มอเตอร์กระแสตรงไร้แปรงถ่าน มอเตอร์กระแสตรงไร้แปรงถ่าน หลักการทำงานของมอเตอร์ไร้แปรงถ่าน

เครื่องยนต์ กระแสตรงเรียกว่า เครื่องยนต์ไฟฟ้าซึ่งขับเคลื่อนโดยกระแสตรง หากจำเป็น ให้ใช้มอเตอร์แรงบิดสูงที่มีความเร็วค่อนข้างต่ำ โครงสร้าง Inrunners นั้นง่ายกว่าเนื่องจากสเตเตอร์คงที่สามารถใช้เป็นที่อยู่อาศัยได้ สามารถติดตั้งอุปกรณ์ติดตั้งได้ ในกรณีของ Outrunners ส่วนนอกทั้งหมดจะหมุน เครื่องยนต์ถูกยึดด้วยเพลาคงที่หรือชิ้นส่วนสเตเตอร์ ในกรณีของมอเตอร์ล้อ การยึดจะดำเนินการกับแกนคงที่ของสเตเตอร์ ลวดจะถูกนำไปยังสเตเตอร์ผ่านแกนกลวงที่มีขนาดน้อยกว่า 0.5 มม.

มอเตอร์ไฟฟ้ากระแสสลับเรียกว่า มอเตอร์ไฟฟ้าที่ขับเคลื่อนด้วยกระแสสลับ. มอเตอร์ไฟฟ้ากระแสสลับมีประเภทต่อไปนี้:

นอกจากนี้ยังมี UKD (มอเตอร์สับเปลี่ยนอเนกประสงค์) ที่มีฟังก์ชั่นโหมดการทำงานทั้งแบบกระแสสลับและกระแสตรง

เครื่องยนต์อีกประเภทหนึ่งคือ สเต็ปเปอร์มอเตอร์ที่มีตำแหน่งโรเตอร์จำกัด. ตำแหน่งที่ระบุของโรเตอร์ได้รับการแก้ไขโดยการจ่ายพลังงานให้กับขดลวดที่จำเป็น เมื่อแรงดันไฟฟ้าของแหล่งจ่ายถูกถอดออกจากขดลวดอันหนึ่งและโอนไปยังขดลวดอื่น จะเกิดกระบวนการเปลี่ยนผ่านไปยังตำแหน่งอื่น

มอเตอร์ไฟฟ้ากระแสสลับที่ขับเคลื่อนโดยเครือข่ายเชิงพาณิชย์มักจะไม่บรรลุผล ความเร็วมากกว่าสามพันรอบต่อนาที. ด้วยเหตุนี้ เมื่อจำเป็นต้องได้รับความถี่ที่สูงกว่า จึงใช้มอเตอร์ตัวรวบรวม ซึ่งข้อดีเพิ่มเติมคือความเบาและความกะทัดรัดในขณะที่ยังคงรักษากำลังที่ต้องการ

บางครั้งก็ใช้กลไกการส่งผ่านพิเศษที่เรียกว่าตัวคูณซึ่งจะเปลี่ยนพารามิเตอร์จลนศาสตร์ของอุปกรณ์ให้เป็นที่ต้องการ ตัวชี้วัดทางเทคนิค. การประกอบของตัวสะสมบางครั้งใช้พื้นที่ถึงครึ่งหนึ่งของมอเตอร์ทั้งหมด ดังนั้นมอเตอร์ AC จึงมีขนาดลดลงและทำให้น้ำหนักเบาลงโดยใช้เครื่องแปลงความถี่ และบางครั้งเกิดจากการมีเครือข่ายที่มีความถี่เพิ่มขึ้นถึง 400 เฮิรตซ์

ทรัพยากรของมอเตอร์ AC แบบอะซิงโครนัสนั้นสูงกว่าตัวสะสมอย่างเห็นได้ชัด ถูกกำหนดไว้แล้ว สถานะของฉนวนของขดลวดและแบริ่ง. มอเตอร์ซิงโครนัสเมื่อใช้อินเวอร์เตอร์และเซ็นเซอร์ตำแหน่งโรเตอร์ถือเป็นอะนาล็อกอิเล็กทรอนิกส์ของคลาสสิก มอเตอร์สับเปลี่ยนรองรับการทำงานด้วยกระแสตรง

มอเตอร์กระแสตรงไร้แปรงถ่าน ข้อมูลทั่วไปและอุปกรณ์อุปกรณ์

มอเตอร์กระแสตรงไร้แปรงถ่านเรียกอีกอย่างว่ามอเตอร์ไร้แปรงถ่านสามเฟส เป็นอุปกรณ์ซิงโครนัสซึ่งมีหลักการทำงานอยู่บนพื้นฐานของการควบคุมความถี่แบบซิงโครไนซ์ด้วยตนเองเนื่องจากควบคุมเวกเตอร์ (เริ่มจากตำแหน่งของโรเตอร์) ของสนามแม่เหล็กสเตเตอร์

ตัวควบคุมมอเตอร์ประเภทนี้มักใช้แรงดันไฟฟ้ากระแสตรง จึงเป็นที่มาของชื่อ เป็นภาษาอังกฤษ วรรณกรรมทางเทคนิคมอเตอร์ไร้แปรงถ่านเรียกว่า PMSM หรือ BLDC

มอเตอร์ไร้แปรงถ่านถูกสร้างขึ้นเพื่อเพิ่มประสิทธิภาพ มอเตอร์กระแสตรงใดๆโดยทั่วไป. ถึง กลไกการบริหารสำหรับอุปกรณ์ดังกล่าว (โดยเฉพาะอย่างยิ่งสำหรับไมโครไดรฟ์ความเร็วสูงที่มีการวางตำแหน่งที่แม่นยำ) มีการกำหนดความต้องการที่สูงมาก

นี้อาจนำไปสู่การใช้อุปกรณ์ DC เฉพาะเช่น brushless มอเตอร์สามเฟสหรือเรียกอีกอย่างว่า BDPT พวกมันแทบจะเหมือนกันในการออกแบบ มอเตอร์ซิงโครนัสกระแสสลับซึ่งการหมุนของโรเตอร์แม่เหล็กเกิดขึ้นในสเตเตอร์เคลือบธรรมดาต่อหน้าขดลวดสามเฟส และจำนวนรอบการหมุนขึ้นอยู่กับแรงดันและโหลดของสเตเตอร์ ตามพิกัดบางอย่างของโรเตอร์ ขดลวดสเตเตอร์ที่แตกต่างกันจะถูกเปลี่ยน

มอเตอร์ไร้แปรงถ่านกระแสไฟตรงอาจมีอยู่โดยไม่มีเซ็นเซอร์แยกต่างหาก อย่างไรก็ตาม บางครั้งก็มีอยู่บนโรเตอร์ เช่น เซ็นเซอร์ฮอลล์ หากอุปกรณ์ทำงานโดยไม่มีเซ็นเซอร์เพิ่มเติม แสดงว่า ขดลวดสเตเตอร์ทำหน้าที่เป็นองค์ประกอบการตรึง. จากนั้นกระแสจะเกิดขึ้นเนื่องจากการหมุนของแม่เหล็ก เมื่อโรเตอร์เหนี่ยวนำ EMF ในขดลวดสเตเตอร์

หากขดลวดอันใดอันหนึ่งปิดอยู่ สัญญาณที่เหนี่ยวนำจะถูกวัดและประมวลผลต่อไป อย่างไรก็ตาม หลักการของการดำเนินการดังกล่าวจะเป็นไปไม่ได้เลยหากไม่มีศาสตราจารย์ด้านการประมวลผลสัญญาณ แต่หากต้องการย้อนกลับหรือเบรกมอเตอร์ไฟฟ้าดังกล่าว ไม่จำเป็นต้องใช้วงจรสะพาน - มันจะเพียงพอที่จะจ่ายพัลส์ควบคุมในลำดับย้อนกลับไปยังขดลวดสเตเตอร์

ใน VD (มอเตอร์แบบสวิตช์) ตัวเหนี่ยวนำในรูปของแม่เหล็กถาวรจะอยู่บนโรเตอร์และขดลวดกระดองอยู่บนสเตเตอร์ ตามตำแหน่งของโรเตอร์ แรงดันไฟฟ้าของขดลวดทั้งหมดเกิดขึ้นมอเตอร์ไฟฟ้า. เมื่อใช้ในโครงสร้างดังกล่าวของตัวสะสม หน้าที่ของมันจะถูกดำเนินการในมอเตอร์วาล์วโดยสวิตช์เซมิคอนดักเตอร์

ความแตกต่างที่สำคัญระหว่างมอเตอร์ซิงโครนัสและแบบไม่มีแปรงคือการซิงโครไนซ์ตัวเองของมอเตอร์หลังด้วยความช่วยเหลือของ DPR ซึ่งกำหนดความถี่ตามสัดส่วนของการหมุนของโรเตอร์และสนาม

ส่วนใหญ่มักจะ มอเตอร์ไร้แปรงถ่าน DC ใช้ในพื้นที่ต่อไปนี้:

สเตเตอร์

อุปกรณ์นี้มีการออกแบบที่คลาสสิกและคล้ายกับอุปกรณ์เดียวกันกับเครื่องอะซิงโครนัส องค์ประกอบประกอบด้วย แกนขดลวดทองแดง(วางรอบปริมณฑลเข้าไปในร่อง) ซึ่งกำหนดจำนวนเฟสและตัวเรือน โดยปกติเฟสไซน์และโคไซน์จะเพียงพอสำหรับการหมุนและการสตาร์ทตัวเอง อย่างไรก็ตาม บ่อยครั้ง มอเตอร์ไร้แปรงถ่านสร้างสามเฟสและสี่เฟส

มอเตอร์ไฟฟ้าแบบถอยหลัง แรงเคลื่อนไฟฟ้าตามประเภทของการหมุนบนขดลวดสเตเตอร์แบ่งออกเป็นสองประเภท:

  • รูปแบบไซนัส;
  • รูปร่างสี่เหลี่ยมคางหมู

ในประเภทมอเตอร์ที่สอดคล้องกัน กระแสเฟสไฟฟ้ายังเปลี่ยนแปลงไปตามวิธีการจ่ายไฟแบบไซน์หรือสี่เหลี่ยมคางหมู

โรเตอร์

โดยปกติโรเตอร์จะทำจากแม่เหล็กถาวรที่มีเสาสองถึงแปดคู่ ซึ่งในทางกลับกัน จะสลับจากเหนือไปใต้หรือกลับกัน

ที่พบมากที่สุดและถูกที่สุดสำหรับการผลิตโรเตอร์คือแม่เหล็กเฟอร์ไรท์ แต่ข้อเสียคือ การเหนี่ยวนำแม่เหล็กในระดับต่ำดังนั้นอุปกรณ์ที่ทำจากโลหะผสมของธาตุหายากหลายชนิดจึงเข้ามาแทนที่วัสดุดังกล่าวเนื่องจากสามารถจัดหาได้ ระดับสูงการเหนี่ยวนำแม่เหล็กซึ่งจะช่วยลดขนาดของโรเตอร์

สพป

เซ็นเซอร์ตำแหน่งโรเตอร์ให้ ข้อเสนอแนะ. ตามหลักการทำงาน อุปกรณ์แบ่งออกเป็นชนิดย่อยต่อไปนี้:

  • อุปนัย;
  • ตาแมว;
  • เซ็นเซอร์เอฟเฟกต์ฮอลล์

ประเภทหลังเป็นที่นิยมมากที่สุดเนื่องจาก คุณสมบัติเฉื่อยสัมบูรณ์เกือบสัมบูรณ์และความสามารถในการกำจัดความล่าช้าในช่องป้อนกลับโดยตำแหน่งของโรเตอร์

ระบบควบคุม

ระบบควบคุมประกอบด้วยสวิตช์ไฟ ซึ่งบางครั้งก็เป็นไทริสเตอร์หรือทรานซิสเตอร์กำลังไฟฟ้า รวมถึงเกทที่หุ้มฉนวน ซึ่งนำไปสู่การรวบรวมอินเวอร์เตอร์ปัจจุบันหรืออินเวอร์เตอร์แรงดันไฟฟ้า กระบวนการจัดการคีย์เหล่านี้มักถูกนำไปใช้ โดยใช้ไมโครคอนโทรลเลอร์ซึ่งต้องใช้การคำนวณจำนวนมากเพื่อควบคุมเครื่องยนต์

หลักการทำงาน

การทำงานของเครื่องยนต์อยู่ในความจริงที่ว่าตัวควบคุมจะสลับขดลวดสเตเตอร์จำนวนหนึ่งในลักษณะที่เวกเตอร์ของสนามแม่เหล็กของโรเตอร์และสเตเตอร์เป็นมุมฉาก ด้วย PWM (การปรับความกว้างพัลส์) ตัวควบคุมควบคุมกระแสที่ไหลผ่านมอเตอร์และควบคุมแรงบิดที่กระทำกับโรเตอร์ ทิศทางของโมเมนต์การแสดงนี้ถูกกำหนดโดยเครื่องหมายของมุมระหว่างเวกเตอร์ องศาไฟฟ้าใช้ในการคำนวณ

การสลับควรทำในลักษณะที่ Ф0 (ฟลักซ์กระตุ้นของโรเตอร์) คงที่โดยสัมพันธ์กับฟลักซ์ของกระดอง เมื่อแรงกระตุ้นดังกล่าวและการไหลของกระดองโต้ตอบกัน แรงบิด M จะเกิดขึ้น ซึ่งมีแนวโน้มที่จะหมุนโรเตอร์และขนานกันเพื่อให้แน่ใจว่าจะเกิดความบังเอิญของการกระตุ้นและการไหลของเกราะ อย่างไรก็ตาม ในระหว่างการหมุนของโรเตอร์ ขดลวดต่างๆ จะถูกสลับภายใต้อิทธิพลของเซ็นเซอร์ตำแหน่งโรเตอร์ อันเป็นผลมาจากการที่ฟลักซ์ของกระดองจะหันไปสู่ขั้นตอนต่อไป

ในสถานการณ์เช่นนี้ เวกเตอร์ที่เป็นผลลัพธ์จะเคลื่อนที่และหยุดนิ่งโดยสัมพันธ์กับฟลักซ์ของโรเตอร์ ซึ่งจะสร้างแรงบิดที่จำเป็นบนเพลามอเตอร์

การจัดการเครื่องยนต์

ตัวควบคุมของมอเตอร์ไฟฟ้ากระแสตรงไร้แปรงถ่านจะควบคุมโมเมนต์ที่กระทำต่อโรเตอร์โดยการเปลี่ยนค่าของการมอดูเลตความกว้างพัลส์ การสลับถูกควบคุมและ ดำเนินการทางอิเล็กทรอนิกส์ต่างจากมอเตอร์กระแสตรงแบบมีแปรงถ่านทั่วไป ระบบควบคุมที่ใช้การมอดูเลตความกว้างพัลส์และอัลกอริธึมการควบคุมความกว้างพัลส์ก็เป็นเรื่องธรรมดาเช่นกันสำหรับเวิร์กโฟลว์

มอเตอร์ควบคุมแบบเวกเตอร์ให้ช่วงที่รู้จักมากที่สุดสำหรับการควบคุมความเร็วด้วยตนเอง การควบคุมความเร็วนี้ตลอดจนการรักษาการเชื่อมต่อฟลักซ์บน ระดับที่ต้องการเกิดจากตัวแปลงความถี่

คุณลักษณะของการควบคุมไดรฟ์ไฟฟ้าตามการควบคุมเวกเตอร์คือการมีอยู่ของพิกัดที่ควบคุม อยู่ในระบบคงที่และ เปลี่ยนเป็นหมุนโดยเน้นค่าคงที่ตามสัดส่วนของพารามิเตอร์ที่ควบคุมของเวกเตอร์ อันเนื่องมาจากการดำเนินการควบคุมเกิดขึ้น และจากนั้นจึงเกิดการเปลี่ยนแปลงแบบย้อนกลับ

แม้จะมีข้อดีทั้งหมดของระบบดังกล่าว แต่ก็มีข้อเสียในรูปแบบของความซับซ้อนในการควบคุมอุปกรณ์เพื่อควบคุมความเร็วในวงกว้าง

ข้อดีข้อเสีย

ปัจจุบันนี้ ในหลายอุตสาหกรรม มอเตอร์ประเภทนี้เป็นที่ต้องการอย่างมาก เนื่องจากมอเตอร์กระแสตรงแบบไร้แปรงถ่านได้รวมเอาส่วนประกอบเกือบทั้งหมดเข้าด้วยกันมากที่สุด คุณสมบัติที่ดีที่สุดมอเตอร์แบบไม่สัมผัสและชนิดอื่นๆ

ข้อดีที่ปฏิเสธไม่ได้ของมอเตอร์ไร้แปรงถ่านคือ:

แม้จะมีผลบวกที่สำคัญ มอเตอร์กระแสตรงไร้แปรงถ่านยังมีข้อเสียบางประการ:

จากที่กล่าวมาข้างต้นและความล้าหลังของอุปกรณ์อิเล็กทรอนิกส์สมัยใหม่ในภูมิภาค หลายคนยังคงพิจารณาว่าเหมาะสมที่จะใช้มอเตอร์แบบอะซิงโครนัสแบบธรรมดากับเครื่องแปลงความถี่

มอเตอร์กระแสตรงไร้แปรงถ่านสามเฟส

มอเตอร์ประเภทนี้มีประสิทธิภาพที่ยอดเยี่ยม โดยเฉพาะอย่างยิ่งเมื่อทำการควบคุมโดยใช้เซ็นเซอร์ตำแหน่ง หากโมเมนต์ของการต่อต้านแตกต่างกันหรือไม่ทราบเลย และจำเป็นจะต้องบรรลุด้วยหรือไม่ แรงบิดเริ่มต้นที่สูงขึ้นใช้การควบคุมเซ็นเซอร์ หากไม่ได้ใช้เซ็นเซอร์ (โดยปกติจะอยู่ในพัดลม) ตัวควบคุมจะขจัดความจำเป็นในการสื่อสารผ่านสาย

คุณสมบัติของการควบคุมมอเตอร์ไร้แปรงถ่านสามเฟสโดยไม่มีเซ็นเซอร์ตำแหน่ง:

คุณสมบัติการควบคุม มอเตอร์ไร้แปรงถ่านสามเฟสด้วยตัวเข้ารหัสตำแหน่งโดยใช้ตัวอย่างเซ็นเซอร์เอฟเฟกต์ฮอลล์:

บทสรุป

มอเตอร์กระแสตรงไร้แปรงถ่านมีข้อดีหลายประการและจะกลายเป็น ทางเลือกที่คุ้มค่าสำหรับการใช้งานโดยผู้เชี่ยวชาญและฆราวาส

ทำงาน มอเตอร์ไร้แปรงถ่านขึ้นอยู่กับ ไดรฟ์ไฟฟ้าทำให้เกิดสนามแม่เหล็กหมุน ปัจจุบันมีอุปกรณ์หลายประเภทที่มีคุณสมบัติแตกต่างกัน ด้วยการพัฒนาเทคโนโลยีและการใช้วัสดุใหม่ที่มีแรงบีบบังคับสูงและความอิ่มตัวของแม่เหล็กในระดับที่เพียงพอจึงกลายเป็น สามารถรับได้สนามแม่เหล็กแรงสูงและเป็นผลให้โครงสร้างวาล์วชนิดใหม่ซึ่งไม่มีการพันบนองค์ประกอบโรเตอร์หรือสตาร์ทเตอร์ การใช้สวิตช์ประเภทเซมิคอนดักเตอร์อย่างแพร่หลายซึ่งมีกำลังสูงและต้นทุนที่สมเหตุสมผลช่วยเร่งการสร้างการออกแบบดังกล่าว อำนวยความสะดวกในการดำเนินการ และขจัดปัญหาในการเปลี่ยนหลายๆ อย่าง

หลักการทำงาน

ความน่าเชื่อถือที่เพิ่มขึ้น ลดต้นทุน และการผลิตที่ง่ายกว่านั้นทำให้มั่นใจได้ว่าไม่มีส่วนประกอบสวิตช์เชิงกล ขดลวดโรเตอร์ และแม่เหล็กถาวร ในเวลาเดียวกัน ประสิทธิภาพที่เพิ่มขึ้นก็เป็นไปได้เนื่องจากการสูญเสียความเสียดทานในระบบสะสมลดลง มอเตอร์ไร้แปรงถ่านสามารถทำงานบนไฟฟ้ากระแสสลับหรือกระแสไฟต่อเนื่องได้ รุ่นหลังมีความคล้ายคลึงกับHis ลักษณะเฉพาะคือการก่อตัวของสนามแม่เหล็กหมุนและการประยุกต์ใช้กระแสพัลซิ่ง มันขึ้นอยู่กับสวิตช์อิเล็กทรอนิกส์ซึ่งเพิ่มความซับซ้อนของการออกแบบ

การคำนวณตำแหน่ง

การสร้างพัลส์เกิดขึ้นในระบบควบคุมหลังจากสัญญาณที่สะท้อนถึงตำแหน่งของโรเตอร์ ระดับของแรงดันและการจ่ายโดยตรงขึ้นอยู่กับความเร็วของการหมุนของมอเตอร์ เซ็นเซอร์ในสตาร์ทเตอร์จะตรวจจับตำแหน่งของโรเตอร์และส่งสัญญาณไฟฟ้า แอมพลิจูดของสัญญาณจะเปลี่ยนแปลงไปพร้อมกับขั้วแม่เหล็กที่เคลื่อนเข้าใกล้เซ็นเซอร์ เทคนิคการจัดตำแหน่งแบบไร้เซนเซอร์ยังมีอยู่ รวมถึงเส้นทางปัจจุบันและทรานสดิวเซอร์ PWM บนขั้วอินพุตให้การบำรุงรักษาระดับแรงดันไฟฟ้าแบบแปรผันและการควบคุมพลังงาน

สำหรับโรเตอร์ที่มีแม่เหล็กถาวร ไม่จำเป็นต้องใช้กระแสไฟ เนื่องจากขดลวดโรเตอร์ไม่มีการสูญเสีย มอเตอร์ไขควงแบบไม่มีแปรงมีความเฉื่อยต่ำเนื่องจากไม่มีขดลวดและตัวสับเปลี่ยนแบบกลไก ดังนั้นจึงสามารถใช้งานได้ที่ความเร็วสูงโดยไม่มีประกายไฟและสัญญาณรบกวนแม่เหล็กไฟฟ้า กระแสสูงและกระจายความร้อนได้ง่ายขึ้นโดยการวางวงจรความร้อนบนสเตเตอร์ นอกจากนี้ยังควรสังเกตว่ามีหน่วยอิเล็กทรอนิกส์ในตัวในบางรุ่น

องค์ประกอบแม่เหล็ก

ตำแหน่งของแม่เหล็กอาจแตกต่างกันไปตามขนาดของมอเตอร์ เช่น บนเสาหรือรอบๆ โรเตอร์ทั้งหมด การสร้างแม่เหล็กคุณภาพสูงที่มีกำลังมากกว่าสามารถทำได้โดยใช้นีโอไดเมียมร่วมกับโบรอนและเหล็ก ทั้งๆที่มี ประสิทธิภาพสูงการทำงาน มอเตอร์ไร้แปรงถ่านสำหรับไขควงแม่เหล็กถาวรมีข้อเสียอยู่บ้าง รวมถึงการสูญเสีย ลักษณะแม่เหล็กที่อุณหภูมิสูง แต่มีประสิทธิภาพมากกว่าและไม่มีการสูญเสียเมื่อเทียบกับเครื่องจักรที่มีขดลวดในการออกแบบ

พัลส์ของอินเวอร์เตอร์กำหนดกลไก ด้วยความถี่ในการจ่ายคงที่ มอเตอร์จะทำงานที่ความเร็วคงที่ในวงจรเปิด ดังนั้นความเร็วในการหมุนจึงแตกต่างกันไปตามระดับของความถี่ในการจ่าย

ลักษณะเฉพาะ

ทำงานในโหมดตั้งค่าและมีฟังก์ชันการทำงานของแปรงอะนาล็อก ความเร็วขึ้นอยู่กับแรงดันไฟฟ้าที่ใช้ กลไกนี้มีข้อดีหลายประการ:

  • ไม่มีการเปลี่ยนแปลงในการสะกดจิตและการรั่วไหลของกระแส
  • สอดคล้องกับความเร็วของการหมุนและแรงบิดเอง
  • ความเร็วไม่ จำกัด เฉพาะการส่งผลกระทบต่อตัวสะสมและขดลวดไฟฟ้าแบบหมุน
  • ไม่จำเป็นต้องใช้สวิตช์และขดลวดกระตุ้น
  • แม่เหล็กที่ใช้มีน้ำหนักเบาและขนาดกะทัดรัด
  • โมเมนต์แรงสูง
  • ความอิ่มตัวของพลังงานและประสิทธิภาพ

การใช้งาน

DC ที่มีแม่เหล็กถาวรส่วนใหญ่จะพบในอุปกรณ์ที่มีกำลังไฟไม่เกิน 5 กิโลวัตต์ ในอุปกรณ์ที่ทรงพลังกว่านั้น การใช้งานนั้นไร้เหตุผล เป็นที่น่าสังเกตว่าแม่เหล็กในมอเตอร์ ประเภทนี้มีความอ่อนไหวเป็นพิเศษต่อ อุณหภูมิสูงและทุ่งนาที่แข็งแรง ตัวเลือกการเหนี่ยวนำและแปรงไม่มีข้อเสียดังกล่าว เครื่องยนต์ถูกใช้อย่างแข็งขันในการขับเคลื่อนยานยนต์เนื่องจากไม่มีแรงเสียดทานในท่อร่วม ในบรรดาคุณสมบัติต่างๆ จำเป็นต้องเน้นย้ำถึงความสม่ำเสมอของแรงบิดและกระแสไฟ ซึ่งทำให้เสียงอะคูสติกลดลง

มอเตอร์ไร้แปรงถ่าน

มอเตอร์ไฟฟ้าไร้แปรงถ่านเข้ามาสร้างแบบจำลองในช่วง 5-7 ปีที่ผ่านมา ต่างจากมอเตอร์คอลเลคเตอร์ตรงที่ขับเคลื่อนด้วยกระแสสลับสามเฟส มอเตอร์ไร้แปรงถ่านทำงานอย่างมีประสิทธิภาพในช่วง RPM ที่กว้างขึ้นและมีประสิทธิภาพมากกว่า การออกแบบมอเตอร์นั้นง่ายกว่า ไม่มีชุดแปรง และไม่จำเป็นต้องมี ซ่อมบำรุง. เราสามารถพูดได้ว่ามอเตอร์ไร้แปรงถ่านแทบไม่สึกหรอ ค่าใช้จ่ายของมอเตอร์แบบไม่มีแปรงจะสูงกว่ามอเตอร์แบบมีแปรงเล็กน้อย เนื่องจากมอเตอร์แบบไม่มีแปรงถ่านทั้งหมดมีตลับลูกปืนและโดยทั่วไปแล้วจะมีคุณภาพสูงกว่า แม้ว่าช่องว่างราคาระหว่างดี มอเตอร์สะสมและมอเตอร์ไร้แปรงถ่านในระดับเดียวกันก็ไม่ค่อยดีนัก

ตามการออกแบบ มอเตอร์ไร้แปรงถ่านถูกแบ่งออกเป็นสองกลุ่ม: ผู้บุกรุก (ออกเสียงว่า "ผู้บุกรุก") และกลุ่มผู้วิ่งหนี (ออกเสียงว่า "ผู้วิ่งหนี") มอเตอร์ของกลุ่มแรกมีขดลวดอยู่บนพื้นผิวด้านในของตัวเรือน และโรเตอร์แม่เหล็กหมุนอยู่ภายใน มอเตอร์ของกลุ่มที่สอง - "ผู้แซงหน้า" มีขดลวดคงที่ภายในมอเตอร์ซึ่งตัวเรือนหมุนด้วยแม่เหล็กถาวรที่วางอยู่บนผนังด้านใน จำนวนขั้วแม่เหล็กที่ใช้ในมอเตอร์ไร้แปรงถ่านอาจแตกต่างกันไป จากจำนวนเสา คุณสามารถตัดสินแรงบิดและความเร็วของเครื่องยนต์ได้ มอเตอร์ที่มีโรเตอร์สองขั้วมีความเร็วในการหมุนสูงสุดที่แรงบิดต่ำสุด มอเตอร์เหล่านี้สามารถเป็น "ผู้บุกเบิก" โดยการออกแบบเท่านั้น มอเตอร์ดังกล่าวมักจะขายพร้อมกับเฟืองดาวเคราะห์ที่ติดตั้งอยู่แล้ว เนื่องจากรอบการหมุนของใบพัดนั้นสูงเกินไปสำหรับการหมุนของใบพัดโดยตรง บางครั้งใช้มอเตอร์ดังกล่าวโดยไม่มีกระปุกเกียร์ ตัวอย่างเช่น ใช้กับเครื่องบินจำลองการแข่งรถ มอเตอร์ที่มีเสาจำนวนมากมี ความเร็วต่ำหมุนแต่แรงบิดมากขึ้น มอเตอร์ดังกล่าวอนุญาตให้ใช้ใบพัดขนาดใหญ่โดยไม่ต้องใช้กระปุกเกียร์ โดยทั่วไป ใบพัดที่มีเส้นผ่านศูนย์กลางขนาดใหญ่และระยะพิทช์น้อยที่ความเร็วรอบค่อนข้างต่ำจะให้แรงขับมากกว่า แต่รายงานแบบจำลอง ความเร็วต่ำ, ในขณะที่ใบพัดขนาดเล็กที่มีระยะพิทช์สูงบน เรฟสูงให้ความเร็วสูงด้วยแรงขับที่ค่อนข้างน้อย ดังนั้น มอเตอร์แบบหลายขั้วจึงเหมาะอย่างยิ่งสำหรับรุ่นที่ต้องการอัตราส่วนแรงขับต่อน้ำหนักสูงและมอเตอร์สองขั้วที่ไม่มีกระปุกเกียร์จึงเหมาะอย่างยิ่งสำหรับรุ่นความเร็วสูง สำหรับการเลือกเครื่องยนต์และใบพัดสำหรับรุ่นใดรุ่นหนึ่งที่แม่นยำยิ่งขึ้น คุณสามารถใช้โปรแกรม MotoCalc พิเศษได้

เนื่องจากมอเตอร์ไร้แปรงถ่านขับเคลื่อนโดยกระแสสลับ จึงจำเป็นต้องมีตัวควบคุมพิเศษ (ตัวควบคุม) เพื่อทำงาน ซึ่งจะแปลงกระแสตรงจากแบตเตอรี่เป็นกระแสสลับ ESC สำหรับมอเตอร์ไร้แปรงถ่านเป็นอุปกรณ์ที่ตั้งโปรแกรมได้ซึ่งช่วยให้คุณควบคุมทุกอย่างในชีวิตได้ พารามิเตอร์ที่สำคัญเครื่องยนต์. พวกเขาอนุญาตให้ไม่เพียง แต่เปลี่ยนความเร็วและทิศทางของมอเตอร์ แต่ยังช่วยให้เรียบหรือ .ขึ้นอยู่กับความต้องการ เริ่มกะทันหันการจำกัดกระแสไฟสูงสุด ฟังก์ชัน "เบรก" และการตั้งค่าเครื่องยนต์ละเอียดอื่นๆ อีกจำนวนหนึ่งตามความต้องการของผู้สร้างโมเดล ในการตั้งโปรแกรมคอนโทรลเลอร์ อุปกรณ์จะใช้เชื่อมต่อกับคอมพิวเตอร์หรือใน สภาพสนามสามารถทำได้โดยใช้เครื่องส่งสัญญาณและจัมเปอร์พิเศษ

มีผู้ผลิตมอเตอร์แบบไม่มีแปรงและอุปกรณ์ควบคุมจำนวนมากสำหรับพวกเขา โครงสร้างและขนาด มอเตอร์ไร้แปรงถ่านก็มีความแตกต่างกันอย่างมาก นอกจากนี้, การผลิตอิสระมอเตอร์ไร้แปรงถ่านที่ใช้ชิ้นส่วนจากไดรฟ์ซีดีและมอเตอร์ไร้แปรงถ่านสำหรับอุตสาหกรรมอื่นๆ ได้กลายเป็นสิ่งที่พบเห็นได้ทั่วไปในช่วงไม่กี่ครั้งที่ผ่านมา บางทีอาจเป็นเพราะเหตุนี้เองที่มอเตอร์ไร้แปรงถ่านในปัจจุบันจึงไม่มีการจัดประเภททั่วไปที่ใกล้เคียงกันเช่นเดียวกับตัวสะสม มาสรุปกันสั้นๆ ทุกวันนี้ มอเตอร์แบบมีแปรงถ่านส่วนใหญ่จะใช้กับรุ่นงานอดิเรกราคาประหยัด หรือรุ่นสปอร์ตระดับเริ่มต้น มอเตอร์เหล่านี้มีราคาไม่แพง ใช้งานง่าย และยังคงเป็นมอเตอร์ไฟฟ้ารุ่นยอดนิยม พวกเขากำลังถูกแทนที่ด้วยมอเตอร์แบบไม่มีแปรง ปัจจัยที่ จำกัด เพียงอย่างเดียวคือราคาของพวกเขา ร่วมกับหน่วยงานกำกับดูแล มอเตอร์ไร้แปรงถ่านค่าใช้จ่ายเพิ่มขึ้น 30-70% อย่างไรก็ตาม ราคาสำหรับอุปกรณ์อิเล็กทรอนิกส์และมอเตอร์กำลังลดลง และการเคลื่อนตัวของมอเตอร์ไฟฟ้าแบบสะสมจากการสร้างแบบจำลองอย่างค่อยเป็นค่อยไปนั้นเป็นเพียงเรื่องของเวลาเท่านั้น

AVR492: AT90PWM3 การควบคุมมอเตอร์กระแสตรงไร้แปรงถ่าน

คุณสมบัติที่โดดเด่น:

  • ข้อมูลทั่วไปเกี่ยวกับ BCEPT
  • ใช้ตัวควบคุมเวทีกำลัง
  • การใช้ฮาร์ดแวร์
  • ตัวอย่างรหัสโปรแกรม

บทนำ

บันทึกการใช้งานนี้อธิบายวิธีการใช้การควบคุมมอเตอร์กระแสตรงแบบไม่มีแปรงถ่าน (BCEM) โดยใช้ตัวเข้ารหัสตามไมโครคอนโทรลเลอร์ AT90PWM3 AVR

แกน AVR ประสิทธิภาพสูงของไมโครคอนโทรลเลอร์ซึ่งประกอบด้วยตัวควบคุมระยะกำลัง ช่วยให้คุณติดตั้งอุปกรณ์ควบคุมมอเตอร์กระแสตรงแบบไม่มีแปรงถ่านความเร็วสูงได้

เอกสารนี้ให้คำอธิบายสั้น ๆ เกี่ยวกับหลักการทำงานของมอเตอร์กระแสตรงไร้แปรงถ่าน และอธิบายรายละเอียดเกี่ยวกับการควบคุม BECPT ในโหมดสัมผัส และยังมีคำอธิบาย แผนภูมิวงจรรวมการพัฒนาอ้างอิง ATAVRMC100 ซึ่งใช้บันทึกการใช้งานเหล่านี้

มีการกล่าวถึงการใช้งานซอฟต์แวร์ด้วยลูปควบคุมที่ใช้ซอฟต์แวร์ตามตัวควบคุม PID เพื่อควบคุมกระบวนการเปลี่ยน ส่อให้เห็นถึงการใช้เซ็นเซอร์ตำแหน่งตามเอฟเฟกต์ฮอลล์เท่านั้น

หลักการทำงาน

ขอบเขตของการใช้ BKEPT นั้นเพิ่มขึ้นอย่างต่อเนื่องซึ่งเกิดจากข้อดีหลายประการ:

  1. ไม่มีชุดประกอบที่หลากหลายซึ่งทำให้การบำรุงรักษาง่ายขึ้นหรือลดลง
  2. รุ่นมากกว่า ระดับต่ำเสียงอะคูสติกและไฟฟ้าเทียบกับมอเตอร์กระแสตรงแบบสับเปลี่ยนกระแสตรงสากล
  3. ความสามารถในการทำงานในสภาพแวดล้อมที่เป็นอันตราย (กับผลิตภัณฑ์ที่ติดไฟได้)
  4. สมดุลที่ดีระหว่างน้ำหนักและกำลัง...

มอเตอร์ประเภทนี้มีความเฉื่อยเล็กน้อยของโรเตอร์ tk ขดลวดตั้งอยู่บนสเตเตอร์ สวิตช์ถูกควบคุมด้วยระบบอิเล็กทรอนิกส์ โมเมนต์สวิตชิ่งถูกกำหนดโดยข้อมูลจากเซ็นเซอร์ตำแหน่ง หรือโดยการวัดแรงเคลื่อนไฟฟ้าด้านหลังที่เกิดจากขดลวด

เมื่อควบคุมโดยใช้เซ็นเซอร์ BKEPT จะประกอบด้วยสามส่วนหลัก: สเตเตอร์ โรเตอร์ และเซ็นเซอร์ฮอลล์

สเตเตอร์ของ BKEPT แบบสามเฟสแบบคลาสสิกประกอบด้วยสามขดลวด ในมอเตอร์จำนวนมาก ขดลวดจะถูกแบ่งออกเป็นหลายส่วนเพื่อลดการกระเพื่อมของแรงบิด

รูปที่ 1 แสดงวงจรไฟฟ้าเทียบเท่าสเตเตอร์ ประกอบด้วยขดลวดสามเส้น แต่ละขดลวดประกอบด้วยสามองค์ประกอบที่เชื่อมต่อเป็นอนุกรม: การเหนี่ยวนำ ความต้านทาน และแรงเคลื่อนไฟฟ้าย้อนกลับ


รูปที่ 1 แผนภาพการเดินสายไฟการเปลี่ยนสเตเตอร์ (สามเฟสสามขดลวด)

โรเตอร์ BKEPT ประกอบด้วยแม่เหล็กถาวรจำนวนเท่ากัน จำนวนขั้วแม่เหล็กในโรเตอร์ยังส่งผลต่อขนาดพิทช์และแรงบิดกระเพื่อม ยิ่งจำนวนเสามาก ขนาดขั้นตอนการหมุนจะเล็กลงและแรงบิดกระเพื่อมน้อยลง สามารถใช้ได้ แม่เหล็กถาวรด้วยเสา 1..5 คู่ ในบางกรณี จำนวนคู่ขั้วจะเพิ่มขึ้นเป็น 8 (รูปที่ 2)



รูปที่ 2 สเตเตอร์และโรเตอร์ของ BKEPT . สามเฟส สามขดลวด

ขดลวดถูกติดตั้งอย่างถาวรและแม่เหล็กจะหมุน โรเตอร์ BKEPT มีลักษณะเฉพาะด้วยน้ำหนักที่เบากว่าเมื่อเทียบกับโรเตอร์ทั่วไป มอเตอร์สากลกระแสตรงซึ่งขดลวดอยู่บนโรเตอร์

ฮอลล์เซนเซอร์

ในการประเมินตำแหน่งของโรเตอร์ เซ็นเซอร์ Hall สามตัวจะถูกสร้างขึ้นในตัวเรือนมอเตอร์ เซ็นเซอร์ถูกติดตั้งที่มุม 120 องศาซึ่งกันและกัน ด้วยความช่วยเหลือของเซ็นเซอร์เหล่านี้ จึงสามารถดำเนินการสวิตช์ต่างๆ ได้ 6 แบบ

การสลับเฟสขึ้นอยู่กับสถานะของเซ็นเซอร์ Hall

แรงดันไฟฟ้าที่จ่ายให้กับขดลวดจะเปลี่ยนไปหลังจากเปลี่ยนสถานะเอาต์พุตของเซ็นเซอร์ Hall ที่ การดำเนินการที่ถูกต้องสวิตช์ซิงโครไนซ์ แรงบิดยังคงประมาณคงที่และสูง



รูปที่ 3 สัญญาณเซ็นเซอร์ฮอลล์ระหว่างการหมุน

การสลับเฟส

เพื่อจุดประสงค์ในการอธิบายอย่างง่ายของการทำงานของ BKEPT สามเฟส เราจะพิจารณาเฉพาะรุ่นที่มีสามขดลวดเท่านั้น ดังที่แสดงไว้ก่อนหน้านี้ การสลับเฟสขึ้นอยู่กับค่าเอาต์พุตของเซ็นเซอร์ Hall ด้วยแรงดันไฟฟ้าที่ถูกต้องที่ใช้กับขดลวดของมอเตอร์ สนามแม่เหล็กจะถูกสร้างขึ้นและเริ่มการหมุน วิธีการควบคุมสวิตชิ่งที่ใช้กันทั่วไปและเรียบง่ายที่สุดที่ใช้ในการควบคุม BKEPT คือวงจรเปิด-ปิด เมื่อขดลวดมีกระแสไฟฟ้าหรือไม่ใช้ ในคราวเดียวสามารถจ่ายไฟได้เพียงสองขดลวดและขดลวดที่สามยังคงปิดอยู่ การต่อขดลวดเข้ากับรางไฟฟ้าทำให้เกิดกระแสไฟไหล วิธีนี้เรียกว่าการสลับคีย์สโตนหรือการเปลี่ยนบล็อก

ในการควบคุม BKEPT จะใช้สเตจกำลังซึ่งประกอบด้วยฮาล์ฟบริดจ์ 3 อัน ไดอะแกรมสเตจกำลังแสดงในรูปที่ 4



รูปที่ 4 เวทีพลังงาน

ตามค่าที่อ่านได้ของเซ็นเซอร์ Hall จะกำหนดว่าควรปิดปุ่มใด

เครื่องใช้ในครัวเรือนและทางการแพทย์ การสร้างแบบจำลองทางอากาศ ไดรฟ์ปิดท่อสำหรับท่อส่งก๊าซและน้ำมัน - อยู่ไกลจากนี้ รายการทั้งหมดขอบเขตการใช้งานมอเตอร์กระแสตรงไร้แปรงถ่าน (BD) เรามาดูอุปกรณ์และหลักการทำงานของไดรฟ์ไฟฟ้าเครื่องกลเหล่านี้เพื่อให้เข้าใจข้อดีและข้อเสียของไดรฟ์เหล่านี้มากขึ้น

ข้อมูลทั่วไป อุปกรณ์ ขอบเขต

เหตุผลหนึ่งที่ให้ความสนใจ DB คือความต้องการที่เพิ่มขึ้นสำหรับไมโครมอเตอร์ความเร็วสูงพร้อมการวางตำแหน่งที่แม่นยำ โครงสร้างภายในของไดรฟ์ดังกล่าวแสดงในรูปที่ 2

ข้าว. 2. อุปกรณ์ของมอเตอร์แบบไม่มีแปรง

อย่างที่คุณเห็น การออกแบบคือโรเตอร์ (กระดอง) และสเตเตอร์ อันแรกมีแม่เหล็กถาวร (หรือแม่เหล็กหลายอันเรียงตามลำดับ) และอันที่สองติดตั้งคอยล์ (B) เพื่อสร้างสนามแม่เหล็ก

เป็นที่น่าสังเกตว่ากลไกแม่เหล็กไฟฟ้าเหล่านี้สามารถเป็นได้ทั้งกับสมอภายใน (การก่อสร้างประเภทนี้สามารถดูได้ในรูปที่ 2) หรือภายนอก (ดูรูปที่ 3)


ข้าว. 3. ออกแบบด้วยพุกภายนอก (outrunner)

ดังนั้น การออกแบบแต่ละแบบจึงมีขอบเขตเฉพาะ อุปกรณ์ที่มีกระดองภายในมีความเร็วในการหมุนสูง ดังนั้นจึงใช้ในระบบทำความเย็นเช่น โรงไฟฟ้าโดรน เป็นต้น ไดรฟ์โรเตอร์ภายนอกใช้ในตำแหน่งที่ต้องการความแม่นยำและความทนทานต่อแรงบิด (หุ่นยนต์ อุปกรณ์ทางการแพทย์ เครื่อง CNC ฯลฯ)


หลักการทำงาน

แตกต่างจากไดรฟ์อื่น ๆ ตัวอย่างเช่น เครื่อง AC แบบอะซิงโครนัส จำเป็นต้องมีตัวควบคุมพิเศษสำหรับการทำงานของ DB ซึ่งจะเปิดขดลวดในลักษณะที่เวกเตอร์ของสนามแม่เหล็กของกระดองและสเตเตอร์ตั้งฉากกัน อื่นๆ. อันที่จริงแล้ว อุปกรณ์ไดรเวอร์จะควบคุมแรงบิดที่กระทำต่อเกราะ DB กระบวนการนี้แสดงให้เห็นอย่างชัดเจนในรูปที่ 4


อย่างที่คุณเห็น สำหรับการเคลื่อนที่ของกระดองแต่ละครั้ง จำเป็นต้องทำการเปลี่ยนค่าบางอย่างในขดลวดสเตเตอร์ของมอเตอร์แบบไม่มีแปรง หลักการทำงานนี้ไม่อนุญาตให้ควบคุมการหมุนอย่างราบรื่น แต่ทำให้สามารถรับโมเมนตัมได้อย่างรวดเร็ว

ความแตกต่างระหว่างมอเตอร์แบบมีแปรงและแบบไม่มีแปรง

ไดรฟ์ประเภทตัวรวบรวมแตกต่างจาก DB as คุณสมบัติการออกแบบ(ดูรูปที่ 5.) และหลักการทำงาน


ข้าว. 5. A - มอเตอร์สะสม, B - ไร้แปรง

พิจารณา ความแตกต่างในการออกแบบ. รูปที่ 5 แสดงให้เห็นว่าโรเตอร์ (1 ในรูปที่ 5) ของมอเตอร์ประเภทตัวสะสมซึ่งแตกต่างจากมอเตอร์แบบไม่มีแปรงซึ่งมีขดลวดซึ่ง วงจรง่ายๆขดลวดและแม่เหล็กถาวร (โดยปกติคือสอง) ติดตั้งอยู่บนสเตเตอร์ (2 ในรูปที่ 5) นอกจากนี้ยังมีการติดตั้งตัวสะสมบนเพลาซึ่งมีการเชื่อมต่อแปรงซึ่งจ่ายแรงดันไฟฟ้าให้กับขดลวดกระดอง

อธิบายหลักการทำงานโดยย่อ เครื่องสะสม. เมื่อแรงดันถูกนำไปใช้กับขดลวดตัวใดตัวหนึ่ง มันจะตื่นเต้นและเกิดสนามแม่เหล็กขึ้น มันโต้ตอบกับแม่เหล็กถาวร ซึ่งทำให้อาร์เมเจอร์และตัวสะสมที่วางอยู่บนมันหมุน เป็นผลให้มีการจ่ายพลังงานให้กับขดลวดอีกอันหนึ่งและวงจรจะเกิดซ้ำ

ความถี่ของการหมุนของเกราะของการออกแบบนี้ขึ้นอยู่กับความเข้มของสนามแม่เหล็กโดยตรง ซึ่งในทางกลับกัน จะเป็นสัดส่วนโดยตรงกับแรงดันไฟฟ้า นั่นคือการเพิ่มหรือลดความเร็วก็เพียงพอที่จะเพิ่มหรือลดระดับพลังงาน และการย้อนกลับจำเป็นต้องเปลี่ยนขั้ว วิธีการควบคุมนี้ไม่จำเป็นต้องใช้ตัวควบคุมพิเศษ เนื่องจากตัวควบคุมการเดินทางสามารถสร้างโดยใช้ตัวต้านทานแบบปรับค่าได้ และสวิตช์ทั่วไปจะทำงานเป็นอินเวอร์เตอร์

เราได้พิจารณาคุณสมบัติการออกแบบของมอเตอร์ไร้แปรงถ่านในส่วนที่แล้ว อย่างที่คุณจำได้ การเชื่อมต่อของพวกเขาต้องการตัวควบคุมพิเศษ โดยที่พวกเขาจะไม่ทำงาน ด้วยเหตุผลเดียวกัน มอเตอร์เหล่านี้เป็นเครื่องกำเนิดไฟฟ้าไม่ได้

นอกจากนี้ ยังควรสังเกตด้วยว่าในไดรฟ์ประเภทนี้ สำหรับการควบคุมที่มีประสิทธิภาพมากขึ้น ตำแหน่งของโรเตอร์จะถูกตรวจสอบโดยใช้เซ็นเซอร์ Hall สิ่งนี้ช่วยปรับปรุงคุณสมบัติของมอเตอร์แบบไม่มีแปรงอย่างมีนัยสำคัญ แต่นำไปสู่การเพิ่มขึ้นของต้นทุนของการออกแบบที่มีราคาแพงอยู่แล้ว

จะสตาร์ทมอเตอร์แบบไม่มีแปรงได้อย่างไร?

เพื่อให้ไดรฟ์ประเภทนี้ทำงานได้ จำเป็นต้องมีคอนโทรลเลอร์พิเศษ (ดูรูปที่ 6) หากไม่มีมัน การเปิดตัวก็เป็นไปไม่ได้


ข้าว. 6. ตัวควบคุมมอเตอร์ไร้แปรงถ่านสำหรับการสร้างแบบจำลอง

การประกอบอุปกรณ์ดังกล่าวไม่สมเหตุสมผลเลยการซื้ออุปกรณ์สำเร็จรูปจะถูกกว่าและเชื่อถือได้มากกว่า มารับได้ทาง ลักษณะดังต่อไปนี้, ลักษณะของไดรเวอร์ช่องสัญญาณ PWM:

  • กระแสไฟสูงสุดที่อนุญาต คุณลักษณะนี้มีให้สำหรับการทำงานปกติของอุปกรณ์ บ่อยครั้งที่ผู้ผลิตระบุพารามิเตอร์นี้ในชื่อรุ่น (เช่น Phoenix-18) ในบางกรณี ค่าที่กำหนดสำหรับโหมดพีค ซึ่งคอนโทรลเลอร์สามารถคงไว้เป็นเวลาหลายวินาที
  • แรงดันไฟระบุสูงสุดสำหรับการทำงานต่อเนื่อง
  • ความต้านทานของวงจรภายในของคอนโทรลเลอร์
  • จำนวนรอบที่อนุญาต ระบุเป็นรอบต่อนาที เหนือค่านี้ คอนโทรลเลอร์จะไม่อนุญาตให้เพิ่มการหมุน (ข้อจำกัดถูกนำไปใช้ในระดับซอฟต์แวร์) โปรดทราบว่าความเร็วจะได้รับเสมอสำหรับไดรฟ์ 2 ขั้ว หากมีคู่ขั้วมากกว่า ให้หารค่าด้วยจำนวนของมัน ตัวอย่างเช่น มีการระบุหมายเลข 60000 รอบต่อนาที ดังนั้นสำหรับ 6 มอเตอร์แม่เหล็กความเร็วในการหมุนจะเท่ากับ 60000/3=20000 prm
  • ความถี่ของพัลส์ที่สร้างขึ้นสำหรับคอนโทรลเลอร์ส่วนใหญ่ พารามิเตอร์นี้อยู่ในช่วงตั้งแต่ 7 ถึง 8 kHz ขึ้นไป โมเดลราคาแพงอนุญาตให้คุณตั้งโปรแกรมพารามิเตอร์ใหม่โดยเพิ่มเป็น 16 หรือ 32 kHz

โปรดทราบว่าคุณลักษณะสามประการแรกจะกำหนดความจุของฐานข้อมูล

การควบคุมมอเตอร์ไร้แปรงถ่าน

ดังที่กล่าวไว้ข้างต้น การสับเปลี่ยนของขดลวดของไดรฟ์ถูกควบคุมด้วยระบบอิเล็กทรอนิกส์ เพื่อกำหนดว่าเมื่อใดควรเปลี่ยน คนขับจะตรวจสอบตำแหน่งของเกราะโดยใช้เซ็นเซอร์ Hall หากไดรฟ์ไม่ได้ติดตั้งเครื่องตรวจจับดังกล่าว แรงเคลื่อนไฟฟ้ากลับซึ่งเกิดขึ้นในขดลวดสเตเตอร์ที่ไม่เชื่อมต่อ ตัวควบคุมซึ่งอันที่จริงเป็นความซับซ้อนของฮาร์ดแวร์และซอฟต์แวร์จะตรวจสอบการเปลี่ยนแปลงเหล่านี้และกำหนดลำดับการสลับ

มอเตอร์กระแสตรงไร้แปรงถ่านสามเฟส

ฐานข้อมูลส่วนใหญ่ดำเนินการในรูปแบบสามเฟส ในการควบคุมไดรฟ์ดังกล่าว คอนโทรลเลอร์จะมีตัวแปลง แรงดันคงที่เป็นพัลส์สามเฟส (ดูรูปที่ 7)


รูปที่ 7 ไดอะแกรมแรงดันไฟฟ้า DB

เพื่ออธิบายวิธีการทำงานของมอเตอร์ไร้แปรงถ่าน เราควรพิจารณารูปที่ 4 ร่วมกับรูปที่ 7 ซึ่งจะแสดงขั้นตอนการทำงานของไดรฟ์ทั้งหมด ลองเขียนลงไป:

  1. แรงกระตุ้นบวกถูกนำไปใช้กับคอยล์ "A" ในขณะที่แรงกระตุ้นเชิงลบถูกนำไปใช้กับ "B" ดังนั้นอาร์เมเจอร์จะเคลื่อนที่ เซ็นเซอร์จะบันทึกการเคลื่อนไหวและส่งสัญญาณสำหรับการเปลี่ยนครั้งต่อไป
  2. คอยล์ "A" ถูกปิด และพัลส์บวกไปที่ "C" ("B" ยังคงไม่เปลี่ยนแปลง) จากนั้นส่งสัญญาณไปยังพัลส์ชุดถัดไป
  3. บน "C" - บวก "A" - ลบ
  4. คู่ของ "B" และ "A" ทำงานซึ่งได้รับแรงกระตุ้นบวกและลบ
  5. พัลส์บวกถูกนำไปใช้กับ "B" อีกครั้ง และพัลส์ลบกับ "C"
  6. คอยล์ "A" เปิดอยู่ (มีให้ +) และพัลส์ลบซ้ำบน "C" จากนั้นวงจรจะทำซ้ำ

ในความเรียบง่ายที่ชัดเจนของการจัดการมีปัญหามากมาย ไม่เพียงแต่จำเป็นต้องติดตามตำแหน่งของสมอเท่านั้นเพื่อผลิต ชุดต่อไปพัลส์และควบคุมความเร็วในการหมุนโดยการปรับกระแสในขดลวด นอกจากนี้ คุณควรเลือกพารามิเตอร์ที่เหมาะสมที่สุดสำหรับการเร่งความเร็วและการชะลอตัว นอกจากนี้ยังเป็นที่น่าสังเกตว่าคอนโทรลเลอร์จะต้องติดตั้งบล็อกที่ให้คุณควบคุมการทำงานของมันได้ รูปร่างอุปกรณ์มัลติฟังก์ชั่นดังกล่าวสามารถเห็นได้ในรูปที่ 8


ข้าว. 8. ตัวควบคุมมอเตอร์แบบไม่มีแปรงมัลติฟังก์ชั่น

ข้อดีข้อเสีย

มอเตอร์ไร้แปรงถ่านมีข้อดีหลายประการ กล่าวคือ:

  • อายุการใช้งานยาวนานกว่าของสะสมทั่วไปมาก
  • ประสิทธิภาพสูง.
  • สายความเร็ว ความเร็วสูงสุดการหมุน
  • มันมีพลังมากกว่าซีดี
  • การไม่มีประกายไฟระหว่างการทำงานช่วยให้สามารถใช้ไดรฟ์ในสภาวะที่เป็นอันตรายจากไฟไหม้ได้
  • ไม่จำเป็นต้องระบายความร้อนเพิ่มเติม
  • ใช้งานง่าย

ทีนี้มาดูข้อเสียกัน ข้อเสียเปรียบที่สำคัญที่จำกัดการใช้ฐานข้อมูลคือต้นทุนที่ค่อนข้างสูง (โดยคำนึงถึงราคาของไดรเวอร์) ท่ามกลางความไม่สะดวกคือความเป็นไปไม่ได้ในการใช้ฐานข้อมูลโดยไม่มีไดรเวอร์ แม้แต่การเปิดใช้งานในระยะสั้น เช่น เพื่อตรวจสอบประสิทธิภาพ การซ่อมแซมปัญหาโดยเฉพาะอย่างยิ่งหากจำเป็นต้องกรอกลับ

เหตุผลหนึ่งที่นักออกแบบสนใจมอเตอร์ไฟฟ้าแบบไม่มีแปรงคือความต้องการมอเตอร์ความเร็วสูงที่มีขนาดเล็ก นอกจากนี้ เครื่องยนต์เหล่านี้ยังมีตำแหน่งที่แม่นยำมาก การออกแบบมีโรเตอร์แบบเคลื่อนย้ายได้และสเตเตอร์แบบตายตัว บนโรเตอร์มีแม่เหล็กถาวรหนึ่งอันหรือหลายอันเรียงตามลำดับ บนสเตเตอร์มีขดลวดที่สร้างสนามแม่เหล็ก

ควรสังเกตคุณลักษณะอื่นอีกประการหนึ่ง - มอเตอร์ไฟฟ้าแบบไม่มีแปรงสามารถมีจุดยึดได้ทั้งภายในและภายนอก ดังนั้นการก่อสร้างทั้งสองประเภทจึงอาจมีการใช้งานเฉพาะในด้านต่างๆ เมื่อสมอตั้งอยู่ภายใน ปรากฏว่าบรรลุมาก ความเร็วสูงการหมุน ดังนั้นมอเตอร์ดังกล่าวจึงทำงานได้ดีมากในการออกแบบระบบระบายความร้อน หากติดตั้งไดรฟ์โรเตอร์ภายนอก การวางตำแหน่งที่แม่นยำมากก็สามารถทำได้ รวมทั้งมีความทนทานต่อการโอเวอร์โหลดสูง บ่อยครั้ง มอเตอร์ดังกล่าวถูกใช้ในหุ่นยนต์ อุปกรณ์ทางการแพทย์ ในเครื่องมือกลที่มีการควบคุมโปรแกรมความถี่

มอเตอร์ทำงานอย่างไร

ในการตั้งค่าโรเตอร์ของมอเตอร์กระแสตรงแบบไม่มีแปรงถ่านให้เคลื่อนที่ได้ จำเป็นต้องใช้ไมโครคอนโทรลเลอร์พิเศษ ไม่สามารถเปิดในลักษณะเดียวกับซิงโครนัสหรือ เครื่องอะซิงโครนัส. ด้วยความช่วยเหลือของไมโครคอนโทรลเลอร์ การเปิดมอเตอร์ขดลวดเพื่อให้ทิศทางของเวกเตอร์สนามแม่เหล็กบนสเตเตอร์และกระดองเป็นมุมฉาก

กล่าวอีกนัยหนึ่ง ด้วยความช่วยเหลือของผู้ขับขี่ การควบคุมสิ่งที่กระทำบนโรเตอร์ของมอเตอร์แบบไม่มีแปรง ในการเคลื่อนย้ายเกราะจำเป็นต้องทำการสลับที่ถูกต้องในขดลวดสเตเตอร์ ขออภัย ไม่สามารถให้การควบคุมการหมุนที่ราบรื่นได้ แต่คุณสามารถเพิ่มโรเตอร์ของมอเตอร์ไฟฟ้าได้อย่างรวดเร็ว

ความแตกต่างระหว่างมอเตอร์แบบมีแปรงและแบบไม่มีแปรง

ข้อแตกต่างที่สำคัญคือ มอเตอร์ไร้แปรงถ่านสำหรับรุ่นต่างๆ จะไม่มีขดลวดที่โรเตอร์ ในกรณีของมอเตอร์ไฟฟ้าแบบสะสมจะมีขดลวดอยู่บนโรเตอร์ แต่มีการติดตั้งแม่เหล็กถาวรไว้ที่ส่วนที่อยู่กับที่ของเครื่องยนต์ นอกจากนี้ยังมีการติดตั้งตัวสะสมของการออกแบบพิเศษบนโรเตอร์ซึ่งเชื่อมต่อแปรงกราไฟท์ ด้วยความช่วยเหลือของพวกเขา แรงดันไฟฟ้าจะถูกนำไปใช้กับขดลวดของโรเตอร์ หลักการทำงานของมอเตอร์ไฟฟ้าแบบไม่มีแปรงก็แตกต่างกันอย่างมากเช่นกัน

เครื่องรวบรวมทำงานอย่างไร

ในการสตาร์ทมอเตอร์คอลเลคเตอร์ คุณจะต้องใช้แรงดันไฟฟ้ากับขดลวดของสนาม ซึ่งอยู่บนอาร์มาเจอร์โดยตรง ในกรณีนี้จะเกิดสนามแม่เหล็กคงที่ซึ่งโต้ตอบกับแม่เหล็กบนสเตเตอร์ซึ่งเป็นผลมาจากการที่กระดองและตัวสะสมจับจ้องอยู่ที่มันหมุน ในกรณีนี้ พลังงานจะถูกส่งไปยังขดลวดถัดไป วงจรจะทำซ้ำ

ความเร็วของการหมุนของโรเตอร์ขึ้นอยู่กับความเข้มของสนามแม่เหล็กโดยตรง และลักษณะสุดท้ายจะขึ้นอยู่กับขนาดของแรงดันไฟฟ้าโดยตรง ดังนั้นเพื่อเพิ่มหรือลดความเร็วจึงจำเป็นต้องเปลี่ยนแรงดันไฟฟ้า

หากต้องการใช้การย้อนกลับ คุณจะต้องเปลี่ยนขั้วของการเชื่อมต่อมอเตอร์เท่านั้น สำหรับการควบคุมดังกล่าว คุณไม่จำเป็นต้องใช้ไมโครคอนโทรลเลอร์พิเศษ คุณสามารถเปลี่ยนความเร็วในการหมุนได้โดยใช้ตัวต้านทานตัวแปรแบบธรรมดา

คุณสมบัติของเครื่องไร้แปรงถ่าน

แต่การควบคุมมอเตอร์ไฟฟ้าแบบไม่มีแปรงเป็นไปไม่ได้หากไม่มีตัวควบคุมพิเศษ จากข้อมูลนี้ เราสามารถสรุปได้ว่ามอเตอร์ประเภทนี้ไม่สามารถใช้เป็นเครื่องกำเนิดไฟฟ้าได้ เพื่อการควบคุมที่มีประสิทธิภาพ สามารถตรวจสอบตำแหน่งของโรเตอร์ได้โดยใช้เซ็นเซอร์ Hall หลายตัว ด้วยความช่วยเหลือของอุปกรณ์ง่าย ๆ ดังกล่าว คุณสามารถปรับปรุงประสิทธิภาพได้อย่างมาก แต่ค่าใช้จ่ายของมอเตอร์ไฟฟ้าจะเพิ่มขึ้นหลายเท่า

การสตาร์ทมอเตอร์ไร้แปรงถ่าน

มันไม่สมเหตุสมผลเลยที่จะสร้างไมโครคอนโทรลเลอร์ด้วยตัวคุณเอง ทางเลือกที่ดีที่สุดโดยจะมีการจัดซื้อเครื่องสําเร็จรูปแบบจีน แต่คุณต้องปฏิบัติตามคำแนะนำต่อไปนี้เมื่อเลือก:

  1. สังเกตกระแสสูงสุดที่อนุญาต ตัวเลือกนี้จำเป็นสำหรับ ประเภทต่างๆการทำงานของไดรฟ์ ผู้ผลิตมักระบุคุณลักษณะนี้โดยตรงในชื่อรุ่น ไม่ค่อยมีการระบุค่าซึ่งเป็นเรื่องปกติสำหรับโหมดพีคซึ่งไมโครคอนโทรลเลอร์ไม่สามารถทำงานได้เป็นเวลานาน
  2. สำหรับการทำงานอย่างต่อเนื่องต้องคำนึงถึงแรงดันไฟฟ้าสูงสุดด้วย
  3. อย่าลืมพิจารณาความต้านทานของวงจรไมโครคอนโทรลเลอร์ภายในทั้งหมด
  4. อย่าลืมคำนึงถึงจำนวนรอบสูงสุดที่เป็นปกติสำหรับการทำงานของไมโครคอนโทรลเลอร์นี้ โปรดทราบว่าจะไม่สามารถเพิ่มความเร็วสูงสุดได้ เนื่องจากมีการจำกัดไว้ที่ระดับซอฟต์แวร์
  5. อุปกรณ์ไมโครคอนโทรลเลอร์รุ่นราคาถูกมีพัลส์ในช่วง 7...8 kHz สำเนาราคาแพงสามารถตั้งโปรแกรมใหม่ได้และพารามิเตอร์นี้เพิ่มขึ้น 2-4 เท่า

พยายามเลือกไมโครคอนโทรลเลอร์ทุกประการเนื่องจากส่งผลต่อกำลังที่มอเตอร์ไฟฟ้าสามารถพัฒนาได้

มีการจัดการอย่างไร

ชุดควบคุมอิเล็กทรอนิกส์ช่วยให้สามารถสลับขดลวดของไดรฟ์ได้ ในการกำหนดช่วงเวลาของการเปลี่ยนโดยใช้ไดรเวอร์ ตำแหน่งของโรเตอร์จะถูกตรวจสอบโดยเซ็นเซอร์ Hall ที่ติดตั้งบนไดรฟ์

ในกรณีที่ไม่มีอุปกรณ์ดังกล่าว จำเป็นต้องอ่านแรงดันย้อนกลับ มันถูกสร้างขึ้นในขดลวดสเตเตอร์ที่ไม่ได้เชื่อมต่อกับ ช่วงเวลานี้เวลา. คอนโทรลเลอร์เป็นฮาร์ดแวร์-ซอฟต์แวร์ที่ซับซ้อน ซึ่งช่วยให้คุณติดตามการเปลี่ยนแปลงทั้งหมดและตั้งค่าลำดับการสลับได้อย่างแม่นยำที่สุด

มอเตอร์ไร้แปรงถ่านสามเฟส

มอเตอร์ไฟฟ้าไร้แปรงถ่านจำนวนมากสำหรับเครื่องบินรุ่นนั้นขับเคลื่อนด้วยกระแสตรง แต่ยังมีอินสแตนซ์สามเฟสที่ติดตั้งตัวแปลง พวกมันช่วยให้คุณสร้างพัลส์สามเฟสจากแรงดันคงที่

งานมีดังนี้:

  1. คอยล์ "A" รับพัลส์ด้วยค่าบวก บนขดลวด "B" - มีค่าลบ ด้วยเหตุนี้สมอจะเริ่มเคลื่อนที่ เซ็นเซอร์แก้ไขการกระจัดและสัญญาณจะถูกส่งไปยังตัวควบคุมสำหรับการสลับครั้งต่อไป
  2. คอยล์ "A" ถูกปิด ขณะที่พัลส์บวกจ่ายให้กับขดลวด "C" การสลับขดลวด "B" จะไม่เปลี่ยนแปลง
  3. คอยล์ "C" ได้รับพัลส์บวกและค่าลบไปที่ "A"
  4. จากนั้นให้จับคู่ "A" และ "B" เข้าด้วยกัน ค่าพัลส์บวกและลบจะถูกป้อนตามลำดับ
  5. จากนั้นแรงกระตุ้นบวกจะเข้าสู่ขดลวด "B" อีกครั้งและค่าลบจะไปที่ "C"
  6. ในขั้นตอนสุดท้าย คอยล์ "A" ถูกเปิดซึ่งได้รับพัลส์บวกและขั้วลบไปที่ C

จากนั้นวงจรทั้งหมดจะทำซ้ำ

ประโยชน์ของการใช้

เป็นการยากที่จะสร้างมอเตอร์ไฟฟ้าแบบไม่มีแปรงด้วยมือของคุณเอง และแทบจะเป็นไปไม่ได้เลยที่จะใช้การควบคุมไมโครคอนโทรลเลอร์ ดังนั้นจึงเป็นการดีที่สุดที่จะใช้การออกแบบอุตสาหกรรมสำเร็จรูป แต่อย่าลืมคำนึงถึงข้อดีที่ไดรฟ์ได้รับเมื่อใช้มอเตอร์แบบไม่มีแปรงถ่าน:

  1. อย่างมีนัยสำคัญ ทรัพยากรมากขึ้นกว่าเครื่องสะสม
  2. ประสิทธิภาพสูง
  3. กำลังสูงกว่ามอเตอร์ตัวสะสม
  4. ความเร็วในการหมุนเร็วขึ้นมาก
  5. ไม่มีการเกิดประกายไฟระหว่างการทำงาน ดังนั้นสามารถใช้ในสภาพแวดล้อมที่มีอันตรายจากไฟไหม้สูง
  6. การทำงานของไดรฟ์ที่ง่ายมาก
  7. ไม่จำเป็นต้องใช้ส่วนประกอบเพิ่มเติมในการทำความเย็นระหว่างการทำงาน

ท่ามกลางข้อเสียเป็นอย่างมาก ค่าใช้จ่ายสูง, หากเราคำนึงถึงราคาของคอนโทรลเลอร์ แม้จะเป็นเวลาสั้นๆ ก็ไม่สามารถเปิดมอเตอร์ไฟฟ้าดังกล่าวเพื่อตรวจสอบประสิทธิภาพได้ นอกจากนี้การซ่อมมอเตอร์ดังกล่าวทำได้ยากกว่ามากเนื่องจากคุณสมบัติการออกแบบ