มอเตอร์ไร้แปรงถ่านกำลังสูง การควบคุมมอเตอร์ไร้แปรงถ่านด้วยสัญญาณ EMF ย้อนกลับ - ทำความเข้าใจกับกระบวนการ มอเตอร์กระแสตรงไร้แปรงถ่าน ข้อมูลทั่วไปและอุปกรณ์อุปกรณ์

สาเหตุหนึ่งที่นักออกแบบสนใจมอเตอร์ไฟฟ้าแบบไม่มีแปรงคือความต้องการมอเตอร์ความเร็วสูงที่มีขนาดเล็ก นอกจากนี้ เครื่องยนต์เหล่านี้มีตำแหน่งที่แม่นยำมาก การออกแบบมีโรเตอร์แบบเคลื่อนย้ายได้และสเตเตอร์แบบตายตัว บนโรเตอร์มีแม่เหล็กถาวรหนึ่งอันหรือหลายอันเรียงตามลำดับ บนสเตเตอร์มีขดลวดที่สร้างสนามแม่เหล็ก

ควรสังเกตคุณสมบัติอีกประการหนึ่ง - มอเตอร์ไฟฟ้าแบบไม่มีแปรงสามารถมีพุกได้ทั้งด้านในและด้านนอก ดังนั้นการก่อสร้างทั้งสองประเภทจึงอาจมีการใช้งานเฉพาะในด้านต่างๆ เมื่อติดตั้งกระดองภายใน พบว่ามีความเร็วในการหมุนที่สูงมาก ดังนั้นมอเตอร์ดังกล่าวจึงทำงานได้ดีมากในการออกแบบระบบระบายความร้อน หากติดตั้งไดรฟ์โรเตอร์ภายนอก การวางตำแหน่งที่แม่นยำมากก็สามารถทำได้ รวมทั้งมีความทนทานต่อการโอเวอร์โหลดสูง บ่อยครั้ง มอเตอร์ดังกล่าวถูกใช้ในหุ่นยนต์ อุปกรณ์ทางการแพทย์ ในเครื่องมือกลที่มีการควบคุมโปรแกรมความถี่

มอเตอร์ทำงานอย่างไร

เพื่อขับเคลื่อนโรเตอร์ของมอเตอร์แบบไม่มีแปรง กระแสตรงคุณต้องใช้ไมโครคอนโทรลเลอร์พิเศษ ไม่สามารถเริ่มทำงานในลักษณะเดียวกับเครื่องซิงโครนัสหรืออะซิงโครนัส ด้วยความช่วยเหลือของไมโครคอนโทรลเลอร์ การเปิดมอเตอร์ขดลวดเพื่อให้ทิศทางของเวกเตอร์สนามแม่เหล็กบนสเตเตอร์และกระดองเป็นมุมฉาก

กล่าวอีกนัยหนึ่ง ด้วยความช่วยเหลือของผู้ขับขี่ มันกลายเป็นการควบคุมซึ่งทำหน้าที่บนโรเตอร์โดยไม่ต้อง มอเตอร์สับเปลี่ยน. ในการเคลื่อนย้ายเกราะจำเป็นต้องทำการสลับที่ถูกต้องในขดลวดสเตเตอร์ ขออภัย ไม่สามารถให้การควบคุมการหมุนที่ราบรื่นได้ แต่คุณสามารถเพิ่มโรเตอร์ของมอเตอร์ไฟฟ้าได้อย่างรวดเร็ว

ความแตกต่างระหว่างมอเตอร์แบบมีแปรงและแบบไม่มีแปรง

ข้อแตกต่างที่สำคัญคือ มอเตอร์ไร้แปรงถ่านสำหรับรุ่นไม่มีโรเตอร์ ในกรณีของมอเตอร์ไฟฟ้าแบบสะสมจะมีขดลวดอยู่บนโรเตอร์ แต่มีการติดตั้งแม่เหล็กถาวรไว้ที่ส่วนที่อยู่กับที่ของเครื่องยนต์ นอกจากนี้ยังมีการติดตั้งตัวสะสมของการออกแบบพิเศษบนโรเตอร์ซึ่งเชื่อมต่อแปรงกราไฟท์ ด้วยความช่วยเหลือของพวกเขา แรงดันไฟฟ้าจะถูกนำไปใช้กับขดลวดของโรเตอร์ หลักการทำงานของมอเตอร์ไฟฟ้าแบบไม่มีแปรงก็แตกต่างกันอย่างมากเช่นกัน

เครื่องรวบรวมทำงานอย่างไร

ในการสตาร์ทมอเตอร์คอลเลคเตอร์ คุณจะต้องใช้แรงดันไฟฟ้ากับขดลวดของสนาม ซึ่งตั้งอยู่บนอาร์มาเจอร์โดยตรง ในกรณีนี้จะเกิดสนามแม่เหล็กคงที่ซึ่งโต้ตอบกับแม่เหล็กบนสเตเตอร์ซึ่งเป็นผลมาจากการที่กระดองและตัวสะสมจับจ้องอยู่ที่มันหมุน ในกรณีนี้ พลังงานจะถูกส่งไปยังขดลวดถัดไป วงจรจะทำซ้ำ

ความเร็วของการหมุนของโรเตอร์ขึ้นอยู่กับความเข้มของสนามแม่เหล็กโดยตรง และลักษณะสุดท้ายจะขึ้นอยู่กับขนาดของแรงดันไฟฟ้าโดยตรง ดังนั้นเพื่อเพิ่มหรือลดความเร็วจำเป็นต้องเปลี่ยนแรงดันไฟฟ้า

หากต้องการใช้การย้อนกลับ คุณจะต้องเปลี่ยนขั้วของการเชื่อมต่อมอเตอร์เท่านั้น สำหรับการควบคุมดังกล่าว คุณไม่จำเป็นต้องใช้ไมโครคอนโทรลเลอร์พิเศษ คุณสามารถเปลี่ยนความเร็วในการหมุนได้โดยใช้ตัวต้านทานตัวแปรแบบธรรมดา

คุณสมบัติของเครื่องไร้แปรงถ่าน

แต่การควบคุมมอเตอร์ไฟฟ้าแบบไม่มีแปรงเป็นไปไม่ได้โดยไม่ต้องใช้ตัวควบคุมพิเศษ จากข้อมูลนี้ เราสามารถสรุปได้ว่ามอเตอร์ประเภทนี้ไม่สามารถใช้เป็นเครื่องกำเนิดไฟฟ้าได้ เพื่อการควบคุมที่มีประสิทธิภาพ สามารถตรวจสอบตำแหน่งของโรเตอร์ได้โดยใช้เซ็นเซอร์ Hall หลายตัว ด้วยความช่วยเหลือของอุปกรณ์ง่าย ๆ ดังกล่าว คุณสามารถปรับปรุงประสิทธิภาพได้อย่างมาก แต่ค่าใช้จ่ายของมอเตอร์ไฟฟ้าจะเพิ่มขึ้นหลายเท่า

การสตาร์ทมอเตอร์ไร้แปรงถ่าน

มันไม่สมเหตุสมผลเลยที่จะสร้างไมโครคอนโทรลเลอร์ด้วยตัวคุณเอง ตัวเลือกที่ดีกว่ามากคือซื้อไมโครคอนโทรลเลอร์สำเร็จรูป แม้ว่าจะเป็นแบบจีนก็ตาม แต่คุณต้องปฏิบัติตามคำแนะนำต่อไปนี้เมื่อเลือก:

  1. สังเกตกระแสสูงสุดที่อนุญาต พารามิเตอร์นี้จะเป็นประโยชน์สำหรับการทำงานของไดรฟ์ประเภทต่างๆ ผู้ผลิตมักระบุคุณลักษณะนี้โดยตรงในชื่อรุ่น ไม่ค่อยมีการระบุค่าซึ่งเป็นเรื่องปกติสำหรับโหมดพีคซึ่งไมโครคอนโทรลเลอร์ไม่สามารถทำงานได้เป็นเวลานาน
  2. สำหรับการทำงานอย่างต่อเนื่องต้องคำนึงถึงแรงดันไฟฟ้าสูงสุดด้วย
  3. อย่าลืมพิจารณาความต้านทานของวงจรไมโครคอนโทรลเลอร์ภายในทั้งหมด
  4. อย่าลืมคำนึงถึงจำนวนรอบสูงสุดที่เป็นปกติสำหรับการทำงานของไมโครคอนโทรลเลอร์นี้ โปรดทราบว่าจะไม่สามารถเพิ่มความเร็วสูงสุดได้ เนื่องจากมีการจำกัดไว้ที่ระดับซอฟต์แวร์
  5. อุปกรณ์ไมโครคอนโทรลเลอร์รุ่นราคาถูกมีพัลส์ในช่วง 7...8 kHz สำเนาราคาแพงสามารถตั้งโปรแกรมใหม่ได้และพารามิเตอร์นี้เพิ่มขึ้น 2-4 เท่า

พยายามเลือกไมโครคอนโทรลเลอร์ทุกประการเนื่องจากส่งผลต่อกำลังที่มอเตอร์ไฟฟ้าสามารถพัฒนาได้

มีการจัดการอย่างไร

ชุดควบคุมอิเล็กทรอนิกส์ช่วยให้เปลี่ยนขดลวดของไดรฟ์ได้ ในการกำหนดช่วงเวลาของการเปลี่ยนโดยใช้ไดรเวอร์ ตำแหน่งของโรเตอร์จะถูกตรวจสอบโดยเซ็นเซอร์ Hall ที่ติดตั้งบนไดรฟ์

ในกรณีที่ไม่มีอุปกรณ์ดังกล่าว จำเป็นต้องอ่านแรงดันย้อนกลับ มันถูกสร้างขึ้นในขดลวดสเตเตอร์ที่ไม่ได้เชื่อมต่อกับ ช่วงเวลานี้เวลา. คอนโทรลเลอร์เป็นฮาร์ดแวร์-ซอฟต์แวร์ที่ซับซ้อน ซึ่งช่วยให้คุณติดตามการเปลี่ยนแปลงทั้งหมดและตั้งค่าลำดับการสลับได้อย่างแม่นยำที่สุด

มอเตอร์ไร้แปรงถ่านสามเฟส

มอเตอร์ไฟฟ้าไร้แปรงถ่านจำนวนมากสำหรับเครื่องบินรุ่นนั้นขับเคลื่อนด้วยกระแสตรง แต่ยังมีอินสแตนซ์สามเฟสที่ติดตั้งตัวแปลง พวกมันช่วยให้คุณสร้างพัลส์สามเฟสจากแรงดันคงที่

งานมีดังนี้:

  1. คอยล์ "A" รับพัลส์ด้วยค่าบวก บนขดลวด "B" - มีค่าลบ ด้วยเหตุนี้สมอจะเริ่มเคลื่อนที่ เซ็นเซอร์แก้ไขการกระจัดและสัญญาณจะถูกส่งไปยังคอนโทรลเลอร์สำหรับการสลับครั้งต่อไป
  2. คอยล์ "A" ถูกปิด ขณะที่พัลส์บวกจ่ายให้กับขดลวด "C" การสลับขดลวด "B" จะไม่เปลี่ยนแปลง
  3. คอยล์ "C" ได้รับพัลส์บวกและค่าลบไปที่ "A"
  4. จากนั้นให้จับคู่ "A" และ "B" เข้าด้วยกัน ค่าบวกและค่าลบของพัลส์จะถูกป้อนตามลำดับ
  5. จากนั้นแรงกระตุ้นบวกจะไปที่ขดลวด "B" อีกครั้งและค่าลบเป็น "C"
  6. ในขั้นตอนสุดท้าย คอยล์ "A" ถูกเปิดซึ่งได้รับพัลส์บวกและขั้วลบไปที่ C

จากนั้นวนซ้ำทั้งหมด

ประโยชน์ของการใช้

เป็นการยากที่จะสร้างมอเตอร์ไฟฟ้าแบบไม่มีแปรงด้วยมือของคุณเอง และแทบจะเป็นไปไม่ได้เลยที่จะใช้การควบคุมไมโครคอนโทรลเลอร์ ดังนั้นจึงเป็นการดีที่สุดที่จะใช้การออกแบบอุตสาหกรรมสำเร็จรูป แต่อย่าลืมคำนึงถึงข้อดีที่ไดรฟ์ได้รับเมื่อใช้มอเตอร์แบบไม่มีแปรงถ่าน:

  1. อย่างมีนัยสำคัญ ทรัพยากรมากขึ้นกว่าเครื่องสะสม
  2. ประสิทธิภาพสูง
  3. กำลังสูงกว่ามอเตอร์ตัวสะสม
  4. ความเร็วในการหมุนเร็วขึ้นมาก
  5. ไม่มีประกายไฟเกิดขึ้นระหว่างการทำงาน ดังนั้นจึงสามารถใช้ในสภาพแวดล้อมที่มีอันตรายจากไฟไหม้ได้สูง
  6. การทำงานของไดรฟ์ที่ง่ายมาก
  7. ไม่จำเป็นต้องใช้ส่วนประกอบระบายความร้อนเพิ่มเติมระหว่างการทำงาน

ท่ามกลางข้อเสียเป็นอย่างมาก ค่าใช้จ่ายสูง, หากเราคำนึงถึงราคาของคอนโทรลเลอร์ แม้จะเป็นเวลาสั้น ๆ ในการเปิดมอเตอร์ไฟฟ้าดังกล่าวเพื่อตรวจสอบประสิทธิภาพจะไม่ทำงาน นอกจากนี้การซ่อมมอเตอร์ดังกล่าวทำได้ยากกว่ามากเนื่องจากคุณสมบัติการออกแบบ

เมื่อฉันเริ่มออกแบบชุดควบคุมมอเตอร์ไร้แปรงถ่าน (มอเตอร์ล้อ) มีคำถามมากมายเกี่ยวกับวิธีการจับคู่ เครื่องยนต์จริงด้วยแผนภาพนามธรรมของสามขดลวดและแม่เหล็กซึ่งตามกฎแล้วทุกคนจะอธิบายหลักการควบคุมมอเตอร์แบบไม่มีแปรง

เมื่อฉันใช้การควบคุมด้วยเซ็นเซอร์ Hall ฉันยังคงไม่เข้าใจจริงๆ ว่าเกิดอะไรขึ้นในเครื่องยนต์นอกเหนือจากขดลวดสามเส้นและสองขั้วที่เป็นนามธรรม: เหตุใด 120 องศาและทำไมอัลกอริธึมการควบคุมจึงเป็นเช่นนั้น

ทุกอย่างเข้าที่เข้าทางเมื่อฉันเริ่มเข้าใจแนวคิดของการควบคุมมอเตอร์ไร้แปรงถ่าน การเข้าใจกระบวนการที่เกิดขึ้นในชิ้นส่วนของเหล็กจริงๆ ช่วยให้ฉันพัฒนาฮาร์ดแวร์และเข้าใจอัลกอริธึมการควบคุม

ด้านล่างนี้ฉันจะพยายามทำความเข้าใจหลักการควบคุมมอเตอร์กระแสตรงแบบไม่มีแปรงถ่าน


สำหรับการทำงานของมอเตอร์แบบไร้แปรงถ่าน สนามแม่เหล็กคงที่ของโรเตอร์จะต้องเคลื่อนที่ไปตามสนามแม่เหล็กไฟฟ้าที่หมุนของสเตเตอร์ เช่นเดียวกับในมอเตอร์กระแสตรงทั่วไป

การหมุนของสนามแม่เหล็กสเตเตอร์ทำได้โดยการเปลี่ยนขดลวดโดยใช้ชุดควบคุมอิเล็กทรอนิกส์
การออกแบบมอเตอร์ไร้แปรงจะคล้ายกับการออกแบบมอเตอร์ซิงโครนัส หากคุณเชื่อมต่อมอเตอร์แบบไม่มีแปรงกับเครือข่ายสามเฟส กระแสสลับที่ตรงตามพารามิเตอร์ทางไฟฟ้าของเครื่องยนต์ก็จะทำงานได้

การสลับขดลวดของมอเตอร์แบบไม่มีแปรงทำให้สามารถควบคุมได้จากแหล่งจ่ายกระแสตรง เพื่อให้เข้าใจถึงวิธีการสร้างตารางการสับเปลี่ยนของมอเตอร์แบบไม่มีแปรง จำเป็นต้องพิจารณาการควบคุมเครื่อง AC แบบซิงโครนัส

เครื่องซิงโครนัส
เครื่องซิงโครนัสถูกควบคุมจากเครือข่าย AC สามเฟส มอเตอร์มี 3 ขดลวดไฟฟ้าชดเชย 120 องศาไฟฟ้า

เมื่อสตาร์ทมอเตอร์สามเฟสในโหมดเครื่องกำเนิดไฟฟ้า EMF จะเหนี่ยวนำให้เกิด EMF ในแต่ละขดลวดของมอเตอร์ด้วยสนามแม่เหล็กคงที่ ขดลวดของมอเตอร์จะกระจายตัวเท่าๆ กัน แรงดันไฟฟ้าไซน์จะถูกเหนี่ยวนำในแต่ละเฟส และสัญญาณเหล่านี้จะ เลื่อนไป 1/3 ของงวด (รูปที่ 1) รูปแบบของ EMF เปลี่ยนแปลงตามกฎไซน์ โดยคาบของไซนัสคือ 2P (360) เนื่องจากเรากำลังจัดการกับปริมาณไฟฟ้า (EMF, แรงดัน, กระแส) ให้เรียกว่า องศาไฟฟ้า และเราจะวัดคาบเป็น พวกเขา.

เมื่อใช้แรงดันไฟฟ้าสามเฟสกับมอเตอร์ ในแต่ละช่วงเวลาจะมีค่าความแรงกระแสที่แน่นอนในแต่ละขดลวด


รูปที่ 1 มุมมองสัญญาณของแหล่งกำเนิดไฟฟ้ากระแสสลับสามเฟส

ขดลวดแต่ละอันสร้างเวกเตอร์สนามแม่เหล็กตามสัดส่วนของกระแสในขดลวด เมื่อบวกเวกเตอร์ 3 ตัว คุณจะได้เวกเตอร์สนามแม่เหล็กที่เป็นผลลัพธ์ เมื่อเวลาผ่านไป กระแสบนขดลวดมอเตอร์จะเปลี่ยนตามกฎไซน์ ค่าของเวกเตอร์สนามแม่เหล็กของขดลวดแต่ละอันจะเปลี่ยนไป และเวกเตอร์ทั้งหมดที่เป็นผลลัพธ์จะเปลี่ยนมุมของการหมุน ในขณะที่ค่าของเวกเตอร์นี้ยังคงที่


รูปที่ 2 หนึ่งช่วงไฟฟ้าของมอเตอร์สามเฟส

รูปที่ 2 แสดงคาบไฟฟ้าหนึ่งคาบของมอเตอร์สามเฟส โดยระบุโมเมนต์ 3 โมเมนต์ในช่วงเวลานี้ เพื่อสร้างเวกเตอร์สนามแม่เหล็กในแต่ละโมเมนต์ เราใส่คาบนี้ 360 องศาไฟฟ้าบนวงกลม ลองวางขดลวดมอเตอร์ 3 ตัวที่เลื่อนด้วย 120 องศาไฟฟ้าสัมพันธ์กัน (รูปที่ 3)


รูปที่ 3 โมเมนต์ 1 เวกเตอร์สนามแม่เหล็กของแต่ละขดลวด (ซ้าย) และเวกเตอร์สนามแม่เหล็กที่เป็นผลลัพธ์ (ขวา)

เวกเตอร์สนามแม่เหล็กที่สร้างขึ้นโดยขดลวดของมอเตอร์จะถูกพล็อตตามแต่ละเฟส ทิศทางของเวกเตอร์ถูกกำหนดโดยทิศทางของกระแสตรงในขดลวด ถ้าแรงดันที่ใช้กับขดลวดเป็นค่าบวก เวกเตอร์นั้นจะถูกชี้ไปในทิศทางตรงกันข้ามจากขดลวด หากเป็นลบ ให้ไปตามขดลวด ขนาดของเวกเตอร์นั้นแปรผันตามขนาดของแรงดันบนเฟส ณ เวลาที่กำหนด
เพื่อให้ได้เวกเตอร์สนามแม่เหล็กที่เกิดขึ้น จำเป็นต้องเพิ่มข้อมูลเวกเตอร์ตามกฎของการบวกเวกเตอร์
การสร้างช่วงเวลาที่สองและสามมีความคล้ายคลึงกัน


รูปที่ 4 โมเมนต์ 2 เวกเตอร์สนามแม่เหล็กของแต่ละขดลวด (ซ้าย) และเวกเตอร์สนามแม่เหล็กที่เป็นผลลัพธ์ (ขวา)

ดังนั้น เมื่อเวลาผ่านไป เวกเตอร์ที่ได้จะเปลี่ยนทิศทางของมันอย่างราบรื่น รูปที่ 5 แสดงเวกเตอร์ผลลัพธ์และแสดง เลี้ยวเต็มสนามแม่เหล็กสเตเตอร์ในช่วงเวลาไฟฟ้าหนึ่งช่วง


รูปที่ 5. มุมมองของสนามแม่เหล็กหมุนที่เกิดจากขดลวดบนสเตเตอร์ของมอเตอร์

เวกเตอร์สนามแม่เหล็กไฟฟ้านี้ตามด้วยสนามแม่เหล็ก แม่เหล็กถาวรโรเตอร์ในแต่ละช่วงเวลา (รูปที่ 6)


รูปที่ 6 แม่เหล็กถาวร (โรเตอร์) เป็นไปตามทิศทางของสนามแม่เหล็กที่สร้างโดยสเตเตอร์

นี่คือการทำงานของเครื่อง AC แบบซิงโครนัส

การมีแหล่งจ่ายกระแสตรงจำเป็นต้องสร้างช่วงเวลาไฟฟ้าหนึ่งช่วงเวลาโดยเปลี่ยนทิศทางกระแสบนสามขดลวดมอเตอร์ เนื่องจากมอเตอร์แบบไม่มีแปรงมีการออกแบบคล้ายกับมอเตอร์ซิงโครนัสและมีพารามิเตอร์เหมือนกันในโหมดเครื่องกำเนิดไฟฟ้า จึงจำเป็นต้องเริ่มจากรูปที่ 5 ซึ่งแสดงสนามแม่เหล็กที่หมุนได้ที่สร้างขึ้น

แรงดันคงที่
แหล่งจ่ายกระแสตรงมีสายไฟเพียง 2 เส้น "กำลังบวก" และ "กำลังลบ" ซึ่งหมายความว่าสามารถจ่ายแรงดันไฟฟ้าให้กับขดลวดเพียงสองในสามเท่านั้น จำเป็นต้องประมาณรูปที่ 5 และเลือกช่วงเวลาทั้งหมดที่สามารถเปลี่ยน 2 จาก 3 เฟสได้

จำนวนการเรียงสับเปลี่ยนจากชุดที่ 3 คือ 6 ดังนั้นจึงมี 6 ตัวเลือกสำหรับการต่อขดลวด
เรามาอธิบายตัวเลือกการสลับที่เป็นไปได้และเลือกลำดับที่เวกเตอร์จะเลี้ยวต่อไปทีละขั้นจนกว่าจะถึงจุดสิ้นสุดของช่วงเวลาและเริ่มต้นใหม่

คาบไฟฟ้าจะนับจากเวกเตอร์แรก


รูปที่ 7 มุมมองของเวกเตอร์สนามแม่เหล็กหกชนิดที่สามารถสร้างได้จากแหล่ง DC โดยการสลับสองในสามขดลวด

รูปที่ 5 แสดงว่าเมื่อควบคุมแรงดันไฟไซน์แบบสามเฟสมีเวกเตอร์หลายตัวที่หมุนไปตามกาลเวลาอย่างราบรื่น และเมื่อสลับกับ DC เป็นไปได้ที่จะได้สนามการหมุนของเวกเตอร์เพียง 6 ตัว นั่นคือสลับไปยังขั้นตอนต่อไป ควรเกิดขึ้นทุกๆ 60 องศาไฟฟ้า
ผลลัพธ์จากรูปที่ 7 สรุปไว้ในตารางที่ 1

ตารางที่ 1. ลำดับการสลับผลลัพธ์ของขดลวดมอเตอร์

ประเภทของสัญญาณควบคุมที่เป็นผลลัพธ์ตามตารางที่ 1 แสดงไว้ในรูปที่ 8 โดยที่ -V กำลังเปลี่ยนเป็นค่าลบของแหล่งพลังงาน (GND) และ +V กำลังเปลี่ยนเป็นค่าบวกของแหล่งพลังงาน


รูปที่ 8 มุมมองสัญญาณควบคุมจากแหล่ง DC สำหรับมอเตอร์แบบไม่มีแปรง สีเหลือง - เฟส W, สีน้ำเงิน - U, สีแดง - V.

อย่างไรก็ตาม ภาพจริงจากเฟสของมอเตอร์จะคล้ายกับสัญญาณไซน์จากรูปที่ 1 สัญญาณมีรูปร่างสี่เหลี่ยมคางหมู เนื่องจากในช่วงเวลาที่ขดลวดมอเตอร์ไม่ได้ต่อ แม่เหล็กถาวรของโรเตอร์จะเหนี่ยวนำ EMF มัน (รูปที่ 9)


รูปที่ 9 มุมมองสัญญาณจากขดลวดของมอเตอร์แบบไม่มีแปรงถ่านในโหมดการทำงาน

บนออสซิลโลสโคปจะมีลักษณะดังนี้:


รูปที่ 10. มุมมองของหน้าต่างออสซิลโลสโคปเมื่อทำการวัดเฟสหนึ่งของมอเตอร์

คุณสมบัติการออกแบบ
ดังที่ได้กล่าวไว้ก่อนหน้านี้ สำหรับการสลับ 6 ขดลวด จะเกิดช่วงเวลาไฟฟ้าหนึ่งรอบ 360 องศาไฟฟ้า
จำเป็นต้องเชื่อมโยงช่วงเวลานี้กับมุมการหมุนที่แท้จริงของโรเตอร์ มอเตอร์ที่มีขั้วหนึ่งคู่และสเตเตอร์สามฟันนั้นไม่ค่อยได้ใช้ มอเตอร์มีขั้ว N คู่
รูปที่ 11 แสดงรุ่นมอเตอร์ที่มีขั้วหนึ่งคู่และขั้วสองคู่


ก. ข.
รูปที่ 11 โมเดลมอเตอร์ที่มีเสาคู่หนึ่ง (a) และสอง (b)

มอเตอร์ที่มีขั้วสองคู่มี 6 ขดลวดแต่ละขดลวดเป็นคู่แต่ละกลุ่มมี 3 ขดลวดชดเชย 120 องศาไฟฟ้า รูปที่ 12b. ล่าช้าไปหนึ่งงวดเป็นเวลา 6 ม้วน ขดลวด U1-U2, V1-V2, W1-W2 เชื่อมต่อถึงกันและในการออกแบบจะแสดงสายไฟ 3 เฟส การเชื่อมต่อจะไม่แสดงเพื่อความเรียบง่าย แต่จำไว้ว่า U1-U2, V1-V2, W1-W2 เหมือนกัน

รูปที่ 12 ตามข้อมูลในตารางที่ 1 แสดงเวกเตอร์สำหรับเสาหนึ่งและสองคู่


ก. ข.
รูปที่ 12 แผนผังเวกเตอร์สนามแม่เหล็กสำหรับมอเตอร์ที่มีขั้วหนึ่ง (a) และสอง (b)

รูปที่ 13 แสดงเวกเตอร์ที่สร้างขึ้นโดยขดลวดมอเตอร์สวิตชิ่ง 6 ตัวพร้อมขั้วหนึ่งคู่ โรเตอร์ประกอบด้วยแม่เหล็กถาวร ใน 6 ขั้นตอน โรเตอร์จะหมุน 360 องศาทางกล
รูปภาพแสดงตำแหน่งสุดท้ายของโรเตอร์ ในช่วงเวลาระหว่างตำแหน่งที่อยู่ติดกันสองตำแหน่ง โรเตอร์จะหมุนจากตำแหน่งก่อนหน้าไปยังสถานะสวิตช์ถัดไป เมื่อโรเตอร์ไปถึงตำแหน่งสิ้นสุดนี้ การเปลี่ยนครั้งต่อไปจะต้องเกิดขึ้น และโรเตอร์จะมุ่งไปที่การตั้งค่าใหม่เพื่อให้เวกเตอร์สนามแม่เหล็กของมันถูกกำกับร่วมกับเวกเตอร์สนามแม่เหล็กไฟฟ้าของสเตเตอร์


รูปที่ 13 ตำแหน่งปลายโรเตอร์สำหรับมอเตอร์แบบไม่มีแปรงถ่านแบบเปลี่ยนหกขั้นตอนพร้อมขั้วคู่หนึ่งคู่

ในมอเตอร์ที่มีคู่ขั้ว N จะใช้วงจรไฟฟ้า N รอบเพื่อให้การปฏิวัติทางกลเสร็จสมบูรณ์
มอเตอร์ที่มีขั้วสองคู่จะมีแม่เหล็กสองตัวที่มีขั้ว S และ N และขดลวด 6 อัน (รูปที่ 14) ขดลวด 3 กลุ่มแต่ละกลุ่มจะถูกชดเชยโดยสัมพันธ์กันโดย 120 องศาไฟฟ้า


รูปที่ 14. ตำแหน่งปลายโรเตอร์สำหรับมอเตอร์แบบไม่มีแปรงถ่านแบบเปลี่ยนหกขั้นตอนพร้อมเสาสองคู่

การกำหนดตำแหน่งโรเตอร์ของมอเตอร์แบบไม่มีแปรง
ดังที่ได้กล่าวไว้ก่อนหน้านี้สำหรับการทำงานของเครื่องยนต์จำเป็นต้องเชื่อมต่อแรงดันไฟฟ้ากับขดลวดสเตเตอร์ที่จำเป็นในเวลาที่เหมาะสม จำเป็นต้องใช้แรงดันไฟฟ้ากับขดลวดของมอเตอร์โดยขึ้นอยู่กับตำแหน่งของโรเตอร์ เพื่อให้สนามแม่เหล็กสเตเตอร์อยู่ข้างหน้าสนามแม่เหล็กของโรเตอร์เสมอ ในการกำหนดตำแหน่งของโรเตอร์มอเตอร์และการสลับของขดลวด ให้ใช้ หน่วยอิเล็กทรอนิกส์การจัดการ.
การติดตามตำแหน่งของโรเตอร์สามารถทำได้หลายวิธี:
1. เซ็นเซอร์ฮอลล์
2. โดยกลับ EMF
ตามกฎแล้ว ผู้ผลิตจะติดตั้งเซ็นเซอร์ Hall ในเครื่องยนต์เมื่อปล่อย ดังนั้นนี่จึงเป็นวิธีการควบคุมที่ใช้บ่อยที่สุด
การสลับขดลวดตามสัญญาณ EMF ด้านหลังทำให้คุณสามารถละทิ้งเซ็นเซอร์ที่ติดตั้งในมอเตอร์และใช้เป็นเซ็นเซอร์ในการวิเคราะห์เฟสอิสระของมอเตอร์ ซึ่งจะเหนี่ยวนำโดยสนามแม่เหล็กของ EMF ด้านหลัง

การควบคุมมอเตอร์ไร้แปรงถ่านพร้อมเซ็นเซอร์ฮอลล์
หากต้องการเปลี่ยนขดลวดในเวลาที่เหมาะสม จำเป็นต้องติดตามตำแหน่งของโรเตอร์เป็นองศาไฟฟ้า เซ็นเซอร์ฮอลล์ใช้สำหรับสิ่งนี้
เนื่องจากเวกเตอร์สนามแม่เหล็กมี 6 สถานะ จึงจำเป็นต้องมีเซนเซอร์ Hall 3 ตัว ซึ่งจะแทนหนึ่งตัว ตัวเข้ารหัสสัมบูรณ์ตำแหน่งที่มีเอาต์พุตสามบิต เซ็นเซอร์ Hall ได้รับการติดตั้งในลักษณะเดียวกับขดลวด โดยชดเชยด้วยองศาไฟฟ้า 120 องศา ซึ่งช่วยให้แม่เหล็กโรเตอร์สามารถใช้เป็นองค์ประกอบที่ทำหน้าที่ของเซ็นเซอร์ได้


รูปที่ 15. สัญญาณจากเซ็นเซอร์ Hall ในหนึ่งเดียว การปฏิวัติทางไฟฟ้าเครื่องยนต์.

ในการหมุนมอเตอร์ จำเป็นต้องให้สนามแม่เหล็กของสเตเตอร์อยู่ข้างหน้าสนามแม่เหล็กของโรเตอร์ ตำแหน่งเมื่อเวกเตอร์สนามแม่เหล็กของโรเตอร์ถูกกำกับร่วมกับเวกเตอร์สนามแม่เหล็กของสเตเตอร์นั้นถือเป็นที่สิ้นสุดสำหรับการสลับครั้งนี้ ว่าสวิตช์ไปยังชุดค่าผสมถัดไปควรเกิดขึ้นเพื่อป้องกันไม่ให้โรเตอร์แขวนอยู่ในตำแหน่งนิ่ง
มาเปรียบเทียบสัญญาณจากเซ็นเซอร์ Hall กับเฟสที่ต้องสลับกัน (ตารางที่ 2)

ตารางที่ 2 การเปรียบเทียบสัญญาณเซ็นเซอร์ Hall กับการสลับเฟสของมอเตอร์

ตำแหน่งเครื่องยนต์ ฮู(1) เอชวี(2) เอชดับเบิลยู(3) ยู วี W
0 0 0 1 0 - +
1 0 1 + - 0
1 0 0 + 0 -
1 1 0 0 + -
0 1 0 - + 0
360/ไม่มี 0 1 1 - 0 +

ด้วยการหมุนของเครื่องยนต์อย่างสม่ำเสมอ เซ็นเซอร์จะรับสัญญาณที่เลื่อนโดย 1/6 ของระยะเวลา 60 องศาไฟฟ้า (รูปที่ 16)


รูปที่ 16. มุมมองสัญญาณจากเซนเซอร์ Hall

กลับการควบคุม EMF
มีมอเตอร์แบบไม่มีแปรงที่ไม่มีเซ็นเซอร์ตำแหน่ง การกำหนดตำแหน่งของโรเตอร์ทำได้โดยใช้การวิเคราะห์ สัญญาณ EMFในเฟสอิสระของมอเตอร์ ในแต่ละช่วงเวลา “+” เชื่อมต่อกับเฟสใดเฟสหนึ่ง และไฟ “-” เชื่อมต่อกับอีกเฟสหนึ่ง โดยเฟสใดเฟสหนึ่งยังคงว่างอยู่ การหมุนสนามแม่เหล็กของโรเตอร์ทำให้เกิด EMF ในขดลวดอิสระ เมื่อการหมุนดำเนินไป แรงดันไฟฟ้าบนเฟสอิสระจะเปลี่ยนไป (รูปที่ 17)


รูปที่ 17. การเปลี่ยนแปลงแรงดันไฟฟ้าในเฟสของมอเตอร์

สัญญาณจากขดลวดมอเตอร์แบ่งเป็น 4 จุด คือ
1. ไขลานเชื่อมต่อกับ0
2. ไม่ต่อขดลวด (เฟสฟรี)
3. ขดลวดเชื่อมต่อกับแรงดันไฟฟ้า
4. ไขลานไม่ได้ต่อ (ฟรีเฟส)
เปรียบเทียบสัญญาณจากเฟสกับสัญญาณควบคุมจะเห็นได้ว่าโมเมนต์ของการเปลี่ยนสถานะเป็นสถานะถัดไปสามารถตรวจจับได้โดยการข้าม จุดกลาง(ครึ่งหนึ่งของแรงดันไฟจ่าย) กับเฟสที่ไม่ได้เชื่อมต่ออยู่ในปัจจุบัน (รูปที่ 18)


รูปที่ 18. การเปรียบเทียบสัญญาณควบคุมกับสัญญาณในเฟสของมอเตอร์

หลังจากตรวจพบทางแยกแล้วจำเป็นต้องหยุดชั่วคราวและเปิดสถานะถัดไป จากรูปนี้ มีการรวบรวมอัลกอริทึมสำหรับการเปลี่ยนสถานะของขดลวด (ตารางที่ 3)

ตารางที่ 3. อัลกอริธึมสำหรับการสลับขดลวดมอเตอร์

สถานะปัจจุบัน ยู วี W รัฐต่อไป
1 - + 2
2 - + 3
3 + - รอจุดกึ่งกลางจาก + ไป - 4
4 + รอจุดกึ่งกลางจาก - ถึง + - 5
5 รอจุดกึ่งกลางจาก + ไป - + - 6
6 - + รอจุดกึ่งกลางจาก - ถึง + 1

จุดตัดของจุดกึ่งกลางนั้นง่ายที่สุดในการตรวจจับด้วยตัวเปรียบเทียบ แรงดันจุดกึ่งกลางถูกนำไปใช้กับอินพุตหนึ่งของตัวเปรียบเทียบ และแรงดันเฟสปัจจุบันจะถูกนำไปใช้กับส่วนที่สอง


รูปที่ 19. การตรวจจับจุดกึ่งกลางโดยตัวเปรียบเทียบ

ตัวเปรียบเทียบจะทำงานในขณะที่แรงดันไฟฟ้าผ่านจุดกึ่งกลางและสร้างสัญญาณสำหรับไมโครคอนโทรลเลอร์

การประมวลผลสัญญาณจากเฟสมอเตอร์
อย่างไรก็ตาม สัญญาณจากเฟสต่างๆ ระหว่างการควบคุมความเร็ว PWM มีลักษณะที่แตกต่างกันและมีอักขระพัลซิ่ง (รูปที่ 21) ในสัญญาณดังกล่าว เป็นไปไม่ได้ที่จะตรวจจับจุดตัดกับจุดกึ่งกลาง


รูปที่ 20. มุมมองสัญญาณเฟสเมื่อปรับความเร็ว PWM

ดังนั้น สัญญาณนี้ควรถูกกรองด้วยตัวกรอง RC เพื่อรับซองจดหมาย และแบ่งตามข้อกำหนดของตัวเปรียบเทียบด้วย เมื่อรอบการทำงานเพิ่มขึ้น สัญญาณ PWM จะเพิ่มขึ้นในแอมพลิจูด (รูปที่ 22)


รูปที่ 21 แบบแผนของตัวแบ่งและตัวกรองสัญญาณจากเฟสมอเตอร์


รูปที่ 22. ซองจดหมายของสัญญาณเมื่อเปลี่ยนรอบการทำงานของ PWM

แผนภาพที่มีจุดกึ่งกลาง


รูปที่ 23. มุมมองของจุดกึ่งกลางเสมือน ภาพจาก avislab.com/

สัญญาณถูกนำมาจากเฟสผ่านตัวต้านทาน จำกัด กระแสและรวมกันจะได้ภาพต่อไปนี้:


รูปที่ 24. มุมมองของรูปคลื่นแรงดันไฟฟ้าของจุดกึ่งกลางเสมือน

เนื่องจาก PWM แรงดันจุดกึ่งกลางไม่คงที่ จึงจำเป็นต้องกรองสัญญาณด้วย แรงดันไฟฟ้าจุดกึ่งกลางหลังจากการทำให้เรียบจะมีขนาดใหญ่พอ (ในพื้นที่ของแรงดันไฟฟ้าของมอเตอร์) จะต้องหารด้วยตัวแบ่งแรงดันไฟฟ้าให้เท่ากับครึ่งหนึ่งของแรงดันไฟฟ้าที่จ่าย

หลังจากที่สัญญาณผ่านตัวกรอง การแกว่งจะถูกทำให้เรียบและได้แรงดันไฟที่เท่ากันซึ่งสัมพันธ์กับซึ่งสามารถตรวจจับครอสโอเวอร์ EMF ด้านหลังได้


รูปที่ 26. แรงดันไฟฟ้าหลังตัวแบ่งและตัวกรองความถี่ต่ำ

จุดกึ่งกลางจะเปลี่ยนค่าขึ้นอยู่กับแรงดันไฟฟ้า (รอบการทำงาน) เช่นเดียวกับซองสัญญาณ

สัญญาณที่ได้รับจากเครื่องเปรียบเทียบจะถูกส่งไปยังไมโครคอนโทรลเลอร์ซึ่งประมวลผลตามอัลกอริทึมด้านบน
สำหรับตอนนี้ นั่นคือทั้งหมด

เผยแพร่เมื่อ 11.04.2013

อุปกรณ์ที่ใช้ร่วมกัน (Inrunner, Outrunner)

มอเตอร์ DC แบบไม่มีแปรงประกอบด้วยโรเตอร์ที่มีแม่เหล็กถาวรและสเตเตอร์ที่มีขดลวด เครื่องยนต์มีสองประเภท: ผู้บุกเบิกซึ่งแม่เหล็กโรเตอร์อยู่ภายในสเตเตอร์ด้วยขดลวดและ รองชนะเลิศซึ่งแม่เหล็กตั้งอยู่ด้านนอกและหมุนรอบสเตเตอร์คงที่ด้วยขดลวด

โครงการ ผู้บุกเบิกมักใช้สำหรับ เครื่องยนต์ความเร็วสูงด้วยเสาไม่กี่ รองชนะเลิศถ้าจำเป็น ให้ใช้มอเตอร์แรงบิดสูงที่มีความเร็วค่อนข้างต่ำ โครงสร้าง Inrunners นั้นง่ายกว่าเนื่องจากสเตเตอร์คงที่สามารถใช้เป็นที่อยู่อาศัยได้ สามารถติดตั้งอุปกรณ์ติดตั้งได้ ในกรณีของ Outrunners ส่วนนอกทั้งหมดจะหมุน เครื่องยนต์ถูกยึดด้วยเพลาคงที่หรือชิ้นส่วนสเตเตอร์ ในกรณีของมอเตอร์ล้อ การยึดจะดำเนินการกับแกนคงที่ของสเตเตอร์ สายไฟจะถูกส่งไปยังสเตเตอร์ผ่านแกนกลวง

แม่เหล็กและเสา

จำนวนขั้วบนโรเตอร์เป็นเลขคู่ รูปร่างของแม่เหล็กที่ใช้มักจะเป็นรูปสี่เหลี่ยมผืนผ้า แม่เหล็กทรงกระบอกถูกใช้ไม่บ่อยนัก มีการติดตั้งเสาสลับ

จำนวนแม่เหล็กไม่สอดคล้องกับจำนวนขั้วเสมอไป แม่เหล็กหลายอันสามารถก่อตัวเป็นขั้วเดียว:

ในกรณีนี้ แม่เหล็ก 8 ตัวจะสร้าง 4 ขั้ว ขนาดของแม่เหล็กขึ้นอยู่กับรูปทรงของมอเตอร์และลักษณะของมอเตอร์ ยิ่งใช้แม่เหล็กแรงมากเท่าใด โมเมนต์ของแรงที่พัฒนาขึ้นโดยมอเตอร์บนเพลาก็จะยิ่งสูงขึ้น

แม่เหล็กบนโรเตอร์ได้รับการแก้ไขด้วยกาวพิเศษ ไม่ค่อยพบเห็นการออกแบบที่มีที่ยึดแม่เหล็ก วัสดุโรเตอร์สามารถเป็นสื่อกระแสไฟฟ้า (เหล็ก) ไม่เป็นสื่อกระแสไฟฟ้า ( โลหะผสมอลูมิเนียม,พลาสติก เป็นต้น) รวมกัน

ขดลวดและฟัน

การพันของมอเตอร์แบบไม่มีแปรงสามเฟสนั้นใช้ลวดทองแดง ลวดสามารถเป็นแบบแกนเดี่ยวหรือประกอบด้วยแกนหุ้มฉนวนหลายแกน สเตเตอร์ทำจากเหล็กนำไฟฟ้าหลายแผ่นพับเข้าหากัน

จำนวนฟันสเตเตอร์ต้องหารด้วยจำนวนเฟส เหล่านั้น. สำหรับมอเตอร์ไร้แปรงถ่านสามเฟส จำนวนฟันสเตเตอร์ ต้องหารด้วย3 .ลงตัว. จำนวนฟันสเตเตอร์สามารถมากหรือน้อยกว่าจำนวนของเสาบนโรเตอร์ ตัวอย่างเช่นมีมอเตอร์ที่มีโครงร่าง: 9 ฟัน / 12 แม่เหล็ก; 51 ฟัน/46 แม่เหล็ก

เครื่องยนต์ที่มีสเตเตอร์แบบ 3 ฟันนั้นใช้งานน้อยมาก เนื่องจากมีเพียงสองเฟสเท่านั้นที่ทำงานได้ตลอดเวลา (เมื่อเปิดโดยดาว) แรงแม่เหล็กจึงกระทำต่อโรเตอร์ไม่เท่ากันทั่วทั้งเส้นรอบวง (ดูรูป)

แรงที่กระทำต่อโรเตอร์พยายามบิดเบี้ยว ซึ่งทำให้เกิดการสั่นสะท้านเพิ่มขึ้น เพื่อขจัดผลกระทบนี้สเตเตอร์ทำด้วยฟันจำนวนมากและขดลวดจะกระจายไปทั่วฟันของเส้นรอบวงทั้งหมดของสเตเตอร์ให้เท่ากันมากที่สุด

ในกรณีนี้ แรงแม่เหล็กที่กระทำต่อโรเตอร์จะหักล้างซึ่งกันและกัน ไม่มีความไม่สมดุล

ตัวเลือกสำหรับการกระจายของขดลวดเฟสโดยฟันสเตเตอร์

ตัวเลือกการไขลานสำหรับฟัน 9 ซี่


ตัวเลือกการไขลานสำหรับฟัน 12 ซี่

ในแผนภาพด้านบน จำนวนของฟันจะถูกเลือกในลักษณะที่มัน หารด้วย3. ตัวอย่างเช่น เมื่อ 36 ฟันคิดเป็น 12 ฟันต่อเฟส สามารถแบ่งฟันได้ 12 ซี่ ดังนี้

รูปแบบที่ต้องการมากที่สุดคือ 6 กลุ่ม 2 ซี่

มีอยู่ มอเตอร์ที่มีฟัน 51 ซี่บนสเตเตอร์! 17 ฟันต่อเฟส 17 เป็นจำนวนเฉพาะ, มันหารด้วย 1 และตัวมันเองเท่านั้น. วิธีการกระจายคดเคี้ยวเหนือฟัน? อนิจจา ฉันไม่สามารถหาตัวอย่างและเทคนิคในเอกสารที่จะช่วยแก้ปัญหานี้ได้ ปรากฎว่ามีการกระจายคดเคี้ยวดังนี้:

พิจารณาวงจรที่คดเคี้ยวจริง

โปรดทราบว่าการม้วนมีทิศทางการม้วนที่แตกต่างกันบนฟันที่ต่างกัน ทิศทางที่คดเคี้ยวต่างกันจะแสดงด้วยตัวพิมพ์ใหญ่และตัวพิมพ์ใหญ่ รายละเอียดเกี่ยวกับการออกแบบขดลวดสามารถพบได้ในเอกสารที่นำเสนอในตอนท้ายของบทความ

ขดลวดแบบคลาสสิกทำด้วยลวดเส้นเดียวต่อเฟสเดียว เหล่านั้น. ขดลวดทั้งหมดบนฟันของเฟสเดียวเชื่อมต่อกันเป็นอนุกรม

ขดลวดของฟันสามารถต่อขนานกันได้

นอกจากนี้ยังสามารถรวมรวมเข้าด้วยกัน

การเชื่อมต่อแบบขนานและแบบรวมช่วยลดการเหนี่ยวนำของขดลวดซึ่งนำไปสู่การเพิ่มขึ้นของกระแสสเตเตอร์ (ด้วยเหตุนี้กำลัง) และความเร็วของมอเตอร์

มูลค่าการซื้อขายไฟฟ้าและของจริง

หากโรเตอร์ของมอเตอร์มีสองขั้ว ดังนั้นด้วยการหมุนรอบสนามแม่เหล็กบนสเตเตอร์อย่างสมบูรณ์หนึ่งครั้ง โรเตอร์จะทำให้เกิดการปฏิวัติอย่างสมบูรณ์หนึ่งครั้ง ด้วย 4 ขั้ว ต้องใช้สนามแม่เหล็กสองรอบบนสเตเตอร์เพื่อหมุนเพลามอเตอร์ให้ครบหนึ่งรอบ ยิ่งจำนวนเสาของโรเตอร์มากเท่าใด การหมุนรอบแกนมอเตอร์ก็จะยิ่งต้องใช้ไฟฟ้ามากขึ้นเท่านั้น ตัวอย่างเช่น เรามีแม่เหล็ก 42 ตัวบนโรเตอร์ เพื่อหมุนโรเตอร์หนึ่งรอบ จำเป็นต้องมีรอบไฟฟ้า 42/2 = 21 รอบ คุณสมบัตินี้สามารถใช้เป็นตัวลดขนาดได้ หยิบขึ้นมา จำนวนเงินที่ต้องการเสาคุณจะได้มอเตอร์ที่ต้องการ ลักษณะความเร็ว. นอกจากนี้ ในอนาคตเราจำเป็นต้องมีความเข้าใจในกระบวนการนี้เมื่อเลือกพารามิเตอร์ของคอนโทรลเลอร์

เซ็นเซอร์ตำแหน่ง

การออกแบบเครื่องยนต์ที่ไม่มีเซ็นเซอร์นั้นแตกต่างจากเครื่องยนต์ที่มีเซ็นเซอร์เฉพาะในกรณีที่ไม่มีตัวหลัง อื่น ความแตกต่างพื้นฐานไม่. เซ็นเซอร์ตำแหน่งที่พบบ่อยที่สุดตามเอฟเฟกต์ฮอลล์ เซ็นเซอร์ตอบสนองต่อสนามแม่เหล็ก โดยปกติแล้วจะอยู่บนสเตเตอร์ในลักษณะที่ได้รับผลกระทบจากแม่เหล็กโรเตอร์ มุมระหว่างเซ็นเซอร์จะต้องเป็น 120 องศา

ความหมาย "ไฟฟ้า" องศา เหล่านั้น. สำหรับมอเตอร์แบบหลายขั้ว การจัดเรียงทางกายภาพของเซ็นเซอร์อาจเป็นดังนี้:


บางครั้งเซ็นเซอร์อยู่นอกเครื่องยนต์ นี่คือตัวอย่างหนึ่งของตำแหน่งของเซ็นเซอร์ อันที่จริงมันเป็นเครื่องยนต์ที่ไม่มีเซ็นเซอร์ ดังนั้น ด้วยวิธีง่ายๆมันถูกติดตั้งด้วยเซ็นเซอร์ในห้องโถง

ในเครื่องยนต์บางเครื่อง มีการติดตั้งเซ็นเซอร์บน อุปกรณ์พิเศษซึ่งช่วยให้คุณสามารถเคลื่อนย้ายเซ็นเซอร์ได้ภายในขอบเขตที่กำหนด ด้วยความช่วยเหลือของอุปกรณ์ดังกล่าว เวลาจะถูกตั้งค่า อย่างไรก็ตาม หากมอเตอร์ต้องการการย้อนกลับ (การหมุนใน ด้านหลัง) จะต้องตั้งค่าเซ็นเซอร์ชุดที่สองให้ถอยหลัง เนื่องจากจังหวะเวลาไม่สำคัญในตอนเริ่มต้นและ รอบต่ำคุณสามารถตั้งค่าเซ็นเซอร์ไปที่จุดศูนย์ และปรับมุมนำโดยทางโปรแกรมเมื่อเครื่องยนต์เริ่มหมุน

ลักษณะสำคัญของเครื่องยนต์

แต่ละเครื่องยนต์ถูกคำนวณสำหรับความต้องการเฉพาะและมีลักษณะสำคัญดังต่อไปนี้:

  • โหมดการทำงานที่เครื่องยนต์ได้รับการออกแบบ: ระยะยาวหรือระยะสั้น ยาวโหมดการทำงานบ่งบอกว่าเครื่องยนต์สามารถทำงานได้นานหลายชั่วโมง เครื่องยนต์ดังกล่าวคำนวณในลักษณะที่การถ่ายเทความร้อนสู่สิ่งแวดล้อมสูงกว่าการปลดปล่อยความร้อนของเครื่องยนต์เอง ในกรณีนี้จะไม่อุ่นเครื่อง ตัวอย่าง: การระบายอากาศ บันไดเลื่อน หรือตัวขับสายพานลำเลียง ในระยะสั้น -หมายความว่าเครื่องยนต์จะเปิดขึ้นในช่วงเวลาสั้น ๆ ในระหว่างนั้นจะไม่มีเวลาอุ่นเครื่องจนถึงอุณหภูมิสูงสุดหลังจากนั้น เป็นเวลานานเวลาที่เครื่องยนต์จะเย็นลง ตัวอย่าง: ไดรฟ์ลิฟต์ เครื่องโกนหนวดไฟฟ้า เครื่องเป่าผม
  • ความต้านทานของขดลวดมอเตอร์. ความต้านทานของขดลวดมอเตอร์ส่งผลกระทบ ประสิทธิภาพของเครื่องยนต์. ยิ่งความต้านทานต่ำเท่าไรก็ยิ่งมีประสิทธิภาพมากขึ้นเท่านั้น โดยการวัดความต้านทาน คุณสามารถค้นหาการมีอยู่ วงจรอินเตอร์ในการม้วน ความต้านทานของขดลวดมอเตอร์คือหนึ่งในพันของโอห์ม ในการวัดคุณต้อง อุปกรณ์พิเศษหรือเทคนิคการวัดพิเศษ
  • ขีดสุด แรงดันใช้งาน . แรงดันไฟฟ้าสูงสุดที่ขดลวดสเตเตอร์สามารถทนได้ แรงดันไฟฟ้าสูงสุดสัมพันธ์กับพารามิเตอร์ต่อไปนี้
  • RPM สูงสุด. บางครั้งก็บ่งบอกว่า ความเร็วสูงสุด, แ kv-จำนวนรอบของมอเตอร์ต่อโวลต์ที่ไม่มีโหลดบนเพลา เมื่อคูณตัวเลขนี้ด้วยแรงดันไฟฟ้าสูงสุด เราจะได้ความเร็วสูงสุดของเครื่องยนต์โดยไม่ต้องโหลดบนเพลา
  • กระแสสูงสุด. กระแสไฟที่คดเคี้ยวสูงสุดที่อนุญาต ตามกฎแล้วจะมีการระบุเวลาที่มอเตอร์สามารถทนต่อกระแสที่ระบุได้ ขีด จำกัด กระแสสูงสุดเกี่ยวข้องกับความร้อนสูงเกินไปของขดลวด ดังนั้น เมื่อ อุณหภูมิต่ำ สิ่งแวดล้อมเวลาจริงของการทำงานที่มีกระแสสูงสุดจะนานขึ้นและในความร้อนมอเตอร์จะไหม้เร็วขึ้น
  • กำลังเครื่องยนต์สูงสุดเกี่ยวข้องโดยตรงกับพารามิเตอร์ก่อนหน้า นี่คือกำลังสูงสุดที่เครื่องยนต์สามารถพัฒนาได้ในช่วงเวลาสั้นๆ โดยปกติจะใช้เวลาไม่กี่วินาที ที่ งานยาวบน พลังสูงสุดเครื่องยนต์ร้อนจัดและความล้มเหลวอย่างหลีกเลี่ยงไม่ได้
  • กำลังไฟพิกัด. กำลังที่เครื่องยนต์สามารถพัฒนาได้ตลอดระยะเวลาเปิดเครื่อง
  • มุมล่วงหน้าของเฟส (เวลา). ขดลวดสเตเตอร์มีการเหนี่ยวนำซึ่งชะลอการเติบโตของกระแสในขดลวด กระแสจะถึงจุดสูงสุดหลังจากนั้นครู่หนึ่ง เพื่อชดเชยความล่าช้านี้ การสลับเฟสจะดำเนินการล่วงหน้าบางส่วน คล้ายกับการจุดระเบิดของเครื่องยนต์ สันดาปภายในโดยที่มุมการจุดระเบิดถูกตั้งไว้ โดยคำนึงถึงเวลาการจุดระเบิดของเชื้อเพลิง

คุณควรให้ความสนใจกับความจริงที่ว่าเมื่อโหลดพิกัดคุณจะไม่ได้รับความเร็วสูงสุดบนเพลามอเตอร์ kvระบุไว้สำหรับเครื่องยนต์ที่ไม่ได้บรรจุ เมื่อเปิดเครื่องจากแบตเตอรี่ควรคำนึงถึง "การจม" ของแรงดันไฟฟ้าที่จ่ายภายใต้ภาระซึ่งจะลดความเร็วของเครื่องยนต์สูงสุดด้วย

มอเตอร์กระแสตรงไร้แปรงถ่านมีขดลวดสามเฟสบนสเตเตอร์และแม่เหล็กถาวรบนโรเตอร์ สนามแม่เหล็กหมุนถูกสร้างขึ้นโดยขดลวดสเตเตอร์ เมื่อมีปฏิสัมพันธ์กับโรเตอร์แม่เหล็กที่เริ่มเคลื่อนที่ ในการสร้างสนามแม่เหล็กหมุน จะใช้ระบบแรงดันไฟฟ้าสามเฟสกับขดลวดสเตเตอร์ ซึ่งสามารถมีรูปร่างที่แตกต่างกันและเกิดขึ้นได้ วิธีทางที่แตกต่าง. การก่อตัวของแรงดันไฟฟ้า (การสลับของขดลวด) สำหรับมอเตอร์กระแสตรงแบบไม่มีแปรงถ่านนั้นดำเนินการโดยหน่วยอิเล็กทรอนิกส์พิเศษ - ตัวควบคุมมอเตอร์

สั่งซื้อมอเตอร์ไร้แปรงถ่านในแคตตาล็อกของเรา

ในกรณีที่ง่ายที่สุด ขดลวดจะเชื่อมต่อเป็นคู่กับแหล่งจ่ายแรงดันคงที่ และเมื่อโรเตอร์หมุนไปในทิศทางของเวกเตอร์สนามแม่เหล็กของขดลวดสเตเตอร์ แรงดันไฟฟ้าจะเชื่อมต่อกับขดลวดอีกคู่หนึ่ง ในกรณีนี้เวกเตอร์สนามแม่เหล็กสเตเตอร์อยู่ในตำแหน่งที่แตกต่างกันและการหมุนของโรเตอร์จะดำเนินต่อไป ในการพิจารณาโมเมนต์ที่ต้องการในการเชื่อมต่อของขดลวดต่อไปนี้ จะใช้เซ็นเซอร์ตำแหน่งโรเตอร์ เซ็นเซอร์ Hall มักใช้บ่อยที่สุด

ตัวเลือกและกรณีพิเศษ

ปัจจุบันมอเตอร์แบบไร้แปรงถ่านมีการออกแบบที่หลากหลาย

ตามการออกแบบของขดลวดสเตเตอร์ มอเตอร์ที่มีบาดแผลแบบคลาสสิกบนแกนเหล็กและมอเตอร์ที่มีขดลวดทรงกระบอกกลวงที่ไม่มีแกนเหล็กสามารถแยกแยะออกได้ ขดลวดแบบคลาสสิกมีความเหนี่ยวนำสูงกว่าขดลวดทรงกระบอกกลวงมาก และด้วยเหตุนี้ ค่าคงที่ของเวลาจึงมากกว่า ด้วยเหตุนี้ในอีกด้านหนึ่ง ขดลวดทรงกระบอกกลวงช่วยให้มีการเปลี่ยนแปลงแบบไดนามิกมากขึ้นในกระแส (และด้วยเหตุนี้แรงบิด) ในทางกลับกัน เมื่อทำงานจากตัวควบคุมมอเตอร์ที่ใช้การมอดูเลต PWM ความถี่ต่ำเพื่อทำให้กระแสไฟราบรื่น ต้องใช้ระลอกคลื่น, ตัวกรองโช้กที่มีพิกัดที่ใหญ่กว่า (และตามนั้น ขนาดใหญ่ขึ้น). นอกจากนี้ ตามกฎแล้วการไขลานแบบคลาสสิกนั้นมีโมเมนต์การตรึงแม่เหล็กที่สูงกว่าอย่างเห็นได้ชัด เช่นเดียวกับประสิทธิภาพที่ต่ำกว่าการไขลานทรงกระบอกแบบกลวง



ความแตกต่างอีกอย่างที่แยกออก รุ่นต่างๆมอเตอร์ - นี่คือตำแหน่งสัมพัทธ์ของโรเตอร์และสเตเตอร์ - มีมอเตอร์ที่มีโรเตอร์ภายในและมอเตอร์ที่มีโรเตอร์ภายนอก มอเตอร์โรเตอร์ภายในมักจะมีความเร็วที่สูงกว่าและโมเมนต์ความเฉื่อยของโรเตอร์ต่ำกว่ารุ่นโรเตอร์ภายนอก เป็นผลให้มอเตอร์โรเตอร์ภายในมีไดนามิกที่สูงขึ้น มอเตอร์โรเตอร์ภายนอกมักจะมีแรงบิดสูงกว่าเล็กน้อยสำหรับเส้นผ่านศูนย์กลางภายนอกของมอเตอร์เดียวกัน

ความแตกต่างจากเครื่องยนต์ประเภทอื่น

ความแตกต่างจากตัวสะสม DPT ตำแหน่งของขดลวดบนโรเตอร์ทำให้สามารถละทิ้งแปรงและตัวสะสมและด้วยเหตุนี้จึงกำจัดสิ่งที่เคลื่อนย้ายได้ หน้าสัมผัสไฟฟ้าซึ่งลดความน่าเชื่อถือของ DCT ด้วยแม่เหล็กถาวรลงอย่างมาก ด้วยเหตุผลเดียวกัน มอเตอร์ไร้แปรงถ่านจึงมักจะวิ่งได้เร็วกว่ามอเตอร์ DC แบบแม่เหล็กถาวรมาก ในอีกด้านหนึ่ง สิ่งนี้ทำให้สามารถเพิ่มกำลังเฉพาะของมอเตอร์ไร้แปรงถ่านได้ ในทางกลับกัน เช่น ความเร็วสูงจำเป็นจริงๆ

ความแตกต่างจากมอเตอร์ซิงโครนัสแม่เหล็กถาวร มอเตอร์ซิงโครนัสที่มีแม่เหล็กถาวรบนโรเตอร์มีความคล้ายคลึงกับมอเตอร์กระแสตรงแบบไม่มีแปรงถ่านในการออกแบบ แต่มีข้อแตกต่างหลายประการ ประการแรก คำว่ามอเตอร์ซิงโครนัสเป็นการรวมมอเตอร์หลายประเภทเข้าด้วยกัน ซึ่งบางตัวได้รับการออกแบบสำหรับการทำงานโดยตรงจากเครือข่าย AC มาตรฐาน ส่วนอื่นๆ (เช่น มอเตอร์เซอร์โวแบบซิงโครนัส) สามารถใช้งานได้จากตัวแปลงความถี่ (ตัวควบคุมมอเตอร์) เท่านั้น มอเตอร์ไร้แปรงถ่าน แม้ว่าจะมีขดลวดสามเฟสบนสเตเตอร์ แต่ไม่อนุญาตให้ใช้งานโดยตรงจากแรงดันไฟหลัก และจำเป็นต้องมีตัวควบคุมที่เหมาะสม นอกจากนี้ มอเตอร์ซิงโครนัสถือว่าจ่ายแรงดันไฟแบบไซน์ ในขณะที่มอเตอร์แบบไม่มีแปรงอนุญาตให้จ่ายแรงดันไฟสลับแบบสเต็ป (สวิตช์แบบบล็อก) และกระทั่งถือว่าใช้ในโหมดการทำงานปกติ

คุณต้องการมอเตอร์แบบไม่มีแปรงเมื่อใด

คำตอบสำหรับคำถามนี้ค่อนข้างง่าย - ในกรณีที่มีความได้เปรียบเหนือเครื่องยนต์ประเภทอื่น ตัวอย่างเช่น แทบเป็นไปไม่ได้เลยที่จะไม่ใช้มอเตอร์ไร้แปรงถ่านในการใช้งานที่ ความเร็วสูงการหมุน: มากกว่า 10,000 รอบต่อนาที การใช้มอเตอร์แบบไร้แปรงถ่านก็เป็นสิ่งที่สมเหตุสมผลในกรณีที่ต้องใช้มอเตอร์ที่มีอายุการใช้งานยาวนาน ในกรณีที่จำเป็นต้องใช้ชุดประกอบจากมอเตอร์ที่มีกระปุกเกียร์ การใช้มอเตอร์ไร้แปรงถ่านความเร็วต่ำ (ที่มีเสาจำนวนมาก) นั้นสมเหตุสมผลอย่างชัดเจน มอเตอร์ไร้แปรงถ่านความเร็วสูงในกรณีนี้จะมีความเร็วที่สูงกว่าขีดจำกัด ความเร็วที่อนุญาตกระปุกเกียร์และด้วยเหตุนี้จึงไม่สามารถใช้กำลังเต็มที่ได้ สำหรับการใช้งานที่ต้องการการควบคุมมอเตอร์ที่ง่ายที่สุด (โดยไม่ต้องใช้ตัวควบคุมมอเตอร์) DCT ตัวสะสมเป็นทางเลือกที่เป็นธรรมชาติ

ในทางกลับกัน ภายใต้สภาวะที่มีอุณหภูมิสูงหรือรังสีที่เพิ่มขึ้น ความอ่อนแอมอเตอร์ไร้แปรงถ่าน - เซ็นเซอร์ฮอลล์ เซนเซอร์ Hall รุ่นมาตรฐานมีความต้านทานการแผ่รังสีและช่วงอุณหภูมิในการทำงานที่จำกัด หากยังจำเป็นต้องใช้มอเตอร์แบบไม่มีแปรงในแอปพลิเคชันดังกล่าว เวอร์ชันที่ผลิตขึ้นเองด้วยการเปลี่ยนเซ็นเซอร์ Hall ที่มีตัวต้านทานมากขึ้นต่อปัจจัยเหล่านี้จะกลายเป็นสิ่งที่หลีกเลี่ยงไม่ได้ ซึ่งจะทำให้ราคามอเตอร์และเวลาในการจัดส่งสูงขึ้น

มอเตอร์กระแสตรงเป็นมอเตอร์ไฟฟ้าที่ขับเคลื่อนด้วยกระแสตรง ถ้าจำเป็น ให้ใช้มอเตอร์แรงบิดสูงที่มีความเร็วค่อนข้างต่ำ โครงสร้าง Inrunners นั้นง่ายกว่าเนื่องจากสเตเตอร์คงที่สามารถใช้เป็นที่อยู่อาศัยได้ สามารถติดตั้งอุปกรณ์ติดตั้งได้ ในกรณีของ Outrunners ส่วนนอกทั้งหมดจะหมุน เครื่องยนต์ถูกยึดด้วยเพลาคงที่หรือชิ้นส่วนสเตเตอร์ ในกรณีของมอเตอร์ล้อ การยึดจะดำเนินการกับแกนคงที่ของสเตเตอร์ ลวดจะถูกนำไปยังสเตเตอร์ผ่านแกนกลวงซึ่งมีขนาดน้อยกว่า 0.5 มม.

มอเตอร์ไฟฟ้ากระแสสลับเรียกว่า มอเตอร์ไฟฟ้าที่ขับเคลื่อนด้วยกระแสสลับ. มอเตอร์ไฟฟ้ากระแสสลับมีประเภทต่อไปนี้:

นอกจากนี้ยังมี UKD (มอเตอร์สับเปลี่ยนอเนกประสงค์) ที่มีฟังก์ชั่นโหมดการทำงานทั้งแบบกระแสสลับและกระแสตรง

เครื่องยนต์อีกประเภทหนึ่งคือ สเต็ปเปอร์มอเตอร์ที่มีตำแหน่งโรเตอร์จำนวนจำกัด. ตำแหน่งที่ระบุของโรเตอร์ได้รับการแก้ไขโดยการจ่ายพลังงานให้กับขดลวดที่จำเป็น เมื่อแรงดันไฟฟ้าของแหล่งจ่ายถูกถอดออกจากขดลวดอันหนึ่งและโอนไปยังขดลวดอื่น จะเกิดกระบวนการเปลี่ยนผ่านไปยังตำแหน่งอื่น

มอเตอร์ไฟฟ้ากระแสสลับที่ขับเคลื่อนโดยเครือข่ายเชิงพาณิชย์มักจะไม่บรรลุผล ความเร็วมากกว่าสามพันรอบต่อนาที. ด้วยเหตุนี้ เมื่อจำเป็นต้องได้รับความถี่ที่สูงกว่า จึงใช้มอเตอร์ตัวรวบรวม ซึ่งข้อดีเพิ่มเติมคือความเบาและความกะทัดรัดในขณะที่ยังคงรักษากำลังที่ต้องการ

บางครั้งก็ใช้กลไกการส่งผ่านพิเศษที่เรียกว่าตัวคูณซึ่งจะเปลี่ยนพารามิเตอร์จลนศาสตร์ของอุปกรณ์ให้เป็นที่ต้องการ ตัวชี้วัดทางเทคนิค. แอสเซมบลีของตัวรวบรวมบางครั้งใช้พื้นที่ถึงครึ่งหนึ่งของมอเตอร์ทั้งหมด ดังนั้นมอเตอร์ AC จึงมีขนาดลดลงและทำให้น้ำหนักเบาลงโดยใช้เครื่องแปลงความถี่ และบางครั้งเกิดจากการมีเครือข่ายที่มีความถี่เพิ่มขึ้นถึง 400 เฮิรตซ์

ทรัพยากรใด ๆ มอเตอร์เหนี่ยวนำกระแสสลับสูงกว่าตัวสะสมอย่างเห็นได้ชัด ถูกกำหนดไว้แล้ว สถานะของฉนวนของขดลวดและแบริ่ง. มอเตอร์ซิงโครนัสเมื่อใช้อินเวอร์เตอร์และเซ็นเซอร์ตำแหน่งโรเตอร์ถือเป็นแอนะล็อกอิเล็กทรอนิกส์ของมอเตอร์สะสมแบบคลาสสิกที่รองรับการทำงานผ่านกระแสตรง

มอเตอร์กระแสตรงไร้แปรงถ่าน ข้อมูลทั่วไปและอุปกรณ์อุปกรณ์

มอเตอร์ไร้แปรงถ่าน DC เรียกอีกอย่างว่ามอเตอร์ไร้แปรงถ่านสามเฟส เป็นอุปกรณ์ซิงโครนัสซึ่งมีหลักการทำงานอยู่บนพื้นฐานของการควบคุมความถี่แบบซิงโครไนซ์ด้วยตนเองเนื่องจากการควบคุมเวกเตอร์ (เริ่มจากตำแหน่งของโรเตอร์) ของสนามแม่เหล็กสเตเตอร์

ตัวควบคุมมอเตอร์ประเภทนี้มักจะขับเคลื่อนโดย แรงดันคงที่ซึ่งพวกเขาได้ชื่อมา เป็นภาษาอังกฤษ วรรณกรรมทางเทคนิคมอเตอร์ไร้แปรงถ่านเรียกว่า PMSM หรือ BLDC

มอเตอร์ไร้แปรงถ่านถูกสร้างขึ้นเพื่อเพิ่มประสิทธิภาพ มอเตอร์กระแสตรงใดๆโดยทั่วไป. ถึง กลไกการบริหารสำหรับอุปกรณ์ดังกล่าว (โดยเฉพาะอย่างยิ่งสำหรับไมโครไดรฟ์ความเร็วสูงที่มีการวางตำแหน่งที่แม่นยำ) มีการกำหนดความต้องการที่สูงมาก

นี้อาจนำไปสู่การใช้อุปกรณ์ DC เฉพาะดังกล่าว brushless มอเตอร์สามเฟสหรือเรียกอีกอย่างว่า BDPT เกือบจะเหมือนกันในการออกแบบ มอเตอร์ซิงโครนัสกระแสสลับซึ่งการหมุนของโรเตอร์แม่เหล็กเกิดขึ้นในสเตเตอร์เคลือบธรรมดาเมื่อมีขดลวดสามเฟส และจำนวนรอบการหมุนขึ้นอยู่กับแรงดันและโหลดของสเตเตอร์ ตามพิกัดบางอย่างของโรเตอร์ ขดลวดสเตเตอร์ที่แตกต่างกันจะถูกเปลี่ยน

มอเตอร์กระแสตรงไร้แปรงถ่านสามารถมีอยู่ได้โดยไม่ต้องแยกเซ็นเซอร์ อย่างไรก็ตาม บางครั้งก็มีอยู่บนโรเตอร์ เช่น เซ็นเซอร์ Hall หากอุปกรณ์ทำงานโดยไม่มีเซ็นเซอร์เพิ่มเติม แสดงว่า ขดลวดสเตเตอร์ทำหน้าที่เป็นองค์ประกอบการตรึง. จากนั้นกระแสจะเกิดขึ้นเนื่องจากการหมุนของแม่เหล็ก เมื่อโรเตอร์เหนี่ยวนำ EMF ในขดลวดสเตเตอร์

หากขดลวดอันใดอันหนึ่งปิดอยู่ สัญญาณที่เหนี่ยวนำจะถูกวัดและประมวลผลต่อไป อย่างไรก็ตาม หลักการของการดำเนินการดังกล่าวจะเป็นไปไม่ได้หากไม่มีอาจารย์ในการประมวลผลสัญญาณ แต่หากต้องการย้อนกลับหรือเบรกมอเตอร์ไฟฟ้าดังกล่าว ไม่จำเป็นต้องใช้วงจรสะพาน - มันจะเพียงพอที่จะจ่ายพัลส์ควบคุมให้กับขดลวดสเตเตอร์ในลำดับย้อนกลับ

ใน VD (มอเตอร์แบบสวิตช์) ตัวเหนี่ยวนำในรูปของแม่เหล็กถาวรจะอยู่บนโรเตอร์และขดลวดกระดองอยู่บนสเตเตอร์ ตามตำแหน่งของโรเตอร์ แรงดันไฟฟ้าของขดลวดทั้งหมดเกิดขึ้นมอเตอร์ไฟฟ้า. เมื่อใช้ในโครงสร้างดังกล่าวของตัวสะสม หน้าที่ของมันจะถูกดำเนินการในมอเตอร์วาล์วโดยสวิตช์เซมิคอนดักเตอร์

ความแตกต่างที่สำคัญระหว่างมอเตอร์ซิงโครนัสและแบบไม่มีแปรงคือการซิงโครไนซ์ตัวเองของมอเตอร์หลังด้วยความช่วยเหลือของ DPR ซึ่งกำหนดความถี่ตามสัดส่วนของการหมุนของโรเตอร์และสนาม

ส่วนใหญ่แล้วมอเตอร์กระแสตรงไร้แปรงถ่านจะพบการใช้งานในพื้นที่ต่อไปนี้:

สเตเตอร์

อุปกรณ์นี้มีการออกแบบที่คลาสสิกและมีลักษณะคล้ายอุปกรณ์เดียวกัน เครื่องอะซิงโครนัส. องค์ประกอบประกอบด้วย แกนขดลวดทองแดง(วางรอบปริมณฑลเข้าไปในร่อง) ซึ่งกำหนดจำนวนเฟสและตัวเรือน โดยปกติแล้ว เฟสไซน์และโคไซน์จะเพียงพอสำหรับการหมุนและการสตาร์ทตัวเอง อย่างไรก็ตาม บ่อยครั้งมอเตอร์วาล์วจะทำแบบสามเฟสและสี่เฟส

มอเตอร์ไฟฟ้าแบบถอยหลัง แรงเคลื่อนไฟฟ้าตามประเภทของการหมุนบนขดลวดสเตเตอร์แบ่งออกเป็นสองประเภท:

  • รูปแบบไซนัส;
  • รูปร่างสี่เหลี่ยมคางหมู

ในประเภทมอเตอร์ที่สอดคล้องกัน กระแสเฟสไฟฟ้ายังเปลี่ยนแปลงไปตามวิธีการจ่ายไฟแบบไซน์หรือสี่เหลี่ยมคางหมู

โรเตอร์

โดยปกติโรเตอร์จะทำจากแม่เหล็กถาวรที่มีเสาสองถึงแปดคู่ ซึ่งในทางกลับกัน จะสลับจากเหนือไปใต้หรือกลับกัน

แม่เหล็กเฟอร์ไรต์ถือเป็นแม่เหล็กที่พบมากที่สุดและถูกที่สุดสำหรับการผลิตโรเตอร์ แต่ข้อเสียคือ ระดับต่ำการเหนี่ยวนำแม่เหล็กดังนั้นอุปกรณ์ที่ทำจากโลหะผสมของธาตุหายากหลายชนิดจึงกำลังเข้ามาแทนที่วัสดุดังกล่าวเนื่องจากสามารถจัดหาได้ ระดับสูงการเหนี่ยวนำแม่เหล็กซึ่งจะช่วยลดขนาดของโรเตอร์

สพป

เซ็นเซอร์ตำแหน่งโรเตอร์ให้ ข้อเสนอแนะ. ตามหลักการทำงาน อุปกรณ์แบ่งออกเป็นชนิดย่อยดังต่อไปนี้:

  • อุปนัย;
  • ตาแมว;
  • เซ็นเซอร์เอฟเฟกต์ฮอลล์

ประเภทหลังเป็นที่นิยมมากที่สุดเนื่องจาก คุณสมบัติเฉื่อยสัมบูรณ์เกือบสัมบูรณ์และความสามารถในการกำจัดความล่าช้าในช่องป้อนกลับโดยตำแหน่งของโรเตอร์

ระบบควบคุม

ระบบควบคุมประกอบด้วยสวิตช์ไฟ ซึ่งบางครั้งก็เป็นไทริสเตอร์หรือทรานซิสเตอร์กำลังไฟฟ้า รวมถึงเกทที่หุ้มฉนวน ซึ่งนำไปสู่การรวบรวมอินเวอร์เตอร์ปัจจุบันหรืออินเวอร์เตอร์แรงดันไฟ กระบวนการจัดการคีย์เหล่านี้มักถูกนำไปใช้ โดยใช้ไมโครคอนโทรลเลอร์ซึ่งต้องใช้การคำนวณจำนวนมากเพื่อควบคุมเครื่องยนต์

หลักการทำงาน

การทำงานของเครื่องยนต์อยู่ในความจริงที่ว่าตัวควบคุมจะสลับขดลวดสเตเตอร์จำนวนหนึ่งในลักษณะที่เวกเตอร์ของสนามแม่เหล็กของโรเตอร์และสเตเตอร์เป็นมุมฉาก ด้วย PWM (การปรับความกว้างพัลส์) ตัวควบคุมควบคุมกระแสที่ไหลผ่านมอเตอร์และควบคุมแรงบิดที่กระทำกับโรเตอร์ ทิศทางของโมเมนต์การแสดงนี้ถูกกำหนดโดยเครื่องหมายของมุมระหว่างเวกเตอร์ องศาไฟฟ้าใช้ในการคำนวณ

การสลับควรทำในลักษณะที่ Ф0 (ฟลักซ์กระตุ้นของโรเตอร์) คงที่โดยสัมพันธ์กับฟลักซ์ของกระดอง เมื่อแรงกระตุ้นดังกล่าวและการไหลของกระดองโต้ตอบกัน แรงบิด M จะเกิดขึ้น ซึ่งมีแนวโน้มที่จะหมุนโรเตอร์และขนานกันเพื่อให้แน่ใจว่าจะเกิดความบังเอิญของการกระตุ้นและการไหลของเกราะ อย่างไรก็ตาม ในระหว่างการหมุนของโรเตอร์ ขดลวดต่างๆ จะถูกสลับภายใต้อิทธิพลของเซ็นเซอร์ตำแหน่งโรเตอร์ อันเป็นผลมาจากการที่ฟลักซ์ของกระดองจะเปลี่ยนไปสู่ขั้นตอนต่อไป

ในสถานการณ์เช่นนี้ เวกเตอร์ที่เป็นผลลัพธ์จะเคลื่อนที่และหยุดนิ่งโดยสัมพันธ์กับฟลักซ์ของโรเตอร์ ซึ่งในทางกลับกัน จะสร้างแรงบิดที่จำเป็นบนเพลามอเตอร์

การจัดการเครื่องยนต์

ตัวควบคุมของมอเตอร์ไฟฟ้ากระแสตรงไร้แปรงถ่านจะควบคุมโมเมนต์ที่กระทำต่อโรเตอร์โดยการเปลี่ยนค่าของการมอดูเลตความกว้างพัลส์ การสลับถูกควบคุมและ ดำเนินการทางอิเล็กทรอนิกส์ต่างจากมอเตอร์กระแสตรงแบบมีแปรงถ่านทั่วไป ระบบควบคุมที่ใช้การมอดูเลตความกว้างพัลส์และอัลกอริธึมการควบคุมความกว้างพัลส์ก็เป็นเรื่องธรรมดาเช่นกันสำหรับเวิร์กโฟลว์

มอเตอร์ควบคุมแบบเวกเตอร์ให้ช่วงที่รู้จักมากที่สุดสำหรับการควบคุมความเร็วด้วยตนเอง การควบคุมความเร็วนี้ตลอดจนการรักษาการเชื่อมต่อฟลักซ์บน ระดับที่ต้องการเกิดจากตัวแปลงความถี่

คุณลักษณะของการควบคุมไดรฟ์ไฟฟ้าตามการควบคุมเวกเตอร์คือการมีอยู่ของพิกัดที่ควบคุม อยู่ในระบบคงที่และ เปลี่ยนเป็นหมุนโดยเน้นค่าคงที่ตามสัดส่วนของพารามิเตอร์ที่ควบคุมของเวกเตอร์ อันเนื่องมาจากการดำเนินการควบคุมเกิดขึ้น และจากนั้นจึงเกิดการเปลี่ยนแปลงแบบย้อนกลับ

แม้จะมีข้อดีทั้งหมดของระบบดังกล่าว แต่ก็มีข้อเสียในรูปแบบของความซับซ้อนในการควบคุมอุปกรณ์เพื่อควบคุมความเร็วในวงกว้าง

ข้อดีข้อเสีย

ปัจจุบันนี้ ในหลายอุตสาหกรรม มอเตอร์ประเภทนี้เป็นที่ต้องการอย่างมาก เนื่องจากมอเตอร์กระแสตรงแบบไร้แปรงถ่านได้รวมเอาส่วนประกอบเกือบทั้งหมดเข้าด้วยกันมากที่สุด คุณสมบัติที่ดีที่สุดมอเตอร์แบบไม่สัมผัสและชนิดอื่นๆ

ข้อดีที่ปฏิเสธไม่ได้ มอเตอร์ไร้แปรงถ่านเป็น:

แม้จะมีผลบวกที่สำคัญ มอเตอร์กระแสตรงไร้แปรงถ่านยังมีข้อเสียบางประการ:

จากที่กล่าวมาข้างต้นและความล้าหลังของอุปกรณ์อิเล็กทรอนิกส์สมัยใหม่ในภูมิภาคนี้ หลายคนยังคงพิจารณาว่าเหมาะสมที่จะใช้มอเตอร์แบบอะซิงโครนัสแบบธรรมดากับเครื่องแปลงความถี่

มอเตอร์กระแสตรงไร้แปรงถ่านสามเฟส

มอเตอร์ประเภทนี้มีประสิทธิภาพที่ยอดเยี่ยม โดยเฉพาะอย่างยิ่งเมื่อทำการควบคุมโดยใช้เซ็นเซอร์ตำแหน่ง หากโมเมนต์ของการต่อต้านแตกต่างกันหรือไม่ทราบเลย และจำเป็นจะต้องบรรลุด้วยหรือไม่ แรงบิดเริ่มต้นที่สูงขึ้นใช้การควบคุมเซ็นเซอร์ หากไม่ได้ใช้เซ็นเซอร์ (โดยปกติจะอยู่ในพัดลม) ตัวควบคุมจะขจัดความจำเป็นในการสื่อสารผ่านสาย

คุณสมบัติของการควบคุมมอเตอร์ไร้แปรงถ่านสามเฟสโดยไม่มีเซ็นเซอร์ตำแหน่ง:

คุณสมบัติการควบคุม มอเตอร์ไร้แปรงถ่านสามเฟสด้วยตัวเข้ารหัสตำแหน่งโดยใช้ตัวอย่างเซ็นเซอร์เอฟเฟกต์ฮอลล์:

บทสรุป

มอเตอร์กระแสตรงไร้แปรงถ่านมีข้อดีหลายประการและจะกลายเป็น ทางเลือกที่คุ้มค่าสำหรับการใช้งานโดยผู้เชี่ยวชาญและฆราวาส