มอเตอร์ไร้แปรงความเร็ว การสร้างและทดสอบมอเตอร์ไร้แปรงถ่าน เมื่อคุณต้องการมอเตอร์ไร้แปรงถ่าน

เมื่อเร็ว ๆ นี้มอเตอร์ไร้แปรงได้กลายเป็นที่นิยมมากขึ้นเรื่อย ๆ กระแสตรง. มีการใช้อย่างแข็งขันในเครื่องมือวัด การแพทย์ทางอุตสาหกรรมและระบบอัตโนมัติในครัวเรือนตลอดจนในเครื่องมือวัด ประเภทนี้มอเตอร์ทำงานโดยไม่ต้องใช้แปรง การสลับทั้งหมดดำเนินการโดยใช้อุปกรณ์อิเล็กทรอนิกส์

ประโยชน์ของมอเตอร์ไร้แปรงถ่าน

มอเตอร์ไร้แปรงถ่านมีข้อดีหลายประการซึ่งกำหนดขอบเขตของการใช้งาน พวกเขามีผลงานที่ดีที่สุด แรงบิดของพวกเขาสูงกว่า .มาก เครื่องยนต์ธรรมดา. การออกแบบแบบไร้แปรงถ่านมีคุณลักษณะที่สูงกว่า ลักษณะไดนามิกและค่าสัมประสิทธิ์ การกระทำที่เป็นประโยชน์.

ประโยชน์อื่นๆ ได้แก่ การทำงานที่เงียบขึ้น อายุการใช้งานที่ยาวนานขึ้น และความเร็วในการหมุนที่สูงขึ้น ขนาดมอเตอร์ต่ออัตราส่วนแรงบิดสูงกว่าชนิดอื่นๆ นี่เป็นสิ่งสำคัญอย่างยิ่งในพื้นที่ที่ขนาดและน้ำหนักเป็นปัจจัยสำคัญ

หลักการทำงานของมอเตอร์ไร้แปรงถ่าน

หลักการทำงานขึ้นอยู่กับสนามแม่เหล็กที่เกิดจากสเตเตอร์และโรเตอร์ซึ่งมีความเร็วในการหมุนเท่ากัน ไม่มีสิ่งที่เรียกว่าลักษณะการเลื่อนของ มอเตอร์เหนี่ยวนำ. การกำหนดค่าของมอเตอร์แบบไม่มีแปรงเป็นแบบเฟสเดียว สองเฟส หรือสามเฟส จำนวนขดลวดในสเตเตอร์ขึ้นอยู่กับสิ่งนี้ แพร่หลายที่สุดในทุกพื้นที่ได้รับมอเตอร์สามเฟส

อุปกรณ์มอเตอร์ไร้แปรงถ่าน

ตัวอย่างเช่น พิจารณามอเตอร์ไร้แปรงถ่านสามเฟสที่ได้รับความนิยมมากที่สุด มีสเตเตอร์ทำจากเหล็กเคลือบในร่องที่วางขดลวด มอเตอร์ประเภทนี้ส่วนใหญ่มีสามขดลวดเชื่อมต่อกันเป็นดาว

โรเตอร์เป็นแม่เหล็กถาวรที่มีขั้ว 2 ถึง 8 คู่ ในเวลาเดียวกัน ขั้วใต้และขั้วเหนือสลับกัน โรเตอร์ทำจากวัสดุแม่เหล็กพิเศษที่ให้ความหนาแน่นของสนามแม่เหล็กที่ต้องการ ตามกฎแล้วสิ่งเหล่านี้คือแม่เหล็กเฟอร์ไรต์ซึ่ง แม่เหล็กถาวร.

ต่างจากมอเตอร์ไฟฟ้าทั่วไป มอเตอร์กระแสตรงไร้แปรงถ่านจะถูกสับเปลี่ยนทางอิเล็กทรอนิกส์ นี่เป็นเพราะความจำเป็นในการจ่ายแรงดันไฟให้กับขดลวดสเตเตอร์อย่างสม่ำเสมอ ในขณะเดียวกัน ก็จำเป็นต้องรู้ว่าโรเตอร์อยู่ในตำแหน่งใด ตำแหน่งนี้กำหนดโดยเซ็นเซอร์ Hall ซึ่งให้สัญญาณสูงหรือต่ำ ขึ้นอยู่กับว่าขั้วใดเคลื่อนผ่านใกล้องค์ประกอบที่มีความไวสูง

เครื่องกำเนิดไฟฟ้ากระแสตรงไร้แปรงถ่าน

หลักการทำงานซึ่งขึ้นอยู่กับการควบคุมความถี่และการซิงโครไนซ์ตัวเองเรียกว่ามอเตอร์แบบไม่มีแปรง ในการออกแบบนี้ เวกเตอร์สนามแม่เหล็กของสเตเตอร์จะถูกควบคุมโดยสัมพันธ์กับตำแหน่งของโรเตอร์ มอเตอร์ไร้แปรงถ่านได้รับการออกแบบมาเพื่อปรับปรุงประสิทธิภาพของมอเตอร์ DC แบบมีแปรงถ่านมาตรฐาน

เขาผสมผสานกันมากที่สุด คุณสมบัติที่ดีที่สุดมอเตอร์กระแสตรงและมอเตอร์ไฟฟ้าแบบไม่สัมผัส

ความแตกต่างหลักจากเครื่องยนต์ทั่วไป

มอเตอร์ไร้แปรงถ่านมักใช้ใน รุ่นบังคับวิทยุอากาศยาน. ประสิทธิภาพที่โดดเด่นและความทนทานของพวกเขาได้รับความนิยมอย่างกว้างขวางเนื่องจากไม่มีชิ้นส่วนที่ถูในรูปแบบของแปรงที่ส่งกระแสไฟ

เพื่อให้จินตนาการถึงความแตกต่างได้อย่างเต็มที่ยิ่งขึ้น คุณต้องจำไว้ว่าในมอเตอร์สะสมมาตรฐาน โรเตอร์จะหมุนด้วยขดลวดภายในสเตเตอร์ ซึ่งยึดตามแม่เหล็กถาวร ขดลวดจะเปลี่ยนโดยใช้ตัวสะสม ขึ้นอยู่กับตำแหน่งของโรเตอร์ ในมอเตอร์ไฟฟ้ากระแสสลับ โรเตอร์ที่มีแม่เหล็กจะหมุนภายในสเตเตอร์ที่มีขดลวด ประมาณการออกแบบเดียวกันมีเครื่องยนต์

สเตเตอร์ทำหน้าที่เป็นชิ้นส่วนเคลื่อนที่ซึ่งต่างจากมอเตอร์มาตรฐานในมอเตอร์แบบไร้แปรงถ่าน โดยวางแม่เหล็กถาวรไว้ และโรเตอร์ที่มีขดลวดสามเฟสจะทำหน้าที่เป็นชิ้นส่วนคงที่

มอเตอร์ไร้แปรงถ่านทำงานอย่างไร

การหมุนของมอเตอร์ทำได้โดยการเปลี่ยนทิศทางของสนามแม่เหล็กในขดลวดของโรเตอร์ในลำดับที่แน่นอน ในกรณีนี้ แม่เหล็กถาวรจะโต้ตอบกับสนามแม่เหล็กของโรเตอร์และทำให้สเตเตอร์เคลื่อนที่เคลื่อนที่ การเคลื่อนไหวนี้ขึ้นอยู่กับคุณสมบัติหลักของแม่เหล็ก เมื่อเหมือนขั้วผลักและ ไม่เหมือนกัน - ถูกดึงดูด

สนามแม่เหล็กในขดลวดของโรเตอร์และการเปลี่ยนแปลงจะถูกควบคุมโดยตัวควบคุม เป็นอุปกรณ์ที่ค่อนข้างซับซ้อนที่สามารถสลับกระแสสูงด้วยความเร็วสูงได้ ตัวควบคุมจำเป็นต้องมีมอเตอร์ไฟฟ้าแบบไม่มีแปรงในวงจร ซึ่งทำให้ต้นทุนในการใช้งานเพิ่มขึ้นอย่างมาก

มอเตอร์ไร้แปรงถ่านไม่มีหน้าสัมผัสหมุนและหน้าสัมผัสใด ๆ ที่สามารถสลับได้ นี่คือข้อได้เปรียบหลักของพวกเขามากกว่า มอเตอร์ไฟฟ้าทั่วไปเนื่องจากการสูญเสียแรงเสียดทานทั้งหมดจะลดลง

หลักการทำงานของมอเตอร์กระแสตรงไร้แปรงถ่าน (BKDP) เป็นที่ทราบกันมานานแล้ว และมอเตอร์ไร้แปรงถ่านก็เป็นทางเลือกที่น่าสนใจสำหรับโซลูชันแบบเดิมๆ มาโดยตลอด อย่างไรก็ตามเรื่องนี้เช่น รถยนต์ไฟฟ้าเฉพาะในศตวรรษที่ 21 เท่านั้นที่พวกเขาพบว่ามีการใช้เทคโนโลยีอย่างกว้างขวาง ปัจจัยชี้ขาดในการแนะนำอย่างแพร่หลายคือการลดต้นทุนของอุปกรณ์อิเล็กทรอนิกส์ควบคุมไดรฟ์ BDKP ได้หลายเท่า

ปัญหามอเตอร์สะสม

ในระดับพื้นฐาน งานของมอเตอร์ไฟฟ้าใด ๆ คือการแปลง พลังงานไฟฟ้าเป็นเครื่องกล มีสองปรากฏการณ์ทางกายภาพหลักที่อยู่เบื้องหลังการออกแบบเครื่องจักรไฟฟ้า:

เครื่องยนต์ได้รับการออกแบบในลักษณะที่สนามแม่เหล็กที่สร้างขึ้นบนแม่เหล็กแต่ละอันมีปฏิสัมพันธ์ซึ่งกันและกันเสมอ ทำให้โรเตอร์หมุนได้ มอเตอร์กระแสตรงแบบดั้งเดิมประกอบด้วยสี่ส่วนหลัก:

  • สเตเตอร์ (องค์ประกอบคงที่พร้อมวงแหวนแม่เหล็ก);
  • สมอ (องค์ประกอบหมุนด้วยขดลวด);
  • แปรงถ่าน
  • นักสะสม

การออกแบบนี้ให้การหมุนของกระดองและตัวสับเปลี่ยนบนเพลาเดียวกันที่สัมพันธ์กับแปรงแบบตายตัว กระแสไหลจากแหล่งกำเนิดผ่านสปริงโหลด การติดต่อที่ดีแปรงไปยังเครื่องสับเปลี่ยนที่จ่ายกระแสไฟฟ้าระหว่างขดลวดกระดอง สนามแม่เหล็กที่เกิดขึ้นในช่วงหลังมีปฏิสัมพันธ์กับแม่เหล็กสเตเตอร์ซึ่งทำให้สเตเตอร์หมุน

ข้อเสียเปรียบหลักของมอเตอร์แบบดั้งเดิมคือการสัมผัสทางกลบนแปรงไม่สามารถทำได้โดยไม่มีแรงเสียดทาน เมื่อความเร็วเพิ่มขึ้น ปัญหาก็จะยิ่งเด่นชัดขึ้น ชุดสะสมจะเสื่อมสภาพตามกาลเวลา นอกจากนี้ ยังมีแนวโน้มที่จะเกิดประกายไฟ และสามารถทำให้เกิดไอออนในอากาศโดยรอบได้ ดังนั้นแม้จะมีความเรียบง่ายและต้นทุนการผลิตต่ำ มอเตอร์ไฟฟ้าดังกล่าวมีข้อเสียที่ผ่านไม่ได้:

  • การสึกหรอของแปรง;
  • การรบกวนทางไฟฟ้าอันเป็นผลมาจากประกายไฟ
  • ข้อจำกัดใน ความเร็วสูงสุด;
  • ความยากลำบากในการระบายความร้อนด้วยแม่เหล็กไฟฟ้าที่หมุนได้

การปรากฏตัวของเทคโนโลยีโปรเซสเซอร์และทรานซิสเตอร์กำลังทำให้นักออกแบบละทิ้งยูนิตสวิตช์ทางกลและเปลี่ยนบทบาทของโรเตอร์และสเตเตอร์ในมอเตอร์ไฟฟ้ากระแสตรง

หลักการทำงานของ BDKP

ที่ มอเตอร์ไร้แปรงถ่านซึ่งแตกต่างจากรุ่นก่อน บทบาทของสวิตช์เชิงกลดำเนินการโดยตัวแปลงอิเล็กทรอนิกส์ ทำให้สามารถใช้วงจร "ภายใน - ออก" ของ BDKP ได้ - ขดลวดจะอยู่ที่สเตเตอร์ซึ่งไม่จำเป็นต้องใช้ตัวสะสม

กล่าวอีกนัยหนึ่งหลัก ความแตกต่างพื้นฐานระหว่าง เครื่องยนต์คลาสสิคและ BDCT ในนั้นแทนที่จะเป็นแม่เหล็กอยู่กับที่และขดลวดหมุน อย่างหลังประกอบด้วยขดลวดอยู่กับที่และแม่เหล็กหมุน แม้ว่าการสลับตัวเองจะเกิดขึ้นในลักษณะเดียวกัน แต่การใช้งานจริงในไดรฟ์แบบไม่มีแปรงนั้นซับซ้อนกว่ามาก

ปัญหาหลักคือการควบคุมมอเตอร์แบบไม่มีแปรงที่แม่นยำซึ่งเกี่ยวข้องกับ ลำดับที่ถูกต้องและความถี่การสลับของขดลวดแต่ละส่วน ปัญหานี้สามารถแก้ไขได้อย่างสร้างสรรค์ก็ต่อเมื่อสามารถกำหนดตำแหน่งปัจจุบันของโรเตอร์ได้อย่างต่อเนื่อง

ข้อมูลที่จำเป็นสำหรับการประมวลผลทางอิเล็กทรอนิกส์ได้มาจากสองวิธี:

  • การตรวจจับตำแหน่งที่แน่นอนของเพลา
  • การวัดแรงดันไฟฟ้าที่เกิดขึ้นในขดลวดสเตเตอร์

ในการดำเนินการควบคุมในวิธีแรก มักใช้คู่ออปติคัลคู่หรือเซ็นเซอร์ Hall ที่ยึดกับสเตเตอร์ซึ่งตอบสนองต่อฟลักซ์แม่เหล็กของโรเตอร์ ข้อได้เปรียบหลัก ระบบที่คล้ายกันการรวบรวมข้อมูลเกี่ยวกับตำแหน่งของเพลาคือประสิทธิภาพแม้ในเวลาที่มาก ความเร็วต่ำและพักผ่อน

การควบคุมแบบไร้เซ็นเซอร์ในการประเมินแรงดันไฟฟ้าในคอยส์นั้นต้องมีการหมุนโรเตอร์อย่างน้อยที่สุด ดังนั้นในการออกแบบดังกล่าวจึงมีโหมดการสตาร์ทเครื่องยนต์ด้วยความเร็วซึ่งสามารถประมาณแรงดันไฟฟ้าบนขดลวดได้และสถานะที่เหลือจะถูกทดสอบโดยการวิเคราะห์ผลกระทบของสนามแม่เหล็กต่อพัลส์ทดสอบปัจจุบันที่ผ่าน ขดลวด

แม้จะมีปัญหาในการออกแบบเหล่านี้ แต่มอเตอร์ไร้แปรงก็ได้รับความนิยมมากขึ้นเรื่อย ๆ เนื่องจากประสิทธิภาพและชุดคุณลักษณะที่ไม่สามารถเข้าถึงได้สำหรับนักสะสม รายการสั้น ๆ ของข้อดีหลักของ BDKP เหนือคลาสสิกมีลักษณะดังนี้:

  • ไม่มีการสูญเสียพลังงานกลเนื่องจากการเสียดสีของแปรง
  • การทำงานที่ไม่มีเสียงเปรียบเทียบ
  • ความเร่งและความเร่งของการหมุนที่ง่ายเนื่องจากความเฉื่อยต่ำของโรเตอร์
  • ความแม่นยำในการควบคุมการหมุน
  • ความเป็นไปได้ของการจัดระบบระบายความร้อนเนื่องจากการนำความร้อน
  • ความสามารถในการทำงาน ความเร็วสูง;
  • ความทนทานและความน่าเชื่อถือ

แอปพลิเคชั่นและโอกาสที่ทันสมัย

มีอุปกรณ์มากมายที่เวลาทำงานที่เพิ่มขึ้นเป็นสิ่งสำคัญ ในอุปกรณ์ดังกล่าว การใช้ BDCT นั้นสมเหตุสมผลเสมอ แม้ว่าจะมีค่อนข้างมากก็ตาม ค่าใช้จ่ายสูง. อาจเป็นน้ำและ ปั๊มเชื้อเพลิง, คูลลิ่งเทอร์ไบน์สำหรับเครื่องปรับอากาศและเครื่องยนต์ เป็นต้น มอเตอร์ไร้แปรงถ่านใช้กับไฟฟ้าได้หลายรุ่น ยานพาหนะ. ปัจจุบัน มอเตอร์ไร้แปรงถ่านได้รับความสนใจอย่างมากจากอุตสาหกรรมยานยนต์

BDCT เหมาะอย่างยิ่งสำหรับไดรฟ์ขนาดเล็กที่ทำงานใน เงื่อนไขที่ยากลำบากหรือด้วยความแม่นยำสูง: เครื่องป้อนและสายพานลำเลียง, หุ่นยนต์อุตสาหกรรม, ระบบกำหนดตำแหน่ง มีบางพื้นที่ที่มอเตอร์ไร้แปรงถ่านมีอิทธิพลเหนือคู่แข่ง: ฮาร์ดไดรฟ์, ปั๊ม, พัดลมเงียบ, เครื่องใช้ไฟฟ้าขนาดเล็ก, ไดรฟ์ CD / DVD น้ำหนักเบาและกำลังสูงทำให้ BDCT เป็นพื้นฐานสำหรับการผลิตเครื่องมือช่างไร้สายที่ทันสมัย

อาจกล่าวได้ว่าขณะนี้มีความก้าวหน้าอย่างมากในด้านไดรฟ์ไฟฟ้า ราคาที่ลดลงอย่างต่อเนื่องของอุปกรณ์อิเล็กทรอนิกส์ดิจิทัลได้สร้างแนวโน้มต่อการใช้มอเตอร์แบบไม่มีแปรงอย่างแพร่หลายเพื่อทดแทนมอเตอร์แบบเดิม

มอเตอร์ไร้แปรงถ่านมีกำลังที่ดีขึ้นต่อน้ำหนักหนึ่งกิโลกรัม (ของตัวเอง) และความเร็วในการหมุนที่หลากหลาย ประสิทธิภาพของโรงไฟฟ้าแห่งนี้ก็น่าประทับใจเช่นกัน เป็นสิ่งสำคัญที่สัญญาณรบกวนวิทยุจะไม่ถูกปล่อยออกมาจากการติดตั้ง วิธีนี้ทำให้คุณสามารถวางอุปกรณ์ที่ไวต่อสัญญาณรบกวนข้างๆ ได้ โดยไม่ต้องกลัวว่าระบบทั้งหมดจะทำงานได้อย่างถูกต้อง

จัดเรียงและใช้งาน มอเตอร์ไร้แปรงถ่านสามารถอยู่ในน้ำได้จะไม่ส่งผลกระทบในทางลบ นอกจากนี้ การออกแบบยังให้ตำแหน่งในสภาพแวดล้อมที่ก้าวร้าว อย่างไรก็ตาม ในกรณีนี้ควรพิจารณาตำแหน่งของชุดควบคุมล่วงหน้า โปรดจำไว้ว่าด้วยการทำงานอย่างระมัดระวังของโรงไฟฟ้าเท่านั้น เครื่องจักรจะทำงานอย่างมีประสิทธิภาพและราบรื่นในการผลิตของคุณเป็นเวลาหลายปี

โหมดการทำงานระยะยาวและระยะสั้นเป็นโหมดหลักสำหรับฐานข้อมูล ตัวอย่างเช่น สำหรับบันไดเลื่อนหรือสายพานลำเลียง รอบการทำงานที่ยาวนานนั้นเหมาะสม ซึ่งมอเตอร์จะทำงานแบบคงที่เป็นเวลานานหลายชั่วโมง สำหรับการใช้งานระยะยาว มีการถ่ายเทความร้อนภายนอกเพิ่มขึ้น: การปล่อยความร้อนสู่สิ่งแวดล้อมจะต้องมากกว่าการปล่อยความร้อนภายในของโรงไฟฟ้า

ในโหมดการทำงานระยะสั้น เครื่องยนต์ไม่ควรมีเวลาให้ความร้อนจนถึงอุณหภูมิสูงสุดระหว่างการทำงาน กล่าวคือ ต้องปิดก่อนเวลานี้ ในช่วงพักระหว่างการเปิดเครื่องและการทำงานของเครื่องยนต์ จะต้องมีเวลาทำให้เย็นลง นี่คือการทำงานของมอเตอร์ไร้แปรงถ่านในกลไกการยก เครื่องโกนหนวดไฟฟ้า ไดร์เป่า ไดร์เป่าผม และอุปกรณ์ไฟฟ้าสมัยใหม่อื่นๆ

ความต้านทานของขดลวดมอเตอร์สัมพันธ์กับประสิทธิภาพของโรงไฟฟ้า ประสิทธิภาพสูงสุดสามารถทำได้ด้วยความต้านทานขดลวดต่ำสุด

ขีดสุด แรงดันใช้งาน- นี่คือแรงดันไฟฟ้าจำกัดที่สามารถนำไปใช้กับขดลวดสเตเตอร์ของโรงไฟฟ้าได้ แรงดันใช้งานสูงสุดเกี่ยวข้องโดยตรงกับ ความเร็วสูงสุดมอเตอร์และค่าสูงสุดของกระแสไฟที่คดเคี้ยว ค่าสูงสุดของกระแสที่คดเคี้ยวถูกจำกัดโดยความเป็นไปได้ของการเกิดความร้อนสูงเกินไปของขดลวด ด้วยเหตุผลนี้เองที่เงื่อนไขทางเลือกแต่แนะนำสำหรับการทำงานของมอเตอร์ไฟฟ้าคืออุณหภูมิติดลบ สิ่งแวดล้อม. ช่วยให้คุณชดเชยความร้อนสูงเกินไปของโรงไฟฟ้าได้อย่างมากและเพิ่มระยะเวลาในการทำงาน

กำลังเครื่องยนต์สูงสุดคือกำลังสูงสุดที่ระบบสามารถทำได้ภายในไม่กี่วินาที เป็นมูลค่าการพิจารณาว่า งานยาวเปิดมอเตอร์ไฟฟ้า พลังสูงสุดจะนำไปสู่ความร้อนสูงเกินไปของระบบและความล้มเหลวในการทำงานอย่างหลีกเลี่ยงไม่ได้

พิกัดกำลังคือพลังที่สามารถพัฒนาได้ จุดไฟในช่วงเวลาที่ได้รับอนุญาตตามระยะเวลาของการดำเนินการที่ประกาศโดยผู้ผลิต (หนึ่งรายการ)

มุมเลื่อนเฟสมีให้ในมอเตอร์เนื่องจากจำเป็นต้องชดเชยความล่าช้าในการเปลี่ยนเฟส

ประวัติเล็กน้อย:

ปัญหาหลักของเครื่องยนต์ทั้งหมดคือความร้อนสูงเกินไป โรเตอร์หมุนภายในสเตเตอร์บางประเภท ดังนั้นความร้อนจากความร้อนสูงเกินไปจึงไม่ไปไหน ผู้คนต่างมีความคิดที่ยอดเยี่ยม: ไม่ใช่การหมุนของโรเตอร์ แต่เป็นสเตเตอร์ซึ่งจะถูกระบายความร้อนด้วยอากาศในระหว่างการหมุน เมื่อเครื่องยนต์ดังกล่าวถูกสร้างขึ้น มันถูกใช้อย่างแพร่หลายในการบินและการต่อเรือ ดังนั้นจึงมีชื่อเล่นว่ามอเตอร์ไร้แปรงถ่าน

ในไม่ช้า อะนาล็อกไฟฟ้าก็ถูกสร้างขึ้น มอเตอร์ไร้แปรงถ่าน. พวกเขาเรียกมันว่ามอเตอร์ไร้แปรงเพราะมันไม่มีตัวสะสม (แปรง)

มอเตอร์ไร้แปรงถ่าน

มอเตอร์ไฟฟ้าไร้แปรงถ่าน (ภาษาอังกฤษแบบไม่มีแปรง) มาถึงเราเมื่อไม่นานนี้เอง อายุ 10-15 ปี. ไม่เหมือน มอเตอร์สะสมขับเคลื่อนด้วยสามเฟส กระแสสลับ. มอเตอร์ไร้แปรงถ่านทำงานอย่างมีประสิทธิภาพในช่วง RPM ที่กว้างขึ้นและมีมากกว่า ประสิทธิภาพสูง . ในขณะเดียวกัน การออกแบบของเครื่องยนต์ค่อนข้างเรียบง่าย ไม่มีชุดแปรงที่ขัดกับโรเตอร์อย่างต่อเนื่องและทำให้เกิดประกายไฟ เราสามารถพูดได้ว่ามอเตอร์ไร้แปรงถ่านแทบไม่สึกหรอ ค่าใช้จ่ายของมอเตอร์แบบไม่มีแปรงจะสูงกว่ามอเตอร์แบบมีแปรงเล็กน้อย เนื่องจากมอเตอร์แบบไม่มีแปรงถ่านทั้งหมดมีตลับลูกปืนและโดยทั่วไปแล้วจะมีคุณภาพสูงกว่า



การทดสอบได้แสดงให้เห็น:
คันพร้อมสกรู 8x6 = 754 กรัม,
รอบต่อนาที = 11550 รอบต่อนาที,
การใช้พลังงาน = 9 วัตต์(ไม่มีสกรู) , 101 วัตต์(พร้อมสกรู)

พลังและประสิทธิภาพ

สามารถคำนวณกำลังได้ดังนี้
1) กำลังในกลศาสตร์คำนวณโดยสูตรต่อไปนี้: N=F*vโดยที่ F คือแรงและ v คือความเร็ว แต่เนื่องจากสกรูอยู่ในสถานะคงที่ จึงไม่มีการเคลื่อนไหวใดๆ ยกเว้นการหมุน หากติดตั้งมอเตอร์นี้ในโมเดลเครื่องบิน จะสามารถวัดความเร็วได้ (เท่ากับ 12 m / s) และคำนวณกำลังที่มีประโยชน์:
N มีประโยชน์ \u003d 7.54 * 12 \u003d 90.48 วัตต์
2) ประสิทธิภาพ มอเตอร์ไฟฟ้าหาได้ตามสูตรดังนี้ ประสิทธิภาพ = N มีประโยชน์ / N ที่ใช้ไป * 100%, ที่ไหน ค่าใช้จ่าย N = 101 วัตต์
ประสิทธิภาพ= 90.48/101 *100%= 90%
โดยเฉลี่ยแล้ว ประสิทธิภาพของมอเตอร์ไร้แปรงถ่านมีจริงและผันผวนประมาณ 90% (ประสิทธิภาพสูงสุดที่มอเตอร์ประเภทนี้ทำได้คือ 99.68% )

ข้อมูลจำเพาะของเครื่องยนต์:

แรงดันไฟฟ้า: 11.1 โวลต์
มูลค่าการซื้อขาย: 11550 รอบต่อนาที
กระแสไฟสูงสุด: 15A
พลัง: 200 วัตต์
แรงขับ: 754 กรัม (สกรู 8x6)

บทสรุป:

ราคาของทุกสิ่งขึ้นอยู่กับขนาดของการผลิต ผู้ผลิตมอเตอร์ไร้แปรงถ่านกำลังทวีคูณเหมือนเห็ดหลังฝนตก ดังนั้นฉันอยากจะเชื่อว่าในอนาคตอันใกล้ราคาของคอนโทรลเลอร์และมอเตอร์แบบไม่มีแปรงจะลดลงเมื่อตกลงมาบนอุปกรณ์ควบคุมวิทยุ ... ความเป็นไปได้ของไมโครอิเล็กทรอนิกส์กำลังขยายตัวทุกวันขนาดและน้ำหนักของตัวควบคุมค่อยๆลดลง . สามารถสันนิษฐานได้ว่าในอนาคตอันใกล้นี้ตัวควบคุมจะถูกสร้างขึ้นโดยตรงในเครื่องยนต์! บางทีเราอาจจะมีชีวิตอยู่เพื่อดูวันนี้...