มอเตอร์ไร้แปรงถ่านอันทรงพลัง มอเตอร์กระแสตรงไร้แปรงถ่าน: คุณสมบัติและหลักการทำงาน แผนภาพที่มีจุดกึ่งกลาง

ทำงาน มอเตอร์ไร้แปรงถ่านขึ้นอยู่กับ ไดรฟ์ไฟฟ้าทำให้เกิดสนามแม่เหล็กหมุน ปัจจุบันมีอุปกรณ์หลายประเภทที่มี ลักษณะต่างๆ. ด้วยการพัฒนาเทคโนโลยีและการใช้วัสดุใหม่ที่มีแรงบีบบังคับสูงและระดับความอิ่มตัวของแม่เหล็กที่เพียงพอจึงเป็นไปได้ที่จะได้รับสนามแม่เหล็กแรงสูงและเป็นผลให้โครงสร้างวาล์วชนิดใหม่ซึ่ง ไม่มีขดลวดบนองค์ประกอบโรเตอร์หรือสตาร์ทเตอร์ การใช้สวิตช์ประเภทเซมิคอนดักเตอร์อย่างแพร่หลายซึ่งมีกำลังสูงและต้นทุนที่สมเหตุสมผลช่วยเร่งการสร้างการออกแบบดังกล่าว อำนวยความสะดวกในการดำเนินการ และขจัดปัญหาในการเปลี่ยนหลายๆ อย่าง

หลักการทำงาน

ความน่าเชื่อถือที่เพิ่มขึ้น ลดต้นทุน และการผลิตที่ง่ายกว่านั้นทำให้มั่นใจได้ว่าไม่มีส่วนประกอบสวิตช์เชิงกล ขดลวดโรเตอร์ และแม่เหล็กถาวร ในเวลาเดียวกัน ประสิทธิภาพที่เพิ่มขึ้นก็เป็นไปได้เนื่องจากการสูญเสียความเสียดทานในระบบสะสมลดลง มอเตอร์ไร้แปรงถ่านสามารถทำงานบนไฟฟ้ากระแสสลับหรือกระแสไฟต่อเนื่องได้ รุ่นหลังมีความคล้ายคลึงกับHis ลักษณะเฉพาะคือการก่อตัวของสนามแม่เหล็กหมุนและการประยุกต์ใช้กระแสพัลซิ่ง มันขึ้นอยู่กับสวิตช์อิเล็กทรอนิกส์ซึ่งเพิ่มความซับซ้อนของการออกแบบ

การคำนวณตำแหน่ง

การสร้างพัลส์เกิดขึ้นในระบบควบคุมหลังจากสัญญาณที่สะท้อนถึงตำแหน่งของโรเตอร์ ระดับของแรงดันและการจ่ายโดยตรงขึ้นอยู่กับความเร็วของการหมุนของมอเตอร์ เซ็นเซอร์ในสตาร์ทเตอร์จะตรวจจับตำแหน่งของโรเตอร์และส่งสัญญาณไฟฟ้า แอมพลิจูดของสัญญาณจะเปลี่ยนแปลงไปพร้อมกับขั้วแม่เหล็กที่เคลื่อนเข้าใกล้เซ็นเซอร์ เทคนิคการจัดตำแหน่งแบบไร้เซนเซอร์ยังมีอยู่ รวมถึงเส้นทางปัจจุบันและทรานสดิวเซอร์ PWM บนขั้วอินพุตให้การบำรุงรักษาระดับแรงดันไฟฟ้าแบบแปรผันและการควบคุมพลังงาน

สำหรับโรเตอร์ที่มีแม่เหล็กถาวร ไม่จำเป็นต้องใช้กระแสไฟ เนื่องจากขดลวดโรเตอร์ไม่มีการสูญเสีย มอเตอร์ไขควงแบบไม่มีแปรงมีความเฉื่อยต่ำเนื่องจากไม่มีขดลวดและตัวสับเปลี่ยนแบบกลไก ดังนั้นจึงสามารถใช้งานได้ที่ความเร็วสูงโดยไม่มีประกายไฟและสัญญาณรบกวนแม่เหล็กไฟฟ้า กระแสสูงและกระจายความร้อนได้ง่ายขึ้นโดยการวางวงจรความร้อนบนสเตเตอร์ นอกจากนี้ยังควรสังเกตว่ามีหน่วยอิเล็กทรอนิกส์ในตัวในบางรุ่น

องค์ประกอบแม่เหล็ก

ตำแหน่งของแม่เหล็กอาจแตกต่างกันไปตามขนาดของมอเตอร์ เช่น บนเสาหรือรอบๆ โรเตอร์ทั้งหมด การสร้างแม่เหล็กคุณภาพสูงที่มีกำลังมากกว่าสามารถทำได้โดยใช้นีโอไดเมียมร่วมกับโบรอนและเหล็ก ทั้งๆที่มี ประสิทธิภาพสูงการทำงาน มอเตอร์ไร้แปรงถ่านสำหรับไขควงแม่เหล็กถาวรมีข้อเสียบางประการ รวมถึงการสูญเสียคุณสมบัติแม่เหล็กที่อุณหภูมิสูง แต่มีประสิทธิภาพมากกว่าและไม่มีการสูญเสียเมื่อเทียบกับเครื่องจักรที่มีขดลวดในการออกแบบ

พัลส์ของอินเวอร์เตอร์กำหนดกลไก ด้วยความถี่ในการจ่ายคงที่ มอเตอร์จะทำงานที่ความเร็วคงที่ในวงจรเปิด ดังนั้นความเร็วในการหมุนจึงแตกต่างกันไปตามระดับของความถี่ในการจ่าย

ลักษณะเฉพาะ

ทำงานในโหมดตั้งค่าและมีฟังก์ชันการทำงานของแปรงอะนาล็อก ความเร็วขึ้นอยู่กับแรงดันไฟฟ้าที่ใช้ กลไกนี้มีข้อดีหลายประการ:

  • ไม่มีการเปลี่ยนแปลงในการสะกดจิตและการรั่วไหลของกระแส
  • สอดคล้องกับความเร็วของการหมุนและแรงบิดเอง
  • ความเร็วไม่ จำกัด เฉพาะการส่งผลกระทบต่อตัวสะสมและขดลวดไฟฟ้าแบบหมุน
  • ไม่จำเป็นต้องใช้สวิตช์และขดลวดกระตุ้น
  • แม่เหล็กที่ใช้มีน้ำหนักเบาและขนาดกะทัดรัด
  • โมเมนต์แรงสูง
  • ความอิ่มตัวของพลังงานและประสิทธิภาพ

การใช้งาน

DC ที่มีแม่เหล็กถาวรส่วนใหญ่จะพบในอุปกรณ์ที่มีกำลังไฟไม่เกิน 5 กิโลวัตต์ ในอุปกรณ์ที่ทรงพลังกว่านั้น การใช้งานนั้นไร้เหตุผล นอกจากนี้ยังเป็นที่น่าสังเกตว่าแม่เหล็กในเครื่องยนต์ประเภทนี้มีความอ่อนไหวเป็นพิเศษต่อ อุณหภูมิสูงและทุ่งนาที่แข็งแรง ตัวเลือกการเหนี่ยวนำและแปรงไม่มีข้อเสียดังกล่าว เครื่องยนต์ถูกใช้อย่างแข็งขันในการขับเคลื่อนยานยนต์เนื่องจากไม่มีแรงเสียดทานในท่อร่วม ในบรรดาคุณสมบัติต่างๆ จำเป็นต้องเน้นย้ำถึงความสม่ำเสมอของแรงบิดและกระแสไฟ ซึ่งทำให้เสียงอะคูสติกลดลง

เผยแพร่เมื่อ 11.04.2013

อุปกรณ์ที่ใช้ร่วมกัน (Inrunner, Outrunner)

มอเตอร์ไร้แปรงถ่าน กระแสตรงประกอบด้วยโรเตอร์ที่มีแม่เหล็กถาวรและสเตเตอร์ที่มีขดลวด เครื่องยนต์มีสองประเภท: ผู้บุกเบิกซึ่งแม่เหล็กโรเตอร์อยู่ภายในสเตเตอร์ด้วยขดลวดและ รองชนะเลิศซึ่งแม่เหล็กตั้งอยู่ด้านนอกและหมุนรอบสเตเตอร์คงที่ด้วยขดลวด

โครงการ ผู้บุกเบิกมักใช้สำหรับมอเตอร์ความเร็วสูงที่มีเสาจำนวนน้อย รองชนะเลิศถ้าจำเป็น ให้ใช้มอเตอร์แรงบิดสูงที่มีความเร็วค่อนข้างต่ำ โครงสร้าง Inrunners นั้นง่ายกว่าเนื่องจากสเตเตอร์คงที่สามารถใช้เป็นที่อยู่อาศัยได้ สามารถติดตั้งอุปกรณ์ติดตั้งได้ ในกรณีของ Outrunners ส่วนนอกทั้งหมดจะหมุน เครื่องยนต์ถูกยึดด้วยเพลาคงที่หรือชิ้นส่วนสเตเตอร์ ในกรณีของมอเตอร์ล้อ การยึดจะดำเนินการกับแกนคงที่ของสเตเตอร์ สายไฟจะถูกส่งไปยังสเตเตอร์ผ่านแกนกลวง

แม่เหล็กและเสา

จำนวนขั้วบนโรเตอร์เป็นเลขคู่ รูปร่างของแม่เหล็กที่ใช้มักจะเป็นรูปสี่เหลี่ยมผืนผ้า แม่เหล็กทรงกระบอกถูกใช้น้อยกว่า มีการติดตั้งเสาสลับ

จำนวนแม่เหล็กไม่สอดคล้องกับจำนวนขั้วเสมอไป แม่เหล็กหลายอันสามารถก่อตัวเป็นขั้วเดียว:

ในกรณีนี้ แม่เหล็ก 8 ตัวจะสร้าง 4 ขั้ว ขนาดของแม่เหล็กขึ้นอยู่กับรูปทรงของมอเตอร์และลักษณะของมอเตอร์ ยิ่งใช้แม่เหล็กแรงมากเท่าใด โมเมนต์ของแรงที่พัฒนาขึ้นโดยมอเตอร์บนเพลาก็จะยิ่งสูงขึ้น

แม่เหล็กบนโรเตอร์ถูกยึดด้วยกาวพิเศษ ไม่ค่อยพบเห็นการออกแบบที่มีที่ยึดแม่เหล็ก วัสดุโรเตอร์สามารถเป็นสื่อกระแสไฟฟ้า (เหล็ก) ไม่เป็นสื่อกระแสไฟฟ้า (โลหะผสมอลูมิเนียม พลาสติก ฯลฯ) รวมกันได้

ขดลวดและฟัน

คดเคี้ยวของปีศาจสามเฟส มอเตอร์สับเปลี่ยนทำด้วยลวดทองแดง ลวดสามารถเป็นแบบแกนเดียวหรือประกอบด้วยแกนหุ้มฉนวนหลายแกน สเตเตอร์ทำจากเหล็กนำไฟฟ้าหลายแผ่นพับเข้าหากัน

จำนวนฟันสเตเตอร์ต้องหารด้วยจำนวนเฟส เหล่านั้น. สำหรับมอเตอร์ไร้แปรงถ่านสามเฟส จำนวนฟันสเตเตอร์ ต้องหารด้วย3 .ลงตัว. จำนวนฟันสเตเตอร์สามารถมีได้มากหรือน้อยกว่าจำนวนขั้วบนโรเตอร์ ตัวอย่างเช่นมีมอเตอร์ที่มีโครงร่าง: 9 ฟัน / 12 แม่เหล็ก; 51 ฟัน/46 แม่เหล็ก

เครื่องยนต์ที่มีสเตเตอร์แบบ 3 ฟันนั้นใช้งานน้อยมาก เนื่องจากมีเพียงสองเฟสเท่านั้นที่ทำงานได้ตลอดเวลา (เมื่อเปิดโดยดาว) แรงแม่เหล็กจึงกระทำต่อโรเตอร์ไม่เท่ากันทั่วทั้งเส้นรอบวง (ดูรูป)

แรงที่กระทำต่อโรเตอร์พยายามบิดเบี้ยว ซึ่งทำให้เกิดการสั่นสะท้านเพิ่มขึ้น เพื่อขจัดผลกระทบนี้สเตเตอร์ทำด้วยฟันจำนวนมากและขดลวดจะกระจายไปทั่วฟันของเส้นรอบวงทั้งหมดของสเตเตอร์ให้เท่ากันมากที่สุด

ในกรณีนี้ แรงแม่เหล็กที่กระทำต่อโรเตอร์จะหักล้างซึ่งกันและกัน ไม่มีความไม่สมดุล

ตัวเลือกสำหรับการกระจายของขดลวดเฟสโดยฟันสเตเตอร์

ตัวเลือกการไขลานสำหรับฟัน 9 ซี่


ตัวเลือกการไขลานสำหรับฟัน 12 ซี่

ในแผนภาพข้างต้น จำนวนฟันจะถูกเลือกในลักษณะที่ หารด้วย3. ตัวอย่างเช่น เมื่อ 36 ฟันคิดเป็น 12 ฟันต่อเฟส สามารถแบ่งฟันได้ 12 ซี่ ดังนี้

รูปแบบที่ต้องการมากที่สุดคือ 6 กลุ่ม 2 ซี่

มีอยู่ มอเตอร์ที่มีฟัน 51 ซี่บนสเตเตอร์! 17 ฟันต่อเฟส 17 เป็นจำนวนเฉพาะ, มันหารด้วย 1 และตัวมันเองเท่านั้น. วิธีการกระจายคดเคี้ยวเหนือฟัน? อนิจจา ฉันไม่สามารถหาตัวอย่างและเทคนิคในเอกสารที่จะช่วยแก้ปัญหานี้ได้ ปรากฎว่ามีการกระจายคดเคี้ยวดังนี้:

พิจารณาวงจรที่คดเคี้ยวจริง

โปรดทราบว่าการม้วนมีทิศทางการม้วนที่แตกต่างกันบนฟันที่ต่างกัน ทิศทางที่คดเคี้ยวต่างกันจะแสดงด้วยตัวพิมพ์ใหญ่และตัวพิมพ์ใหญ่ รายละเอียดเกี่ยวกับการออกแบบขดลวดสามารถพบได้ในเอกสารที่นำเสนอในตอนท้ายของบทความ

ขดลวดแบบคลาสสิกทำด้วยลวดเส้นเดียวต่อเฟสเดียว เหล่านั้น. ขดลวดทั้งหมดบนฟันของเฟสเดียวเชื่อมต่อกันเป็นอนุกรม

ขดลวดของฟันสามารถต่อขนานกันได้

นอกจากนี้ยังสามารถรวมรวมเข้าด้วยกัน

การเชื่อมต่อแบบขนานและแบบรวมช่วยลดการเหนี่ยวนำของขดลวดซึ่งนำไปสู่การเพิ่มขึ้นของกระแสสเตเตอร์ (ด้วยเหตุนี้กำลัง) และความเร็วของมอเตอร์

มูลค่าการซื้อขายไฟฟ้าและของจริง

หากโรเตอร์ของมอเตอร์มีสองขั้ว จากนั้นเมื่อหมุนสนามแม่เหล็กบนสเตเตอร์จนสุดหนึ่งครั้ง โรเตอร์ก็จะหมุนหนึ่งรอบเต็ม ด้วย 4 ขั้ว ต้องใช้สนามแม่เหล็กบนสเตเตอร์สองรอบเพื่อหมุนเพลามอเตอร์ให้ครบหนึ่งรอบ ยิ่งจำนวนเสาของโรเตอร์มากเท่าใด การหมุนรอบแกนมอเตอร์ก็จะยิ่งต้องใช้ไฟฟ้ามากขึ้นเท่านั้น ตัวอย่างเช่น เรามีแม่เหล็ก 42 ตัวบนโรเตอร์ ในการหมุนโรเตอร์หนึ่งรอบ จำเป็นต้องมีรอบไฟฟ้า 42/2 = 21 รอบ คุณสมบัตินี้สามารถใช้เป็นตัวลดขนาดได้ หยิบขึ้นมา จำนวนเงินที่ต้องการเสาคุณจะได้มอเตอร์ที่ต้องการ ลักษณะความเร็ว. นอกจากนี้ ความเข้าใจในกระบวนการนี้จำเป็นสำหรับเราในอนาคต เมื่อเลือกพารามิเตอร์ของคอนโทรลเลอร์

เซ็นเซอร์ตำแหน่ง

การออกแบบเครื่องยนต์ที่ไม่มีเซ็นเซอร์นั้นแตกต่างจากเครื่องยนต์ที่มีเซ็นเซอร์เฉพาะในกรณีที่ไม่มีตัวหลัง อื่น ความแตกต่างพื้นฐานไม่. เซ็นเซอร์ตำแหน่งที่พบบ่อยที่สุดตามเอฟเฟกต์ฮอลล์ เซ็นเซอร์ตอบสนองต่อสนามแม่เหล็ก โดยปกติแล้วจะอยู่บนสเตเตอร์ในลักษณะที่ได้รับผลกระทบจากแม่เหล็กโรเตอร์ มุมระหว่างเซ็นเซอร์จะต้องเป็น 120 องศา

ความหมาย "ไฟฟ้า" องศา เหล่านั้น. สำหรับมอเตอร์แบบหลายขั้ว การจัดเรียงทางกายภาพของเซ็นเซอร์อาจเป็นดังนี้:


บางครั้งเซ็นเซอร์อยู่นอกเครื่องยนต์ นี่คือตัวอย่างหนึ่งของตำแหน่งของเซ็นเซอร์ อันที่จริงมันเป็นเครื่องยนต์ที่ไม่มีเซ็นเซอร์ ดังนั้น ด้วยวิธีง่ายๆมันถูกติดตั้งด้วยเซ็นเซอร์ในห้องโถง

ในเครื่องยนต์บางตัว มีการติดตั้งเซ็นเซอร์บน อุปกรณ์พิเศษซึ่งทำให้คุณสามารถเคลื่อนย้ายเซ็นเซอร์ได้ภายในขอบเขตที่กำหนด ด้วยความช่วยเหลือของอุปกรณ์ดังกล่าว เวลาจะถูกตั้งค่า อย่างไรก็ตาม หากมอเตอร์ต้องการการย้อนกลับ (การหมุนใน ด้านหลัง) จะต้องตั้งค่าเซ็นเซอร์ชุดที่สองให้ถอยหลัง เนื่องจากจังหวะเวลาไม่สำคัญในตอนเริ่มต้นและ รอบต่ำคุณสามารถตั้งค่าเซ็นเซอร์ไปที่จุดศูนย์ และปรับมุมนำโดยทางโปรแกรมเมื่อเครื่องยนต์เริ่มหมุน

ลักษณะสำคัญของเครื่องยนต์

แต่ละเครื่องยนต์ถูกคำนวณสำหรับความต้องการเฉพาะและมีลักษณะสำคัญดังต่อไปนี้:

  • โหมดการทำงานที่เครื่องยนต์ได้รับการออกแบบ: ระยะยาวหรือระยะสั้น ยาวโหมดการทำงานบ่งบอกว่าเครื่องยนต์สามารถทำงานได้นานหลายชั่วโมง เครื่องยนต์ดังกล่าวคำนวณในลักษณะที่การถ่ายเทความร้อนสู่สิ่งแวดล้อมสูงกว่าการปลดปล่อยความร้อนของเครื่องยนต์เอง ในกรณีนี้จะไม่อุ่นเครื่อง ตัวอย่าง: การระบายอากาศ บันไดเลื่อน หรือตัวขับสายพานลำเลียง ในระยะสั้น -หมายความว่าเครื่องยนต์จะเปิดขึ้นในช่วงเวลาสั้น ๆ ในระหว่างนั้นจะไม่มีเวลาอุ่นเครื่องจนถึงอุณหภูมิสูงสุดหลังจากนั้น เป็นเวลานานเวลาที่เครื่องยนต์จะเย็นลง ตัวอย่าง: ไดรฟ์ลิฟต์ เครื่องโกนหนวดไฟฟ้า เครื่องเป่าผม
  • ความต้านทานของขดลวดมอเตอร์. ความต้านทานของขดลวดมอเตอร์ส่งผลกระทบ ประสิทธิภาพของเครื่องยนต์. ยิ่งความต้านทานต่ำเท่าไรก็ยิ่งมีประสิทธิภาพมากขึ้นเท่านั้น โดยการวัดความต้านทาน คุณสามารถค้นหาการมีอยู่ วงจรอินเตอร์ในการม้วน ความต้านทานของขดลวดมอเตอร์เท่ากับหนึ่งในพันของโอห์ม ในการวัดคุณต้อง อุปกรณ์พิเศษหรือเทคนิคการวัดพิเศษ
  • ขีดสุด แรงดันใช้งาน . แรงดันไฟฟ้าสูงสุดที่ขดลวดสเตเตอร์สามารถทนได้ แรงดันไฟฟ้าสูงสุดสัมพันธ์กับพารามิเตอร์ต่อไปนี้
  • RPM สูงสุด. บางครั้งก็ไม่ได้ระบุความเร็วสูงสุด แต่ kv-จำนวนรอบของมอเตอร์ต่อโวลต์ที่ไม่มีโหลดบนเพลา เมื่อคูณตัวเลขนี้ด้วยแรงดันไฟฟ้าสูงสุด เราจะได้ความเร็วสูงสุดของเครื่องยนต์โดยไม่ต้องโหลดบนเพลา
  • กระแสสูงสุด. กระแสไฟที่คดเคี้ยวสูงสุดที่อนุญาต ตามกฎแล้วจะมีการระบุเวลาที่มอเตอร์สามารถทนต่อกระแสที่ระบุได้ ขีด จำกัด กระแสสูงสุดเกี่ยวข้องกับความร้อนสูงเกินไปของขดลวด ดังนั้น เมื่อ อุณหภูมิต่ำสภาพแวดล้อม เวลาทำงานจริงที่มีกระแสสูงสุดจะนานขึ้น และในความร้อน มอเตอร์จะไหม้เร็วขึ้น
  • กำลังเครื่องยนต์สูงสุดเกี่ยวข้องโดยตรงกับพารามิเตอร์ก่อนหน้า นี่คือกำลังสูงสุดที่เครื่องยนต์สามารถพัฒนาได้ในช่วงเวลาสั้นๆ โดยปกติจะใช้เวลาไม่กี่วินาที ที่ งานยาวบน พลังสูงสุดเครื่องยนต์ร้อนจัดและความล้มเหลวอย่างหลีกเลี่ยงไม่ได้
  • กำลังไฟพิกัด. กำลังที่เครื่องยนต์สามารถพัฒนาได้ตลอดระยะเวลาเปิดเครื่อง
  • มุมล่วงหน้าของเฟส (เวลา). ขดลวดสเตเตอร์มีการเหนี่ยวนำซึ่งชะลอการเติบโตของกระแสในขดลวด กระแสจะถึงสูงสุดหลังจากนั้นครู่หนึ่ง เพื่อชดเชยความล่าช้านี้ การสลับเฟสจะดำเนินการล่วงหน้าบางส่วน คล้ายกับการจุดระเบิดของเครื่องยนต์ สันดาปภายในโดยที่มุมการจุดระเบิดถูกตั้งไว้ โดยคำนึงถึงเวลาการจุดระเบิดของน้ำมันเชื้อเพลิง

คุณควรให้ความสนใจกับความจริงที่ว่าคุณจะไม่ได้รับที่พิกัดโหลด ความเร็วสูงสุดบนเพลามอเตอร์ kvระบุไว้สำหรับเครื่องยนต์ที่ไม่ได้บรรจุ เมื่อเปิดเครื่องจากแบตเตอรี่ควรคำนึงถึง "การจม" ของแรงดันไฟฟ้าที่จ่ายภายใต้ภาระซึ่งจะลดความเร็วของเครื่องยนต์สูงสุดด้วย

มอเตอร์ไร้แปรงถ่าน

มอเตอร์ไฟฟ้าไร้แปรงถ่านเข้ามาสร้างแบบจำลองในช่วง 5-7 ปีที่ผ่านมา ต่างจากมอเตอร์คอลเลคเตอร์ตรงที่ขับเคลื่อนด้วยกระแสสลับสามเฟส มอเตอร์ไร้แปรงถ่านทำงานอย่างมีประสิทธิภาพในช่วง RPM ที่กว้างขึ้นและมีมากกว่า ประสิทธิภาพสูง. การออกแบบมอเตอร์นั้นง่ายกว่า ไม่มีชุดแปรง และไม่จำเป็นต้องมี ซ่อมบำรุง. เราสามารถพูดได้ว่ามอเตอร์ไร้แปรงถ่านแทบไม่สึกหรอ ค่าใช้จ่ายของมอเตอร์แบบไม่มีแปรงจะสูงกว่ามอเตอร์แบบมีแปรงเล็กน้อย เนื่องจากมอเตอร์แบบไม่มีแปรงถ่านทั้งหมดมีตลับลูกปืนและโดยทั่วไปแล้วจะมีคุณภาพสูงกว่า แม้ว่าช่องว่างราคาระหว่างมอเตอร์ที่มีแปรงถ่านที่ดีและมอเตอร์ไร้แปรงถ่านในระดับเดียวกันนั้นไม่ใหญ่มาก

ตามการออกแบบ มอเตอร์ไร้แปรงถ่านถูกแบ่งออกเป็นสองกลุ่ม: ผู้บุกรุก (ออกเสียงว่า "ผู้บุกรุก") และกลุ่มผู้วิ่งหนี (ออกเสียงว่า "ผู้วิ่งหนี") มอเตอร์ของกลุ่มแรกมีขดลวดอยู่บนพื้นผิวด้านในของตัวเรือน และโรเตอร์แม่เหล็กหมุนอยู่ภายใน มอเตอร์ของกลุ่มที่สอง - "ผู้แซงหน้า" มีขดลวดคงที่ภายในมอเตอร์ซึ่งตัวเรือนหมุนด้วยแม่เหล็กถาวรที่วางอยู่บนผนังด้านใน จำนวนขั้วแม่เหล็กที่ใช้ในมอเตอร์ไร้แปรงถ่านอาจแตกต่างกันไป จากจำนวนเสา คุณสามารถตัดสินแรงบิดและความเร็วของเครื่องยนต์ได้ มอเตอร์ที่มีโรเตอร์สองขั้วมีความเร็วในการหมุนสูงสุดที่แรงบิดต่ำสุด มอเตอร์เหล่านี้สามารถเป็น "ผู้บุกเบิก" โดยการออกแบบเท่านั้น มอเตอร์ดังกล่าวมักจะขายพร้อมกับเฟืองดาวเคราะห์ที่ติดตั้งอยู่แล้ว เนื่องจากรอบการหมุนของใบพัดนั้นสูงเกินไปสำหรับการหมุนของใบพัดโดยตรง บางครั้งใช้มอเตอร์ดังกล่าวโดยไม่มีกระปุกเกียร์ ตัวอย่างเช่น ใช้กับเครื่องบินจำลองการแข่งรถ มอเตอร์ที่มีเสาจำนวนมากมีความเร็วในการหมุนที่ต่ำกว่า แต่มีแรงบิดมากกว่า มอเตอร์ดังกล่าวอนุญาตให้ใช้ใบพัดขนาดใหญ่โดยไม่ต้องใช้กระปุกเกียร์ โดยทั่วไป ใบพัดที่มีเส้นผ่านศูนย์กลางขนาดใหญ่และระยะพิทช์น้อยที่ความเร็วรอบค่อนข้างต่ำจะให้แรงขับมากกว่า แต่รายงานแบบจำลอง ความเร็วต่ำ, ในขณะที่ใบพัดขนาดเล็กที่มีระยะพิทช์สูงบน เรฟสูงจัดเตรียม ความเร็วสูงด้วยแรงขับที่ค่อนข้างน้อย ดังนั้น มอเตอร์แบบหลายขั้วจึงเหมาะอย่างยิ่งสำหรับรุ่นที่ต้องการอัตราส่วนแรงขับต่อน้ำหนักสูงและมอเตอร์สองขั้วที่ไม่มีกระปุกเกียร์จึงเหมาะอย่างยิ่งสำหรับรุ่นความเร็วสูง สำหรับการเลือกเครื่องยนต์และใบพัดสำหรับรุ่นใดรุ่นหนึ่งที่แม่นยำยิ่งขึ้น คุณสามารถใช้โปรแกรม MotoCalc พิเศษได้

เนื่องจากมอเตอร์ไร้แปรงถ่านขับเคลื่อนโดยกระแสสลับ จึงจำเป็นต้องมีตัวควบคุมพิเศษ (ตัวควบคุม) เพื่อทำงาน ซึ่งจะแปลงกระแสตรงจากแบตเตอรี่เป็นกระแสสลับ ESC สำหรับมอเตอร์ไร้แปรงถ่านเป็นอุปกรณ์ที่ตั้งโปรแกรมได้ซึ่งช่วยให้คุณควบคุมพารามิเตอร์ที่สำคัญทั้งหมดของมอเตอร์ได้ พวกเขาอนุญาตให้ไม่เพียง แต่เปลี่ยนความเร็วและทิศทางของมอเตอร์ แต่ยังช่วยให้เรียบหรือ .ขึ้นอยู่กับความต้องการ เริ่มกะทันหันการจำกัดกระแสไฟสูงสุด ฟังก์ชัน "เบรก" และการตั้งค่าเครื่องยนต์ละเอียดอื่นๆ อีกจำนวนหนึ่งตามความต้องการของผู้สร้างโมเดล ในการตั้งโปรแกรมคอนโทรลเลอร์ อุปกรณ์จะใช้เชื่อมต่อกับคอมพิวเตอร์หรือใน สภาพสนามสามารถทำได้โดยใช้เครื่องส่งสัญญาณและจัมเปอร์พิเศษ

ผู้ผลิต มอเตอร์ไร้แปรงถ่านและมีหน่วยงานกำกับดูแลมากมายสำหรับพวกเขา โครงสร้างและขนาด มอเตอร์ไร้แปรงถ่านก็มีความแตกต่างกันอย่างมาก นอกจากนี้, การผลิตอิสระมอเตอร์ไร้แปรงถ่านที่ใช้ชิ้นส่วนจากไดรฟ์ซีดีและมอเตอร์ไร้แปรงถ่านสำหรับอุตสาหกรรมอื่นๆ ได้กลายเป็นสิ่งที่พบเห็นได้ทั่วไปในช่วงไม่กี่ครั้งที่ผ่านมา บางทีอาจเป็นเพราะเหตุนี้เองที่มอเตอร์ไร้แปรงถ่านในปัจจุบันจึงไม่มีการจัดประเภททั่วไปที่ใกล้เคียงกันเช่นเดียวกับตัวสะสม มาสรุปกันสั้นๆ ทุกวันนี้ มอเตอร์แบบมีแปรงถ่านส่วนใหญ่จะใช้กับรุ่นงานอดิเรกราคาประหยัด หรือรุ่นสปอร์ตระดับเริ่มต้น มอเตอร์เหล่านี้มีราคาไม่แพง ใช้งานง่าย และยังคงเป็นมอเตอร์ไฟฟ้ารุ่นยอดนิยม พวกเขากำลังถูกแทนที่ด้วยมอเตอร์แบบไม่มีแปรง ปัจจัยที่ จำกัด เพียงอย่างเดียวคือราคาของพวกเขา เมื่อใช้ร่วมกับเครื่องปรับลม มอเตอร์แบบไม่มีแปรงจะมีราคาเพิ่มขึ้น 30-70% อย่างไรก็ตาม ราคาสำหรับอุปกรณ์อิเล็กทรอนิกส์และมอเตอร์กำลังลดลง และการเคลื่อนตัวของมอเตอร์ไฟฟ้าแบบสะสมจากการสร้างแบบจำลองอย่างค่อยเป็นค่อยไปนั้นเป็นเพียงเรื่องของเวลาเท่านั้น

AVR492: AT90PWM3 การควบคุมมอเตอร์กระแสตรงไร้แปรงถ่าน

คุณสมบัติที่โดดเด่น:

  • ข้อมูลทั่วไปเกี่ยวกับ BKEPT
  • ใช้ตัวควบคุมเวทีกำลัง
  • การใช้ฮาร์ดแวร์
  • ตัวอย่างรหัสโปรแกรม

บทนำ

บันทึกการใช้งานนี้อธิบายวิธีการใช้การควบคุมมอเตอร์กระแสตรงแบบไม่มีแปรงถ่าน (BCEM) โดยใช้ตัวเข้ารหัสตามไมโครคอนโทรลเลอร์ AT90PWM3 AVR

แกน AVR ประสิทธิภาพสูงของไมโครคอนโทรลเลอร์ซึ่งประกอบด้วยตัวควบคุมระยะกำลัง ช่วยให้คุณติดตั้งอุปกรณ์ควบคุมมอเตอร์กระแสตรงแบบไม่มีแปรงถ่านความเร็วสูงได้

เอกสารนี้อธิบายสั้น ๆ เกี่ยวกับหลักการทำงานของมอเตอร์กระแสตรงไร้แปรงถ่าน กล่าวถึงรายละเอียดการควบคุม UCSF ในโหมดสัมผัส และอธิบายแผนภาพวงจรของการออกแบบอ้างอิง ATAVRMC100 ซึ่งอ้างอิงตามคำแนะนำการใช้งานนี้

มีการกล่าวถึงการใช้งานซอฟต์แวร์ด้วยลูปควบคุมที่ใช้ซอฟต์แวร์ตามตัวควบคุม PID เพื่อควบคุมกระบวนการเปลี่ยน ส่อให้เห็นถึงการใช้เซ็นเซอร์ตำแหน่งตามเอฟเฟกต์ฮอลล์เท่านั้น

หลักการทำงาน

ขอบเขตของการใช้ BKEPT นั้นเพิ่มขึ้นอย่างต่อเนื่องซึ่งเกิดจากข้อดีหลายประการ:

  1. ไม่มีชุดประกอบที่หลากหลายซึ่งทำให้การบำรุงรักษาง่ายขึ้นหรือลดลง
  2. การสร้างระดับเสียงอะคูสติกและไฟฟ้าที่ต่ำกว่าเมื่อเปรียบเทียบกับมอเตอร์กระแสตรงแบบสับเปลี่ยนกระแสตรงสากล
  3. ความสามารถในการทำงานในสภาพแวดล้อมที่เป็นอันตราย (กับผลิตภัณฑ์ที่ติดไฟได้)
  4. สมดุลที่ดีระหว่างน้ำหนักและกำลัง...

มอเตอร์ประเภทนี้มีความเฉื่อยเล็กน้อยของโรเตอร์ tk ขดลวดตั้งอยู่บนสเตเตอร์ สวิตช์ถูกควบคุมด้วยระบบอิเล็กทรอนิกส์ โมเมนต์สวิตชิ่งถูกกำหนดโดยข้อมูลจากเซ็นเซอร์ตำแหน่ง หรือโดยการวัดแรงเคลื่อนไฟฟ้าด้านหลังที่เกิดจากขดลวด

เมื่อควบคุมโดยใช้เซ็นเซอร์ BKEPT จะประกอบด้วยสามส่วนหลัก: สเตเตอร์ โรเตอร์ และเซ็นเซอร์ฮอลล์

สเตเตอร์ของ BKEPT แบบสามเฟสแบบคลาสสิกประกอบด้วยสามขดลวด ในมอเตอร์จำนวนมาก ขดลวดจะถูกแบ่งออกเป็นหลายส่วนเพื่อลดการกระเพื่อมของแรงบิด

รูปที่ 1 แสดงวงจรไฟฟ้าเทียบเท่าสเตเตอร์ ประกอบด้วยขดลวดสามเส้น แต่ละขดลวดประกอบด้วยสามองค์ประกอบที่เชื่อมต่อเป็นอนุกรม: การเหนี่ยวนำ ความต้านทาน และแรงเคลื่อนไฟฟ้าย้อนกลับ


รูปที่ 1 แผนภาพการเดินสายไฟการเปลี่ยนสเตเตอร์ (สามเฟสสามขดลวด)

โรเตอร์ BKEPT ประกอบด้วยแม่เหล็กถาวรจำนวนเท่ากัน จำนวนขั้วแม่เหล็กในโรเตอร์ยังส่งผลต่อขนาดพิทช์และแรงบิดกระเพื่อม ยิ่งจำนวนเสามาก ขนาดขั้นตอนการหมุนจะเล็กลงและแรงบิดกระเพื่อมน้อยลง สามารถใช้ได้ แม่เหล็กถาวรด้วยเสา 1..5 คู่ ในบางกรณี จำนวนคู่ขั้วจะเพิ่มขึ้นเป็น 8 (รูปที่ 2)



รูปที่ 2 สเตเตอร์และโรเตอร์ของ BKEPT . สามเฟส สามขดลวด

ขดลวดถูกติดตั้งอย่างถาวรและแม่เหล็กจะหมุน โรเตอร์ BKEPT มีลักษณะเฉพาะด้วยน้ำหนักที่เบากว่าเมื่อเทียบกับโรเตอร์ทั่วไป มอเตอร์สากลกระแสตรงซึ่งขดลวดอยู่บนโรเตอร์

ฮอลล์เซนเซอร์

ในการประเมินตำแหน่งของโรเตอร์ เซ็นเซอร์ Hall สามตัวจะถูกสร้างขึ้นในตัวเรือนมอเตอร์ เซ็นเซอร์ถูกติดตั้งที่มุม 120 องศาซึ่งกันและกัน ด้วยความช่วยเหลือของเซ็นเซอร์เหล่านี้ จึงสามารถดำเนินการสวิตช์ต่างๆ ได้ 6 แบบ

การสลับเฟสขึ้นอยู่กับสถานะของเซ็นเซอร์ Hall

แรงดันไฟฟ้าที่จ่ายให้กับขดลวดจะเปลี่ยนไปหลังจากเปลี่ยนสถานะเอาต์พุตของเซ็นเซอร์ Hall ที่ การดำเนินการที่ถูกต้องสวิตช์ซิงโครไนซ์ แรงบิดยังคงประมาณคงที่และสูง



รูปที่ 3 สัญญาณเซ็นเซอร์ฮอลล์ระหว่างการหมุน

การสลับเฟส

เพื่อจุดประสงค์ในการอธิบายอย่างง่ายของการทำงานของ BKEPT สามเฟส เราจะพิจารณาเฉพาะรุ่นที่มีสามขดลวดเท่านั้น ดังที่แสดงไว้ก่อนหน้านี้ การสลับเฟสขึ้นอยู่กับค่าเอาต์พุตของเซ็นเซอร์ Hall ด้วยแรงดันไฟฟ้าที่ถูกต้องที่ใช้กับขดลวดของมอเตอร์ สนามแม่เหล็กจะถูกสร้างขึ้นและเริ่มการหมุน วิธีการควบคุมสวิตชิ่งที่ใช้กันทั่วไปและเรียบง่ายที่สุดที่ใช้ในการควบคุม BKEPT คือวงจรเปิด-ปิด เมื่อขดลวดนำกระแสไฟฟ้าหรือไม่ใช้ ในคราวเดียวสามารถจ่ายไฟได้เพียงสองขดลวดและขดลวดที่สามยังคงปิดอยู่ การต่อขดลวดเข้ากับรางไฟฟ้าทำให้เกิดกระแสไฟไหล วิธีนี้เรียกว่าการสลับคีย์สโตนหรือการเปลี่ยนบล็อก

ในการควบคุม BKEPT จะใช้สเตจกำลังซึ่งประกอบด้วยฮาล์ฟบริดจ์ 3 อัน ไดอะแกรมสเตจกำลังแสดงในรูปที่ 4



รูปที่ 4 เวทีพลังงาน

ตามค่าที่อ่านได้ของเซ็นเซอร์ Hall จะกำหนดว่าควรปิดปุ่มใด

มอเตอร์กระแสตรงเรียกว่า เครื่องยนต์ไฟฟ้าซึ่งขับเคลื่อนโดยกระแสตรง หากจำเป็น ให้ใช้มอเตอร์แรงบิดสูงที่มีความเร็วค่อนข้างต่ำ โครงสร้าง Inrunners นั้นง่ายกว่าเนื่องจากสเตเตอร์คงที่สามารถใช้เป็นที่อยู่อาศัยได้ สามารถติดตั้งอุปกรณ์ติดตั้งได้ ในกรณีของ Outrunners ส่วนนอกทั้งหมดจะหมุน เครื่องยนต์ถูกยึดด้วยเพลาคงที่หรือชิ้นส่วนสเตเตอร์ ในกรณีของมอเตอร์ล้อ การยึดจะดำเนินการกับแกนคงที่ของสเตเตอร์ ลวดจะถูกนำไปยังสเตเตอร์ผ่านแกนกลวงที่มีขนาดน้อยกว่า 0.5 มม.

เครื่องยนต์ กระแสสลับเรียกว่า มอเตอร์ไฟฟ้าที่ขับเคลื่อนด้วยกระแสสลับ. มอเตอร์ไฟฟ้ากระแสสลับมีประเภทต่อไปนี้:

นอกจากนี้ยังมี UKD (มอเตอร์สับเปลี่ยนอเนกประสงค์) ที่มีฟังก์ชั่นโหมดการทำงานทั้งแบบกระแสสลับและกระแสตรง

เครื่องยนต์อีกประเภทหนึ่งคือ สเต็ปเปอร์มอเตอร์ที่มีตำแหน่งโรเตอร์จำกัด. ตำแหน่งที่ระบุของโรเตอร์ได้รับการแก้ไขโดยการจ่ายพลังงานให้กับขดลวดที่จำเป็น เมื่อแรงดันไฟฟ้าของแหล่งจ่ายถูกถอดออกจากขดลวดอันหนึ่งและโอนไปยังขดลวดอื่น จะเกิดกระบวนการเปลี่ยนผ่านไปยังตำแหน่งอื่น

มอเตอร์ไฟฟ้ากระแสสลับที่ขับเคลื่อนโดยเครือข่ายเชิงพาณิชย์มักจะไม่บรรลุผล ความเร็วมากกว่าสามพันรอบต่อนาที. ด้วยเหตุนี้ เมื่อจำเป็นต้องได้รับความถี่ที่สูงกว่า จึงใช้มอเตอร์ตัวรวบรวม ซึ่งข้อดีเพิ่มเติมคือความเบาและความกะทัดรัดในขณะที่ยังคงรักษากำลังที่ต้องการ

บางครั้งก็ใช้กลไกการส่งผ่านพิเศษที่เรียกว่าตัวคูณซึ่งจะเปลี่ยนพารามิเตอร์จลนศาสตร์ของอุปกรณ์ให้เป็นที่ต้องการ ตัวชี้วัดทางเทคนิค. การประกอบของตัวสะสมบางครั้งใช้พื้นที่ถึงครึ่งหนึ่งของมอเตอร์ทั้งหมด ดังนั้นมอเตอร์ AC จึงมีขนาดลดลงและทำให้น้ำหนักเบาลงโดยใช้เครื่องแปลงความถี่ และบางครั้งเกิดจากการมีเครือข่ายที่มีความถี่เพิ่มขึ้นถึง 400 เฮิรตซ์

ทรัพยากรใด ๆ มอเตอร์เหนี่ยวนำกระแสสลับสูงกว่าตัวสะสมอย่างเห็นได้ชัด ถูกกำหนดไว้แล้ว สถานะของฉนวนของขดลวดและแบริ่ง. มอเตอร์ซิงโครนัสเมื่อใช้อินเวอร์เตอร์และเซ็นเซอร์ตำแหน่งโรเตอร์ถือเป็นแอนะล็อกอิเล็กทรอนิกส์ของมอเตอร์สะสมแบบคลาสสิกที่รองรับการทำงานของกระแสตรง

มอเตอร์กระแสตรงไร้แปรงถ่าน ข้อมูลทั่วไปและอุปกรณ์อุปกรณ์

มอเตอร์กระแสตรงไร้แปรงถ่านเรียกอีกอย่างว่ามอเตอร์ไร้แปรงถ่านสามเฟส เป็นอุปกรณ์ซิงโครนัสซึ่งมีหลักการทำงานอยู่บนพื้นฐานของการควบคุมความถี่แบบซิงโครไนซ์ด้วยตนเองเนื่องจากควบคุมเวกเตอร์ (เริ่มจากตำแหน่งของโรเตอร์) ของสนามแม่เหล็กสเตเตอร์

ตัวควบคุมมอเตอร์ประเภทนี้มักจะขับเคลื่อนโดย แรงดันคงที่ซึ่งพวกเขาได้ชื่อมา เป็นภาษาอังกฤษ วรรณกรรมทางเทคนิคมอเตอร์ไร้แปรงถ่านเรียกว่า PMSM หรือ BLDC

มอเตอร์ไร้แปรงถ่านถูกสร้างขึ้นเพื่อเพิ่มประสิทธิภาพ มอเตอร์กระแสตรงใดๆโดยทั่วไป. มีความต้องการสูงมากในแอคทูเอเตอร์ของอุปกรณ์ดังกล่าว (โดยเฉพาะบนไมโครไดรฟ์ความเร็วสูงที่มีการวางตำแหน่งที่แม่นยำ)

นี้อาจนำไปสู่การใช้อุปกรณ์ DC เฉพาะเช่น brushless มอเตอร์สามเฟสหรือเรียกอีกอย่างว่า BDPT ด้วยการออกแบบของพวกเขา มันเกือบจะเหมือนกับมอเตอร์ซิงโครนัส AC โดยที่การหมุนของโรเตอร์แม่เหล็กเกิดขึ้นในสเตเตอร์เคลือบธรรมดาเมื่อมีขดลวดสามเฟส และจำนวนรอบการหมุนขึ้นอยู่กับแรงดันและโหลดของสเตเตอร์ ตามพิกัดบางอย่างของโรเตอร์ ขดลวดสเตเตอร์ที่แตกต่างกันจะถูกเปลี่ยน

มอเตอร์กระแสตรงไร้แปรงถ่านสามารถมีอยู่ได้โดยไม่ต้องแยกเซ็นเซอร์ อย่างไรก็ตาม บางครั้งก็มีอยู่บนโรเตอร์ เช่น เซ็นเซอร์ Hall หากอุปกรณ์ทำงานโดยไม่มีเซ็นเซอร์เพิ่มเติม แสดงว่า ขดลวดสเตเตอร์ทำหน้าที่เป็นองค์ประกอบการตรึง. จากนั้นกระแสจะเกิดขึ้นเนื่องจากการหมุนของแม่เหล็ก เมื่อโรเตอร์เหนี่ยวนำ EMF ในขดลวดสเตเตอร์

หากขดลวดอันใดอันหนึ่งปิดอยู่ สัญญาณที่เหนี่ยวนำจะถูกวัดและประมวลผลต่อไป อย่างไรก็ตาม หลักการของการดำเนินการดังกล่าวจะเป็นไปไม่ได้หากไม่มีอาจารย์ในการประมวลผลสัญญาณ แต่หากต้องการย้อนกลับหรือเบรกมอเตอร์ไฟฟ้าดังกล่าว ไม่จำเป็นต้องใช้วงจรสะพาน - มันจะเพียงพอที่จะจ่ายพัลส์ควบคุมในลำดับย้อนกลับไปยังขดลวดสเตเตอร์

ใน VD (มอเตอร์แบบสวิตช์) ตัวเหนี่ยวนำในรูปของแม่เหล็กถาวรจะอยู่บนโรเตอร์และขดลวดกระดองอยู่บนสเตเตอร์ ตามตำแหน่งของโรเตอร์ แรงดันไฟฟ้าของขดลวดทั้งหมดเกิดขึ้นมอเตอร์ไฟฟ้า. เมื่อใช้ในโครงสร้างดังกล่าวของตัวสะสม หน้าที่ของมันจะถูกดำเนินการในมอเตอร์วาล์วโดยสวิตช์เซมิคอนดักเตอร์

ความแตกต่างที่สำคัญระหว่างมอเตอร์ซิงโครนัสและแบบไม่มีแปรงคือการซิงโครไนซ์ตัวเองของมอเตอร์หลังด้วยความช่วยเหลือของ DPR ซึ่งกำหนดความถี่ตามสัดส่วนของการหมุนของโรเตอร์และสนาม

ส่วนใหญ่แล้วมอเตอร์กระแสตรงไร้แปรงถ่านจะพบการใช้งานในพื้นที่ต่อไปนี้:

สเตเตอร์

อุปกรณ์นี้มีการออกแบบที่คลาสสิกและมีลักษณะคล้ายอุปกรณ์เดียวกัน เครื่องอะซิงโครนัส. องค์ประกอบประกอบด้วย แกนขดลวดทองแดง(วางรอบปริมณฑลเข้าไปในร่อง) ซึ่งกำหนดจำนวนเฟสและตัวเรือน โดยปกติแล้ว เฟสไซน์และโคไซน์จะเพียงพอสำหรับการหมุนและการสตาร์ทตัวเอง อย่างไรก็ตาม บ่อยครั้งมอเตอร์วาล์วจะทำแบบสามเฟสและสี่เฟส

มอเตอร์ไฟฟ้าแบบถอยหลัง แรงเคลื่อนไฟฟ้าตามประเภทของการหมุนบนขดลวดสเตเตอร์แบ่งออกเป็นสองประเภท:

  • รูปแบบไซนัส;
  • รูปร่างสี่เหลี่ยมคางหมู

ในประเภทมอเตอร์ที่สอดคล้องกัน กระแสเฟสไฟฟ้ายังเปลี่ยนแปลงไปตามวิธีการจ่ายไฟแบบไซน์หรือสี่เหลี่ยมคางหมู

โรเตอร์

โดยปกติโรเตอร์จะทำจากแม่เหล็กถาวรที่มีเสาสองถึงแปดคู่ ซึ่งในทางกลับกัน จะสลับจากเหนือไปใต้หรือกลับกัน

ที่พบมากที่สุดและถูกที่สุดสำหรับการผลิตโรเตอร์คือแม่เหล็กเฟอร์ไรท์ แต่ข้อเสียคือ ระดับต่ำการเหนี่ยวนำแม่เหล็กดังนั้นอุปกรณ์ที่ทำจากโลหะผสมของธาตุหายากหลายชนิดจึงเข้ามาแทนที่วัสดุดังกล่าวเนื่องจากสามารถจัดหาได้ ระดับสูงการเหนี่ยวนำแม่เหล็กซึ่งจะช่วยลดขนาดของโรเตอร์

สพป

เซ็นเซอร์ตำแหน่งโรเตอร์ให้ ข้อเสนอแนะ. ตามหลักการทำงาน อุปกรณ์แบ่งออกเป็นชนิดย่อยต่อไปนี้:

  • อุปนัย;
  • ตาแมว;
  • เซ็นเซอร์เอฟเฟกต์ฮอลล์

ประเภทหลังเป็นที่นิยมมากที่สุดเนื่องจาก คุณสมบัติเฉื่อยสัมบูรณ์เกือบสัมบูรณ์และความสามารถในการกำจัดความล่าช้าในช่องป้อนกลับโดยตำแหน่งของโรเตอร์

ระบบควบคุม

ระบบควบคุมประกอบด้วยสวิตช์ไฟ ซึ่งบางครั้งก็เป็นไทริสเตอร์หรือทรานซิสเตอร์กำลังไฟฟ้า รวมถึงเกทที่หุ้มฉนวน ซึ่งนำไปสู่การรวบรวมอินเวอร์เตอร์ปัจจุบันหรืออินเวอร์เตอร์แรงดันไฟ กระบวนการจัดการคีย์เหล่านี้มักถูกนำไปใช้ โดยใช้ไมโครคอนโทรลเลอร์ซึ่งต้องใช้การคำนวณจำนวนมากเพื่อควบคุมเครื่องยนต์

หลักการทำงาน

การทำงานของเครื่องยนต์อยู่ในความจริงที่ว่าตัวควบคุมจะสลับขดลวดสเตเตอร์จำนวนหนึ่งในลักษณะที่เวกเตอร์ของสนามแม่เหล็กของโรเตอร์และสเตเตอร์เป็นมุมฉาก ด้วย PWM (การปรับความกว้างพัลส์) ตัวควบคุมควบคุมกระแสที่ไหลผ่านมอเตอร์และควบคุมแรงบิดที่กระทำกับโรเตอร์ ทิศทางของโมเมนต์การแสดงนี้ถูกกำหนดโดยเครื่องหมายของมุมระหว่างเวกเตอร์ องศาไฟฟ้าใช้ในการคำนวณ

การสลับควรทำในลักษณะที่ Ф0 (ฟลักซ์กระตุ้นของโรเตอร์) คงที่โดยสัมพันธ์กับฟลักซ์ของกระดอง เมื่อแรงกระตุ้นดังกล่าวและการไหลของกระดองโต้ตอบกัน แรงบิด M จะเกิดขึ้น ซึ่งมีแนวโน้มที่จะหมุนโรเตอร์และขนานกันเพื่อให้แน่ใจว่าจะเกิดความบังเอิญของการกระตุ้นและการไหลของเกราะ อย่างไรก็ตาม ในระหว่างการหมุนของโรเตอร์ ขดลวดต่างๆ จะถูกสลับภายใต้อิทธิพลของเซ็นเซอร์ตำแหน่งโรเตอร์ อันเป็นผลมาจากการที่ฟลักซ์ของกระดองจะหันไปสู่ขั้นตอนต่อไป

ในสถานการณ์เช่นนี้ เวกเตอร์ที่เป็นผลลัพธ์จะเคลื่อนที่และหยุดนิ่งโดยสัมพันธ์กับฟลักซ์ของโรเตอร์ ซึ่งจะสร้างแรงบิดที่จำเป็นบนเพลามอเตอร์

การจัดการเครื่องยนต์

ตัวควบคุมของมอเตอร์ไฟฟ้ากระแสตรงไร้แปรงถ่านจะควบคุมโมเมนต์ที่กระทำต่อโรเตอร์โดยการเปลี่ยนค่าของการมอดูเลตความกว้างพัลส์ การสลับถูกควบคุมและ ดำเนินการทางอิเล็กทรอนิกส์ต่างจากมอเตอร์กระแสตรงแบบมีแปรงถ่านทั่วไป ระบบควบคุมที่ใช้การมอดูเลตความกว้างพัลส์และอัลกอริธึมการควบคุมความกว้างพัลส์ก็เป็นเรื่องธรรมดาเช่นกันสำหรับเวิร์กโฟลว์

มอเตอร์ควบคุมแบบเวกเตอร์ให้ช่วงที่รู้จักมากที่สุดสำหรับการควบคุมความเร็วด้วยตนเอง การควบคุมความเร็วนี้ รวมทั้งการรักษาความเชื่อมโยงของฟลักซ์ไว้ที่ระดับที่ต้องการนั้นเกิดจากตัวแปลงความถี่

คุณลักษณะของการควบคุมไดรฟ์ไฟฟ้าตามการควบคุมเวกเตอร์คือการมีอยู่ของพิกัดที่ควบคุม พวกเขาอยู่ในระบบคงที่และ เปลี่ยนเป็นหมุนโดยเน้นค่าคงที่ตามสัดส่วนของพารามิเตอร์ที่ควบคุมของเวกเตอร์ อันเนื่องมาจากการดำเนินการควบคุมเกิดขึ้น และจากนั้นจึงเกิดการเปลี่ยนแปลงแบบย้อนกลับ

แม้จะมีข้อดีทั้งหมดของระบบดังกล่าว แต่ก็มีข้อเสียในรูปแบบของความซับซ้อนในการควบคุมอุปกรณ์เพื่อควบคุมความเร็วในวงกว้าง

ข้อดีข้อเสีย

ปัจจุบันนี้ ในหลายอุตสาหกรรม มอเตอร์ประเภทนี้เป็นที่ต้องการอย่างมาก เนื่องจากมอเตอร์กระแสตรงแบบไร้แปรงถ่านได้รวมเอาส่วนประกอบเกือบทั้งหมดเข้าด้วยกันมากที่สุด คุณสมบัติที่ดีที่สุดมอเตอร์แบบไม่สัมผัสและชนิดอื่นๆ

ข้อดีที่ปฏิเสธไม่ได้ มอเตอร์ไร้แปรงถ่านเป็น:

แม้จะมีผลบวกที่สำคัญ มอเตอร์กระแสตรงไร้แปรงถ่านยังมีข้อเสียบางประการ:

จากที่กล่าวมาข้างต้นและความล้าหลังของอุปกรณ์อิเล็กทรอนิกส์สมัยใหม่ในภูมิภาค หลายคนยังคงพิจารณาว่าเหมาะสมที่จะใช้มอเตอร์แบบอะซิงโครนัสแบบธรรมดากับเครื่องแปลงความถี่

มอเตอร์กระแสตรงไร้แปรงถ่านสามเฟส

มอเตอร์ประเภทนี้มีประสิทธิภาพที่ยอดเยี่ยม โดยเฉพาะอย่างยิ่งเมื่อทำการควบคุมโดยใช้เซ็นเซอร์ตำแหน่ง หากโมเมนต์ของการต่อต้านแตกต่างกันหรือไม่ทราบเลย และจำเป็นจะต้องบรรลุด้วยหรือไม่ แรงบิดเริ่มต้นที่สูงขึ้นใช้การควบคุมเซ็นเซอร์ หากไม่ได้ใช้เซ็นเซอร์ (โดยปกติจะอยู่ในพัดลม) ตัวควบคุมจะขจัดความจำเป็นในการสื่อสารผ่านสาย

คุณสมบัติของการควบคุมมอเตอร์ไร้แปรงถ่านสามเฟสโดยไม่มีเซ็นเซอร์ตำแหน่ง:

คุณสมบัติการควบคุม มอเตอร์ไร้แปรงถ่านสามเฟสด้วยตัวเข้ารหัสตำแหน่งโดยใช้ตัวอย่างเซ็นเซอร์เอฟเฟกต์ฮอลล์:

บทสรุป

มอเตอร์กระแสตรงไร้แปรงถ่านมีข้อดีหลายประการและจะกลายเป็น ทางเลือกที่คุ้มค่าสำหรับการใช้งานโดยผู้เชี่ยวชาญและฆราวาส

การเกิดขึ้นของมอเตอร์แบบไม่มีแปรงนั้นอธิบายได้จากความจำเป็นในการสร้าง เครื่องไฟฟ้าพร้อมคุณประโยชน์มากมาย มอเตอร์ไร้แปรงถ่านเป็นอุปกรณ์ที่ไม่มีตัวสะสมซึ่งทำหน้าที่ควบคุมโดยอุปกรณ์อิเล็กทรอนิกส์

BKEPT - มอเตอร์กระแสตรงไร้แปรงถ่านสามารถจ่ายไฟได้ เช่น 12, 30 โวลต์

  • การเลือกเครื่องยนต์ที่เหมาะสม
  • หลักการทำงาน
  • อุปกรณ์ BKEPT
  • เซ็นเซอร์และการขาดหายไป
  • ไม่มีเซ็นเซอร์
  • แนวคิดของความถี่ PWM
  • ระบบ Arduino
  • แท่นยึดเครื่องยนต์

การเลือกเครื่องยนต์ที่เหมาะสม

ในการเลือกยูนิต จำเป็นต้องเปรียบเทียบหลักการทำงานและคุณสมบัติของตัวสะสมและมอเตอร์แบบไม่มีแปรง

จากซ้ายไปขวา: มอเตอร์ตัวรวบรวมและมอเตอร์ FK 28-12 แบบไม่มีแปรง

ตัวสะสมมีค่าใช้จ่ายน้อยลง แต่พัฒนาความเร็วการหมุนของแรงบิดต่ำ พวกเขาทำงานบนกระแสตรง มีน้ำหนักและขนาดที่เล็ก ค่าซ่อมไม่แพงสำหรับชิ้นส่วนอะไหล่ การแสดงคุณภาพเชิงลบจะถูกเปิดเผยเมื่อได้รับเทิร์นโอเวอร์จำนวนมาก แปรงสัมผัสกับสับเปลี่ยนทำให้เกิดการเสียดสีซึ่งอาจทำให้กลไกเสียหายได้ ประสิทธิภาพของเครื่องลดลง

แปรงไม่เพียงต้องการการซ่อมแซมเนื่องจาก สึกหรอเร็วแต่ยังสามารถนำไปสู่ความร้อนสูงเกินไปของกลไก

ข้อได้เปรียบหลักของมอเตอร์กระแสตรงไร้แปรงถ่านคือการขาดแรงบิดและหมุดสวิตชิ่ง ซึ่งหมายความว่าไม่มีแหล่งที่มาของการสูญเสียเช่นเดียวกับในมอเตอร์แม่เหล็กถาวร หน้าที่ของพวกเขาดำเนินการโดยทรานซิสเตอร์ MOS ก่อนหน้านี้ ค่าใช้จ่ายสูง ดังนั้นจึงไม่มีให้บริการ วันนี้ราคาเป็นที่ยอมรับและประสิทธิภาพก็ดีขึ้นอย่างมาก ในกรณีที่ไม่มีหม้อน้ำอยู่ในระบบ กำลังจะถูกจำกัดจาก 2.5 ถึง 4 วัตต์ และกระแสไฟในการทำงานอยู่ที่ 10 ถึง 30 แอมแปร์ ประสิทธิภาพ มอเตอร์ไร้แปรงถ่านสูงมาก.

ข้อได้เปรียบที่สองคือการตั้งค่ากลไก เพลาติดตั้งบนตลับลูกปืนกว้าง ไม่มีองค์ประกอบการทำลายและการลบในโครงสร้าง

ข้อเสียอย่างเดียวคือชุดควบคุมอิเล็กทรอนิกส์ราคาแพง

ลองพิจารณาตัวอย่างกลไกของเครื่อง CNC ที่มีแกนหมุน

การเปลี่ยนมอเตอร์ตัวสะสมด้วยมอเตอร์แบบไม่มีแปรงจะป้องกันแกนหมุน CNC ไม่ให้แตกหัก ใต้แกนหมุนหมายถึงเพลาที่มีแรงบิดเลี้ยวขวาและซ้าย แกนหมุน CNC มี พลังอันยิ่งใหญ่. ความเร็วของแรงบิดถูกควบคุมโดยเครื่องทดสอบเซอร์โว และความเร็วจะถูกควบคุมโดยตัวควบคุมอัตโนมัติ ราคาของ CNC พร้อมแกนหมุนอยู่ที่ประมาณ 4 พันรูเบิล

หลักการทำงาน

คุณสมบัติหลักของกลไกคือไม่มีตัวสะสม และมีการติดตั้งแม่เหล็กถาวรที่แกนหมุนซึ่งเป็นโรเตอร์ รอบๆ มีขดลวดที่มีสนามแม่เหล็กต่างกัน ความแตกต่างระหว่างมอเตอร์ไร้แปรงถ่าน 12 โวลต์คือเซ็นเซอร์ควบคุมโรเตอร์ที่อยู่บนนั้น สัญญาณจะถูกป้อนเข้าสู่หน่วยควบคุมความเร็ว

อุปกรณ์ BKEPT

เลย์เอาต์ของแม่เหล็กภายในสเตเตอร์มักใช้สำหรับมอเตอร์สองเฟสที่มีขั้วจำนวนน้อย หลักการของแรงบิดรอบสเตเตอร์จะถูกนำไปใช้หากจำเป็นเพื่อให้ได้มา มอเตอร์สองเฟสด้วยมูลค่าการซื้อขายต่ำ

มีสี่เสาบนโรเตอร์ แม่เหล็กรูปสี่เหลี่ยมผืนผ้าติดตั้งโดยเสาสลับ อย่างไรก็ตาม จำนวนขั้วไม่เท่ากับจำนวนแม่เหล็กเสมอไป ซึ่งอาจเท่ากับ 12, 14 แต่จำนวนขั้วต้องเท่ากัน แม่เหล็กหลายตัวสามารถประกอบเป็นขั้วเดียวได้

รูปแสดงแม่เหล็ก 8 ตัวสร้าง 4 ขั้ว โมเมนต์ของแรงขึ้นอยู่กับพลังของแม่เหล็ก

เซ็นเซอร์และการขาดหายไป

อุปกรณ์ควบคุมการเดินทางแบ่งออกเป็นสองกลุ่ม: มีและไม่มีเซ็นเซอร์ตำแหน่งโรเตอร์

แรงปัจจุบันถูกนำไปใช้กับขดลวดมอเตอร์ที่ ตำแหน่งพิเศษโรเตอร์ ถูกกำหนดโดย ระบบอิเล็กทรอนิกส์โดยใช้เซ็นเซอร์ตำแหน่ง มีหลายประเภท อุปกรณ์ควบคุมการเดินทางยอดนิยมคือเซ็นเซอร์เอฟเฟกต์ฮอลล์แบบแยกส่วน มอเตอร์สามเฟส 30 โวลต์จะใช้เซ็นเซอร์ 3 ตัว หน่วยอิเล็กทรอนิกส์มีข้อมูลเกี่ยวกับตำแหน่งของโรเตอร์อย่างต่อเนื่องและนำแรงดันไฟฟ้าไปยังขดลวดที่ต้องการในเวลาที่เหมาะสม

อุปกรณ์ทั่วไปที่เปลี่ยนข้อสรุปเมื่อเปลี่ยนขดลวด

อุปกรณ์ open loop จะวัดกระแส ความเร็ว ช่องสัญญาณ PWM ติดอยู่ที่ด้านล่างของระบบควบคุม

สามอินพุตเชื่อมต่อกับเซ็นเซอร์ Hall ในกรณีที่มีการเปลี่ยนแปลงเซ็นเซอร์ Hall กระบวนการประมวลผลการขัดจังหวะจะเริ่มต้นขึ้น เพื่อให้แน่ใจว่ามีการตอบสนองที่รวดเร็วของการขัดจังหวะ เซ็นเซอร์ Hall จะเชื่อมต่อกับพินด้านล่างของพอร์ต

การใช้เซ็นเซอร์ตำแหน่งกับไมโครคอนโทรลเลอร์

เพื่อประหยัดค่าไฟฟ้า ผู้อ่านของเราแนะนำกล่องประหยัดไฟ การชำระเงินรายเดือนจะน้อยกว่า 30-50% ก่อนใช้โปรแกรมประหยัด มันลบองค์ประกอบปฏิกิริยาออกจากเครือข่ายอันเป็นผลมาจากการโหลดและเป็นผลให้การบริโภคในปัจจุบันลดลง เครื่องใช้ไฟฟ้าใช้ไฟฟ้าน้อยลง ลดต้นทุนการชำระ

ตัวควบคุมความแรงของคาสเคดเป็นหัวใจสำคัญของแกน AVR ซึ่งให้การควบคุมอัจฉริยะของมอเตอร์กระแสตรงไร้แปรงถ่าน AVR เป็นชิปสำหรับทำงานบางอย่าง

หลักการทำงานของตัวควบคุมจังหวะสามารถมีหรือไม่มีเซ็นเซอร์ก็ได้ โปรแกรมกระดาน AVR ทำ:

  • สตาร์ทเครื่องยนต์ให้เร็วที่สุดโดยไม่ต้องใช้อุปกรณ์ภายนอกเพิ่มเติม
  • ควบคุมความเร็วด้วยโพเทนชิออมิเตอร์ภายนอกหนึ่งตัว

แยกมุมมอง ระบบควบคุมอัตโนมัติ sma ใช้ในเครื่องซักผ้า

ไม่มีเซ็นเซอร์

ในการกำหนดตำแหน่งของโรเตอร์ จำเป็นต้องวัดแรงดันไฟฟ้าบนขดลวดรอบเดินเบา วิธีนี้ใช้ได้เมื่อมอเตอร์หมุน มิฉะนั้น จะไม่ทำงาน

ตัวควบคุมการเดินทางแบบไม่ใช้เซนเซอร์มีน้ำหนักเบากว่า ซึ่งอธิบายการใช้งานอย่างแพร่หลาย

ตัวควบคุมมีคุณสมบัติดังต่อไปนี้:

  • ค่ากระแสตรงสูงสุด
  • ค่าของแรงดันไฟฟ้าที่ใช้งานสูงสุด
  • จำนวนรอบสูงสุด
  • ความต้านทานของสวิตช์ไฟ
  • ความถี่ของแรงกระตุ้น

เมื่อเชื่อมต่อคอนโทรลเลอร์ สิ่งสำคัญคือต้องเก็บสายไฟให้สั้นที่สุด เนื่องจากเกิดกระแสกระชากที่จุดเริ่มต้น หากลวดยาว อาจเกิดข้อผิดพลาดในการกำหนดตำแหน่งของโรเตอร์ ดังนั้นตัวควบคุมจึงขายด้วยลวดขนาด 12 - 16 ซม.

ตัวควบคุมมีการตั้งค่าซอฟต์แวร์มากมาย:

  • การควบคุมการปิดเครื่องยนต์
  • การปิดระบบแบบอ่อนหรือแบบแข็ง
  • การเบรกและการปิดเครื่องอย่างราบรื่น
  • พลังและประสิทธิภาพที่ก้าวหน้า
  • นุ่ม แข็ง เริ่มเร็ว
  • ขีด จำกัด ปัจจุบัน
  • โหมดแก๊ส
  • การเปลี่ยนทิศทาง

คอนโทรลเลอร์ LB11880 ที่แสดงในรูปประกอบด้วยตัวขับมอเตอร์ไร้แปรงถ่านอันทรงพลัง กล่าวคือ คุณสามารถสั่งงานมอเตอร์ไปยังไมโครเซอร์กิตได้โดยตรงโดยไม่ต้องใช้ไดรเวอร์เพิ่มเติม

แนวคิดของความถี่ PWM

เมื่อเปิดกุญแจแล้ว โหลดเต็มที่ให้กับเครื่องยนต์ หน่วยถึงความเร็วสูงสุด ในการควบคุมมอเตอร์ คุณต้องจัดหาเครื่องปรับกำลังไฟฟ้า นี่คือสิ่งที่การปรับความกว้างพัลส์ (PWM) ทำ

ความถี่ที่ต้องการในการเปิดและปิดคีย์ถูกตั้งค่าไว้ แรงดันไฟฟ้าเปลี่ยนจากศูนย์เป็นทำงาน เพื่อควบคุมความเร็ว จำเป็นต้องวางสัญญาณ PWM ทับบนสัญญาณหลัก

อุปกรณ์สามารถสร้างสัญญาณ PWM ได้จากหลายเอาต์พุต หรือสร้าง PWM สำหรับคีย์แยกต่างหากด้วยโปรแกรม วงจรจะง่ายขึ้น สัญญาณ PWM มี 4-80 กิโลเฮิรตซ์

การเพิ่มความถี่นำไปสู่กระบวนการเปลี่ยนผ่านมากขึ้น ซึ่งก่อให้เกิดความร้อน ความสูงของความถี่ PWM จะเพิ่มจำนวนของทรานเซียนท์ ซึ่งส่งผลให้สูญเสียคีย์ ความถี่ขนาดเล็กไม่ได้ให้การควบคุมที่ราบรื่นตามต้องการ

เพื่อลดการสูญเสียของปุ่มในช่วงชั่วครู่ สัญญาณ PWM จะถูกนำไปใช้กับสวิตช์บนหรือล่างแยกกัน การสูญเสียโดยตรงคำนวณโดยสูตร P=R*I2 โดยที่ P คือกำลังการสูญเสีย R คือความต้านทานของสวิตช์ I คือความแรงของกระแส

ความต้านทานน้อยลงช่วยลดการสูญเสียเพิ่มประสิทธิภาพ

ระบบ Arduino

บ่อยครั้งที่แพลตฟอร์มคอมพิวเตอร์ฮาร์ดแวร์ของ Arduino ใช้เพื่อควบคุมมอเตอร์แบบไม่มีแปรง ขึ้นอยู่กับบอร์ดและสภาพแวดล้อมการพัฒนาในภาษา Wiring

บอร์ด Arduino ประกอบด้วยไมโครคอนโทรลเลอร์ Atmel AVR และการเขียนโปรแกรมองค์ประกอบและการโต้ตอบกับวงจร บอร์ดมีตัวควบคุมแรงดันไฟฟ้า บอร์ด Serial Arduino เป็นวงจรกลับด้านอย่างง่ายสำหรับการแปลงสัญญาณจากระดับหนึ่งไปอีกระดับหนึ่ง ติดตั้งโปรแกรมผ่าน USB บางรุ่น เช่น Arduino Mini ต้องใช้บอร์ดเขียนโปรแกรมเพิ่มเติม

ภาษาการเขียนโปรแกรม Arduino ใช้การประมวลผลมาตรฐาน Arduino บางรุ่นช่วยให้คุณสามารถควบคุมเซิร์ฟเวอร์หลายเครื่องได้พร้อมกัน โปรแกรมประมวลผลโดยโปรเซสเซอร์ และรวบรวมโดย AVR

ปัญหากับคอนโทรลเลอร์อาจเกิดขึ้นเนื่องจากแรงดันไฟฟ้าตกและโหลดมากเกินไป

แท่นยึดเครื่องยนต์

แท่นยึดมอเตอร์เป็นกลไกที่ยึดเครื่องยนต์ ใช้ในการติดตั้งเครื่องยนต์ ตัวยึดมอเตอร์ประกอบด้วยแท่งที่เชื่อมต่อถึงกันและส่วนประกอบเฟรม ตัวยึดมอเตอร์นั้นแบนและมีพื้นที่ในแง่ขององค์ประกอบ ตัวยึดมอเตอร์สำหรับมอเตอร์ 30 โวลต์ตัวเดียวหรือหลายอุปกรณ์ วงจรไฟฟ้าของที่ยึดมอเตอร์ประกอบด้วยชุดของแท่ง ตัวยึดมอเตอร์ถูกติดตั้งด้วยส่วนประกอบโครงถักและโครง

มอเตอร์กระแสตรงไร้แปรงถ่านเป็นอุปกรณ์ที่ขาดไม่ได้สำหรับใช้ในชีวิตประจำวันและในอุตสาหกรรม เช่น เครื่อง CNC อุปกรณ์การแพทย์ กลไกยานยนต์

BKEPT มีความโดดเด่นด้วยความน่าเชื่อถือ, หลักการทำงานที่มีความแม่นยำสูง, อัตโนมัติ การควบคุมที่ชาญฉลาดและระเบียบ