.

Двигатель работает с перебоями и (или) не развивает полной мощности из-за неисправной свечи зажигания, нарушения величины зазора в контактах прерывателя или между электродами
свечей, повреждении ротора или крышки распределителя, а также при неправильной установке начального угла опережения зажигания.
Для устранения неисправности необходимо восстановить нормальные зазоры в контактах прерывателя и между электродами свечей, выставить начальный угол опережения зажигания в
соответствии с рекомендациями завода-изготовителя, ну а неисправные детали следует поменять на новые.

Электронная бесконтактная система зажигания.

Преимущество электронной бесконтактной системы зажигания заключается в возможности увеличения подаваемого напряжения на электроды свечи. Это означает, что улучшается процесс воспламенения рабочей смеси. Тем самым облегчается запуск холодного двигателя, повышается устойчивость его работы на всех режимах. И это имеет особое значение для наших суровых зимних месяцев.
Немаловажным фактом является то, что при использовании электронной бесконтактной системы зажигания, двигатель становится более экономичным.
Как и у бесконтактной системы есть цепи низкого и высокого напряжения. Цепи высокого напряжения у них практически ни чем не отличаются. А вот в цепи низкого напряжения, бесконтактная система в отличие от своего контактного предшественника, использует электронные устройства - коммутатор и датчик-распределитель (датчик Холла) (рис. 8).



Электронная бесконтактная система зажигания включает в себя следующие узлы:
. источники электрического тока,
. катушку зажигания,
. датчик - распределитель,
. коммутатор,
. свечи зажигания,
. провода высокого и низкого напряжения,
. выключатель зажигания.
В электронной системе зажигания отсутствуют контакты прерывателя, а значит нечему
подгорать и нечего регулировать. Функцию контактов в этом случае выполняет бесконтактный
датчик Холла, который посылает управляющие импульсы в электронный коммутатор. А
коммутатор, в свою очередь, управляет катушкой зажигания, которая преобразует ток низкого
напряжения в большие вольты.

Основные неисправности электронной бесконтактной системы зажигания.

Если «заглох» и не хочет заводиться двигатель с электронной бесконтактной системой зажигания, то в первую очередь стоит проверить... подачу бензина. Может быть, к вашей радости, причина была именно в этом. Если же с бензином все в порядке, а искры на свече нет, то у вас есть два варианта решения проблемы.
Первый вариант предполагает попытку проверить на практике мнение о том, что «электроника - наука о контактах». Открываем капот и проверяем, зачищаем, подергиваем и подпихиваем на
свои места все провода и проводочки, которые попадаются под руку. Если где-то были ненадежные электрические соединения, то двигатель заведется. А если нет, то остается еще и второй вариант.
Для возможности воплощения в жизнь второго варианта, вам следует быть запасливым водителем. Из резерва необходимых вещей, которые вы возите с собой в машине, в первую очередь надо взять запасной коммутатор и заменить им прежний. Как правило, после этой процедуры двигатель оживает. Если же он все еще не хочет запускаться, то имеет смысл, последовательно меняя на новые, проверить крышку распределителя, ротор, бесконтактный датчик и катушку зажигания. В процессе этой «меняльной» процедуры двигатель все-таки заведется, а позже дома, вместе со специалистом вы сможете разобраться, какой конкретно узел вышел из строя и почему.
Из опыта эксплуатации машины в наших условиях могу сказать, что большая часть проблем, возникающих в системе зажигания, связана с «чистотой» родных дорог. Зимой жидкая «каша» из
грязного снега и солевого раствора лезет во все щели и разъедает все, что только можно. А летом вездесущая пыль, в которую в частности превращается зимняя «соленая каша», забивается еще
глубже и весьма тлетворно влияет на все электрические соединения.

Эксплуатация системы зажигания.

Так как мы уже знаем, что «электроника - наука о контактах», то в первую очередь необходимо следить за чистотой и надежностью электрических соединений. Поэтому при эксплуатации
автомобиля иногда приходится зачищать клеммы проводов и штекерные разъемы. Периодически следует контролировать зазор в контактах прерывателя (рис. 19) и при необходимости его регулировать. Если зазор в контактах прерывателя больше нормы (0,35 - 0,45 мм), то наблюдается неустойчивая работа двигателя на больших оборотах. Если меньше - неустойчивая работа на оборотах холостого хода. Все это происходит по причине того, что нарушенный зазор изменяет время замкнутого состояния контактов. А это уже влияет и на мощность искры, проскакивающей между электродами свечи, и на сам момент ее возникновения в цилиндре (опережение зажигания).
К сожалению, качество нашего бензина оставляет желать лучшего. Поэтому, если сегодня вы заправили свой автомобиль плохим бензином, то в следующий раз он может быть еще хуже.
Естественно это не может не влиять на качество приготавливаемой карбюратором горючей смеси и процесс ее сгорания в цилиндре. В таких случаях, чтобы двигатель безотказно продолжал выполнять свою работу, необходимо подстраивать систему зажигания под сегодняшний бензин.
Если первоначальный угол опережения зажигания не соответствует оптимальному, то можно наблюдать и ощущать следующие явления.

Угол опережения зажигания слишком велик (раннее зажигание):
. затрудненный запуск холодного двигателя,
. «хлопки» в карбюраторе (обычно хорошо слышны из-под капота при попытках запуска
двигателя),
. потеря мощности двигателя (машина плохо «тянет»),
. перерасход топлива,
. перегрев двигателя (индикатор температуры охлаждающей жидкости активно стремится к красному сектору),
. повышенное содержание вредных выбросов в выхлопных газах.

Угол опережения зажигания меньше нормы (позднее зажигание):
. «выстрелы» в глушителе,
. потеря мощности двигателя,
. перерасход топлива,
. перегрев двигателя.

Свеча зажигания, как было упомянуто ранее, это маленький и с виду простенький элемент системы зажигания. Однако для нормальной работы двигателя зазор между электродами свечи должен быть конкретным и равным в свечах всех цилиндров. Для контактных систем зажигания зазор между электродами свечи должен быть в пределах 0,5 - 0,6 мм, для бесконтактных систем чуть больше - 0,7 - 0,9 мм. Вспомните те «жуткие» условия, в которых работают свечи зажигания. Не всякий металл выдержит огромные температуры в агрессивной среде. Поэтому электроды свечей подгорают и покрываются нагаром, а это означает, что нам опять надо «засучить рукава». Мелкозернистым надфилем или специальной алмазной пластинкой очищаем электроды свечи от нагара. Регулируем зазор, подгибая боковой электрод свечи. Вкручиваем ее на место или выбрасываем, в зависимости от степени обгорания электродов. Каждый раз, выкручивая свечи зажигания, обращайте внимание на цвет их электродов. Если они светло-коричневые - то свеча работает нормально, если черные - то возможно свеча вообще не работает.
Последнее время в продаже появились силиконовые высоковольтные провода. При замене старых, вышедших из строя проводов, имеет смысл приобретать именно силиконовые, так как они не «пробиваются» током высокого напряжения. А ведь перебои в работе двигателя часто происходят по причине утекания импульса тока высокого напряжения по высоковольтному проводу на «массу» автомобиля. Вместо того чтобы пробивать воздушный барьер между электродами свечи и поджигать рабочую смесь, электрический ток выбирает путь наименьшего сопротивления и «уходит на сторону».
Старайтесь не открывать капот автомобиля, когда на улице идет дождь или снег. После мокрого душа двигатель может не запуститься, так как вода, попав на приборы электрооборудования,
образует токопроводящие мостики. Тот же эффект, но более усугубленный, возникает у любителей прокатиться по глубоким лужам на большой скорости. В результате «купания», водой заливаются все приборы и провода системы зажигания, расположенные под капотом, и двигатель естественно глохнет, поскольку ток высокого напряжения уже не может добраться к свечам зажигания. Ну а возобновить поездку, теперь удается только после того, как горячий двигатель своим теплом просушит все «электрическое» в подкапотном пространстве.