มอเตอร์ DC แบบอะซิงโครนัสไร้แปรงถ่าน มอเตอร์กระแสตรงไร้แปรงถ่าน มันคืออะไร? เครื่องรวบรวมทำงานอย่างไร

มอเตอร์ไร้แปรงถ่าน

มอเตอร์ไฟฟ้าไร้แปรงถ่านเข้ามาสร้างแบบจำลองในช่วง 5-7 ปีที่ผ่านมา ต่างจากมอเตอร์สะสม เนื่องจากขับเคลื่อนด้วยสามเฟส กระแสสลับ. มอเตอร์ไร้แปรงถ่านทำงานได้อย่างมีประสิทธิภาพในช่วงความเร็วรอบที่กว้างขึ้นและมีมากขึ้น ประสิทธิภาพสูง. การออกแบบมอเตอร์นั้นง่ายกว่า ไม่มีชุดแปรง และไม่จำเป็นต้องมี ซ่อมบำรุง. เราสามารถพูดได้ว่ามอเตอร์ไร้แปรงถ่านแทบไม่สึกหรอ ค่าใช้จ่ายของมอเตอร์แบบไม่มีแปรงจะสูงกว่ามอเตอร์แบบมีแปรงเล็กน้อย เนื่องจากมอเตอร์แบบไม่มีแปรงถ่านทั้งหมดมีตลับลูกปืนและโดยทั่วไปแล้วจะมีคุณภาพสูงกว่า แม้ว่าช่องว่างราคาระหว่างดี มอเตอร์สะสมและมอเตอร์ไร้แปรงถ่านในระดับเดียวกันก็ไม่ค่อยดีนัก

ตามการออกแบบ มอเตอร์ไร้แปรงถ่านถูกแบ่งออกเป็นสองกลุ่ม: ผู้บุกรุก (ออกเสียงว่า "ผู้บุกรุก") และกลุ่มผู้วิ่งหนี (ออกเสียงว่า "ผู้วิ่งหนี") มอเตอร์ของกลุ่มแรกมีขดลวดอยู่บนพื้นผิวด้านในของตัวเรือน และโรเตอร์แม่เหล็กหมุนอยู่ภายใน มอเตอร์ของกลุ่มที่สอง - "ผู้แซงหน้า" มีขดลวดคงที่ภายในมอเตอร์ซึ่งตัวเรือนหมุนด้วยแม่เหล็กถาวรที่วางอยู่บนผนังด้านใน จำนวนขั้วแม่เหล็กที่ใช้ในมอเตอร์ไร้แปรงถ่านอาจแตกต่างกันไป จากจำนวนเสา คุณสามารถตัดสินแรงบิดและความเร็วของเครื่องยนต์ได้ มอเตอร์ที่มีโรเตอร์สองขั้วมีความเร็วในการหมุนสูงสุดที่แรงบิดต่ำสุด มอเตอร์เหล่านี้สามารถเป็น "ผู้บุกเบิก" โดยการออกแบบเท่านั้น มอเตอร์ดังกล่าวมักจะขายพร้อมเฟืองดาวเคราะห์อยู่แล้ว เนื่องจากรอบการหมุนของใบพัดสูงเกินไปสำหรับการหมุนโดยตรงของใบพัด บางครั้งใช้มอเตอร์ดังกล่าวโดยไม่มีกระปุกเกียร์ ตัวอย่างเช่น ใช้กับเครื่องบินจำลองการแข่งรถ มอเตอร์ที่มีเสาจำนวนมากมี ความเร็วต่ำหมุนแต่แรงบิดมากขึ้น มอเตอร์ดังกล่าวอนุญาตให้ใช้ใบพัดขนาดใหญ่โดยไม่ต้องใช้กระปุกเกียร์ โดยทั่วไป ใบพัดที่มีเส้นผ่านศูนย์กลางขนาดใหญ่และระยะพิทช์น้อยที่ความเร็วรอบค่อนข้างต่ำจะให้แรงขับมากกว่า แต่รายงานแบบจำลอง ความเร็วต่ำ, ในขณะที่ใบพัดขนาดเล็กที่มีระยะพิทช์สูงบน เรฟสูงให้ความเร็วสูงด้วยแรงขับที่ค่อนข้างน้อย ดังนั้น มอเตอร์แบบหลายขั้วจึงเหมาะอย่างยิ่งสำหรับรุ่นที่ต้องการอัตราส่วนแรงขับต่อน้ำหนักสูงและมอเตอร์สองขั้วที่ไม่มีกระปุกเกียร์จึงเหมาะอย่างยิ่งสำหรับรุ่นความเร็วสูง สำหรับการเลือกเครื่องยนต์และใบพัดสำหรับรุ่นใดรุ่นหนึ่งที่แม่นยำยิ่งขึ้น คุณสามารถใช้โปรแกรม MotoCalc พิเศษได้

เนื่องจากมอเตอร์ไร้แปรงถ่านขับเคลื่อนโดยกระแสสลับ จึงจำเป็นต้องมีตัวควบคุมพิเศษ (ตัวควบคุม) เพื่อทำงาน ซึ่งจะแปลงกระแสตรงจากแบตเตอรี่เป็นกระแสสลับ ESC สำหรับมอเตอร์ไร้แปรงถ่านเป็นอุปกรณ์ที่ตั้งโปรแกรมได้ซึ่งช่วยให้คุณควบคุมทุกอย่างในชีวิตได้ พารามิเตอร์ที่สำคัญเครื่องยนต์. พวกเขาอนุญาตให้ไม่เพียง แต่เปลี่ยนความเร็วและทิศทางของมอเตอร์ แต่ยังช่วยให้เรียบหรือ .ขึ้นอยู่กับความต้องการ เริ่มกะทันหันการจำกัดกระแสไฟสูงสุด ฟังก์ชัน "เบรก" และการตั้งค่าเครื่องยนต์ละเอียดอื่นๆ อีกจำนวนหนึ่งตามความต้องการของผู้สร้างโมเดล ในการตั้งโปรแกรมคอนโทรลเลอร์ อุปกรณ์จะใช้เชื่อมต่อกับคอมพิวเตอร์หรือใน สภาพสนามสามารถทำได้โดยใช้เครื่องส่งสัญญาณและจัมเปอร์พิเศษ

มีผู้ผลิตมอเตอร์แบบไม่มีแปรงและอุปกรณ์ควบคุมจำนวนมากสำหรับพวกเขา โครงสร้างและขนาด มอเตอร์ไร้แปรงถ่านก็มีความแตกต่างกันอย่างมาก นอกจากนี้, การผลิตอิสระมอเตอร์ไร้แปรงถ่านที่ใช้ชิ้นส่วนจากไดรฟ์ซีดีและมอเตอร์ไร้แปรงถ่านสำหรับอุตสาหกรรมอื่นๆ ได้กลายเป็นสิ่งที่พบเห็นได้ทั่วไปในช่วงไม่กี่ครั้งที่ผ่านมา บางทีอาจเป็นเพราะเหตุนี้เองที่มอเตอร์ไร้แปรงถ่านในปัจจุบันจึงไม่มีการจัดประเภททั่วไปที่ใกล้เคียงกันเช่นเดียวกับตัวสะสม มาสรุปกันสั้นๆ ทุกวันนี้ มอเตอร์แบบมีแปรงถ่านส่วนใหญ่จะใช้กับรุ่นงานอดิเรกราคาประหยัด หรือรุ่นสปอร์ตระดับเริ่มต้น มอเตอร์เหล่านี้มีราคาไม่แพง ใช้งานง่าย และยังคงเป็นมอเตอร์ไฟฟ้ารุ่นยอดนิยม พวกเขากำลังถูกแทนที่ด้วยมอเตอร์แบบไม่มีแปรง ปัจจัยที่ จำกัด เพียงอย่างเดียวคือราคาของพวกเขา ร่วมกับหน่วยงานกำกับดูแล มอเตอร์ไร้แปรงถ่านค่าใช้จ่ายเพิ่มขึ้น 30-70% อย่างไรก็ตาม ราคาสำหรับอุปกรณ์อิเล็กทรอนิกส์และมอเตอร์กำลังลดลง และการเคลื่อนตัวของมอเตอร์ไฟฟ้าแบบสะสมจากการสร้างแบบจำลองอย่างค่อยเป็นค่อยไปนั้นเป็นเพียงเรื่องของเวลาเท่านั้น

AVR492: การควบคุมมอเตอร์ไร้แปรงถ่าน กระแสตรงใช้ AT90PWM3

คุณสมบัติที่โดดเด่น:

  • ข้อมูลทั่วไปเกี่ยวกับ BKEPT
  • ใช้ตัวควบคุมเวทีกำลัง
  • การใช้ฮาร์ดแวร์
  • ตัวอย่างรหัสโปรแกรม

บทนำ

บันทึกการใช้งานนี้อธิบายวิธีการใช้การควบคุมมอเตอร์กระแสตรงแบบไม่มีแปรงถ่าน (BCEM) โดยใช้ตัวเข้ารหัสตามไมโครคอนโทรลเลอร์ AT90PWM3 AVR

แกน AVR ประสิทธิภาพสูงของไมโครคอนโทรลเลอร์ซึ่งประกอบด้วยตัวควบคุมระยะกำลัง ช่วยให้คุณติดตั้งอุปกรณ์ควบคุมมอเตอร์กระแสตรงแบบไม่มีแปรงถ่านความเร็วสูงได้

เอกสารนี้ให้คำอธิบายสั้น ๆ เกี่ยวกับหลักการทำงานของมอเตอร์กระแสตรงไร้แปรงถ่าน และรายละเอียดการควบคุม BECPT ในโหมดสัมผัส และยังมีคำอธิบาย แผนภูมิวงจรรวมการพัฒนาอ้างอิง ATAVRMC100 ซึ่งใช้บันทึกการใช้งานเหล่านี้

มีการกล่าวถึงการใช้งานซอฟต์แวร์ด้วยลูปควบคุมที่ใช้ซอฟต์แวร์ตามตัวควบคุม PID เพื่อควบคุมกระบวนการเปลี่ยน ส่อให้เห็นถึงการใช้เซ็นเซอร์ตำแหน่งตามเอฟเฟกต์ฮอลล์เท่านั้น

หลักการทำงาน

ขอบเขตของการใช้ BKEPT นั้นเพิ่มขึ้นอย่างต่อเนื่องซึ่งเกิดจากข้อดีหลายประการ:

  1. ไม่มีชุดประกอบที่หลากหลายซึ่งทำให้การบำรุงรักษาง่ายขึ้นหรือลดลง
  2. รุ่นมากกว่า ระดับต่ำเสียงอะคูสติกและไฟฟ้าเทียบกับมอเตอร์กระแสตรงแบบสับเปลี่ยนกระแสตรงสากล
  3. ความสามารถในการทำงานในสภาพแวดล้อมที่เป็นอันตราย (กับผลิตภัณฑ์ที่ติดไฟได้)
  4. สมดุลที่ดีระหว่างน้ำหนักและกำลัง...

มอเตอร์ประเภทนี้มีความเฉื่อยเล็กน้อยของโรเตอร์ tk ขดลวดตั้งอยู่บนสเตเตอร์ สวิตช์ถูกควบคุมด้วยระบบอิเล็กทรอนิกส์ โมเมนต์สวิตชิ่งถูกกำหนดโดยข้อมูลจากเซ็นเซอร์ตำแหน่ง หรือโดยการวัดแรงเคลื่อนไฟฟ้าด้านหลังที่เกิดจากขดลวด

เมื่อควบคุมโดยใช้เซ็นเซอร์ BKEPT จะประกอบด้วยสามส่วนหลัก: สเตเตอร์ โรเตอร์ และเซ็นเซอร์ฮอลล์

สเตเตอร์ของ BKEPT แบบสามเฟสแบบคลาสสิกประกอบด้วยสามขดลวด ในมอเตอร์จำนวนมาก ขดลวดจะถูกแบ่งออกเป็นหลายส่วนเพื่อลดการกระเพื่อมของแรงบิด

รูปที่ 1 แสดงวงจรไฟฟ้าเทียบเท่าสเตเตอร์ ประกอบด้วยขดลวดสามเส้น แต่ละขดลวดประกอบด้วยสามองค์ประกอบที่เชื่อมต่อเป็นอนุกรม: การเหนี่ยวนำ ความต้านทาน และแรงเคลื่อนไฟฟ้าย้อนกลับ


รูปที่ 1 แผนภาพการเดินสายไฟการเปลี่ยนสเตเตอร์ (สามเฟสสามขดลวด)

โรเตอร์ BKEPT ประกอบด้วยแม่เหล็กถาวรจำนวนเท่ากัน จำนวนขั้วแม่เหล็กในโรเตอร์ยังส่งผลต่อขนาดพิทช์และแรงบิดกระเพื่อม ยิ่งจำนวนเสามาก ขนาดขั้นตอนการหมุนจะเล็กลงและแรงบิดกระเพื่อมน้อยลง สามารถใช้ได้ แม่เหล็กถาวรด้วยเสา 1..5 คู่ ในบางกรณี จำนวนคู่ขั้วจะเพิ่มขึ้นเป็น 8 (รูปที่ 2)



รูปที่ 2 สเตเตอร์และโรเตอร์ของ BKEPT . สามเฟส สามขดลวด

ขดลวดถูกติดตั้งอย่างถาวรและแม่เหล็กจะหมุน โรเตอร์ BKEPT มีลักษณะเฉพาะด้วยน้ำหนักที่เบากว่าเมื่อเทียบกับโรเตอร์ทั่วไป มอเตอร์สากลกระแสตรงซึ่งขดลวดอยู่บนโรเตอร์

ฮอลล์เซนเซอร์

ในการประเมินตำแหน่งของโรเตอร์ เซ็นเซอร์ Hall สามตัวจะถูกสร้างขึ้นในตัวเรือนมอเตอร์ เซ็นเซอร์ถูกติดตั้งที่มุม 120 องศาซึ่งกันและกัน ด้วยความช่วยเหลือของเซ็นเซอร์เหล่านี้ จึงสามารถดำเนินการสวิตช์ต่างๆ ได้ 6 แบบ

การสลับเฟสขึ้นอยู่กับสถานะของเซ็นเซอร์ Hall

แรงดันไฟฟ้าที่จ่ายให้กับขดลวดจะเปลี่ยนไปหลังจากเปลี่ยนสถานะเอาต์พุตของเซ็นเซอร์ Hall ที่ การดำเนินการที่ถูกต้องสวิตช์ซิงโครไนซ์ แรงบิดยังคงประมาณคงที่และสูง



รูปที่ 3 สัญญาณเซ็นเซอร์ฮอลล์ระหว่างการหมุน

การสลับเฟส

เพื่อจุดประสงค์ในการอธิบายอย่างง่ายของการทำงานของ BKEPT สามเฟส เราจะพิจารณาเฉพาะรุ่นที่มีสามขดลวดเท่านั้น ดังที่แสดงไว้ก่อนหน้านี้ การสลับเฟสขึ้นอยู่กับค่าเอาต์พุตของเซ็นเซอร์ Hall ด้วยแรงดันไฟฟ้าที่ถูกต้องที่ใช้กับขดลวดของมอเตอร์ สนามแม่เหล็กจะถูกสร้างขึ้นและเริ่มการหมุน ที่พบมากที่สุดและ ด้วยวิธีง่ายๆตัวควบคุมสวิตชิ่งที่ใช้ในการควบคุม BKEPT เป็นวงจรเปิด-ปิด โดยที่ขดลวดจะนำกระแสไฟฟ้าหรือไม่ใช้ ในคราวเดียวสามารถจ่ายไฟได้เพียงสองขดลวดและขดลวดที่สามยังคงปิดอยู่ การต่อขดลวดเข้ากับรางไฟฟ้าทำให้เกิดกระแสไฟไหล วิธีนี้เรียกว่าการสลับคีย์สโตนหรือการเปลี่ยนบล็อก

ในการควบคุม BKEPT จะใช้สเตจกำลังซึ่งประกอบด้วยฮาล์ฟบริดจ์ 3 อัน ไดอะแกรมสเตจกำลังแสดงในรูปที่ 4



รูปที่ 4 เวทีพลังงาน

ตามค่าที่อ่านได้ของเซ็นเซอร์ Hall จะกำหนดว่าควรปิดปุ่มใด

เผยแพร่เมื่อ 11.04.2013

อุปกรณ์ที่ใช้ร่วมกัน (Inrunner, Outrunner)

มอเตอร์กระแสตรงไร้แปรงถ่านประกอบด้วยโรเตอร์ที่มีแม่เหล็กถาวรและสเตเตอร์ที่มีขดลวด เครื่องยนต์มีสองประเภท: ผู้บุกเบิกซึ่งแม่เหล็กโรเตอร์อยู่ภายในสเตเตอร์ด้วยขดลวดและ รองชนะเลิศซึ่งแม่เหล็กตั้งอยู่ด้านนอกและหมุนรอบสเตเตอร์คงที่ด้วยขดลวด

โครงการ ผู้บุกเบิกมักใช้สำหรับ เครื่องยนต์ความเร็วสูงกับเสาไม่กี่ รองชนะเลิศถ้าจำเป็น ให้ใช้มอเตอร์แรงบิดสูงที่มีความเร็วค่อนข้างต่ำ โครงสร้าง Inrunners นั้นง่ายกว่าเนื่องจากสเตเตอร์คงที่สามารถใช้เป็นที่อยู่อาศัยได้ สามารถติดตั้งอุปกรณ์ติดตั้งได้ ในกรณีของ Outrunners ส่วนนอกทั้งหมดจะหมุน เครื่องยนต์ถูกยึดด้วยเพลาคงที่หรือชิ้นส่วนสเตเตอร์ ในกรณีของมอเตอร์ล้อ การยึดจะดำเนินการกับแกนคงที่ของสเตเตอร์ สายไฟจะถูกส่งไปยังสเตเตอร์ผ่านแกนกลวง

แม่เหล็กและเสา

จำนวนขั้วบนโรเตอร์เป็นเลขคู่ รูปร่างของแม่เหล็กที่ใช้มักจะเป็นรูปสี่เหลี่ยมผืนผ้า แม่เหล็กทรงกระบอกถูกใช้ไม่บ่อยนัก มีการติดตั้งเสาสลับ

จำนวนแม่เหล็กไม่สอดคล้องกับจำนวนขั้วเสมอไป แม่เหล็กหลายอันสามารถก่อตัวเป็นขั้วเดียว:

ในกรณีนี้ แม่เหล็ก 8 ตัวจะสร้าง 4 ขั้ว ขนาดของแม่เหล็กขึ้นอยู่กับรูปทรงของมอเตอร์และลักษณะของมอเตอร์ ยิ่งใช้แม่เหล็กแรงมากเท่าใด โมเมนต์ของแรงที่พัฒนาขึ้นโดยมอเตอร์บนเพลาก็จะยิ่งสูงขึ้น

แม่เหล็กบนโรเตอร์ถูกยึดด้วยกาวพิเศษ ไม่ค่อยพบเห็นการออกแบบที่มีที่ยึดแม่เหล็ก วัสดุโรเตอร์สามารถเป็นสื่อกระแสไฟฟ้า (เหล็ก) ไม่เป็นสื่อกระแสไฟฟ้า ( โลหะผสมอลูมิเนียม, พลาสติก เป็นต้น) รวมกัน

ขดลวดและฟัน

คดเคี้ยวของปีศาจสามเฟส มอเตอร์สับเปลี่ยนทำด้วยลวดทองแดง ลวดสามารถเป็นแบบแกนเดียวหรือประกอบด้วยแกนหุ้มฉนวนหลายแกน สเตเตอร์ทำจากเหล็กนำไฟฟ้าหลายแผ่นพับเข้าหากัน

จำนวนฟันสเตเตอร์ต้องหารด้วยจำนวนเฟส เหล่านั้น. สำหรับมอเตอร์ไร้แปรงถ่านสามเฟส จำนวนฟันสเตเตอร์ ต้องหารด้วย3 .ลงตัว. จำนวนฟันสเตเตอร์สามารถมีได้มากหรือน้อยกว่าจำนวนขั้วบนโรเตอร์ ตัวอย่างเช่นมีมอเตอร์ที่มีโครงร่าง: 9 ฟัน / 12 แม่เหล็ก; 51 ฟัน/46 แม่เหล็ก

เครื่องยนต์ที่มีสเตเตอร์แบบ 3 ฟันนั้นใช้งานน้อยมาก เนื่องจากมีเพียงสองเฟสเท่านั้นที่ทำงานได้ตลอดเวลา (เมื่อเปิดโดยดาว) แรงแม่เหล็กจึงกระทำต่อโรเตอร์ไม่เท่ากันทั่วทั้งเส้นรอบวง (ดูรูป)

แรงที่กระทำต่อโรเตอร์พยายามบิดเบี้ยว ซึ่งทำให้เกิดการสั่นสะท้านเพิ่มขึ้น เพื่อขจัดผลกระทบนี้สเตเตอร์ทำด้วยฟันจำนวนมากและขดลวดจะกระจายไปทั่วฟันของเส้นรอบวงทั้งหมดของสเตเตอร์ให้เท่ากันมากที่สุด

ในกรณีนี้ แรงแม่เหล็กที่กระทำต่อโรเตอร์จะหักล้างซึ่งกันและกัน ไม่มีความไม่สมดุล

ตัวเลือกสำหรับการกระจายของขดลวดเฟสโดยฟันสเตเตอร์

ตัวเลือกการไขลานสำหรับฟัน 9 ซี่


ตัวเลือกการไขลานสำหรับฟัน 12 ซี่

ในแผนภาพข้างต้น จำนวนฟันจะถูกเลือกในลักษณะที่ หารด้วย3. ตัวอย่างเช่น เมื่อ 36 ฟันคิดเป็น 12 ฟันต่อเฟส สามารถแบ่งฟันได้ 12 ซี่ ดังนี้

รูปแบบที่ต้องการมากที่สุดคือ 6 กลุ่ม 2 ซี่

มีอยู่ มอเตอร์ที่มีฟัน 51 ซี่บนสเตเตอร์! 17 ฟันต่อเฟส 17 เป็นจำนวนเฉพาะ, มันหารด้วย 1 และตัวมันเองเท่านั้น. วิธีการกระจายคดเคี้ยวเหนือฟัน? อนิจจา ฉันไม่สามารถหาตัวอย่างและเทคนิคในเอกสารที่จะช่วยแก้ปัญหานี้ได้ ปรากฎว่ามีการกระจายคดเคี้ยวดังนี้:

พิจารณาวงจรที่คดเคี้ยวจริง

โปรดทราบว่าการม้วนมีทิศทางการม้วนที่แตกต่างกันบนฟันที่ต่างกัน ทิศทางที่คดเคี้ยวต่างกันจะแสดงด้วยตัวพิมพ์ใหญ่และตัวพิมพ์ใหญ่ รายละเอียดเกี่ยวกับการออกแบบขดลวดสามารถพบได้ในเอกสารที่นำเสนอในตอนท้ายของบทความ

ขดลวดแบบคลาสสิกทำด้วยลวดเส้นเดียวต่อเฟสเดียว เหล่านั้น. ขดลวดทั้งหมดบนฟันของเฟสเดียวเชื่อมต่อกันเป็นอนุกรม

ขดลวดของฟันสามารถต่อขนานกันได้

นอกจากนี้ยังสามารถรวมรวมเข้าด้วยกัน

การเชื่อมต่อแบบขนานและแบบรวมช่วยลดการเหนี่ยวนำของขดลวดซึ่งนำไปสู่การเพิ่มขึ้นของกระแสสเตเตอร์ (ด้วยเหตุนี้กำลัง) และความเร็วของมอเตอร์

มูลค่าการซื้อขายไฟฟ้าและของจริง

หากโรเตอร์ของมอเตอร์มีสองขั้ว ดังนั้นด้วยการหมุนรอบสนามแม่เหล็กบนสเตเตอร์อย่างสมบูรณ์หนึ่งครั้ง โรเตอร์จะทำให้เกิดการปฏิวัติอย่างสมบูรณ์หนึ่งครั้ง ด้วย 4 ขั้ว ต้องใช้สนามแม่เหล็กบนสเตเตอร์สองรอบเพื่อหมุนเพลามอเตอร์ให้ครบหนึ่งรอบ ยิ่งจำนวนเสาของโรเตอร์มากเท่าใด การหมุนรอบแกนมอเตอร์ก็จะยิ่งต้องใช้ไฟฟ้ามากขึ้นเท่านั้น ตัวอย่างเช่น เรามีแม่เหล็ก 42 ตัวบนโรเตอร์ เพื่อหมุนโรเตอร์หนึ่งรอบ จะใช้เวลา 42/2=21 การปฏิวัติทางไฟฟ้า. คุณสมบัตินี้สามารถใช้เป็นตัวลดขนาดได้ หยิบขึ้นมา จำนวนเงินที่ต้องการเสาคุณจะได้มอเตอร์ที่ต้องการ ลักษณะความเร็ว. นอกจากนี้ ความเข้าใจในกระบวนการนี้จำเป็นสำหรับเราในอนาคต เมื่อเลือกพารามิเตอร์ของคอนโทรลเลอร์

เซ็นเซอร์ตำแหน่ง

การออกแบบเครื่องยนต์ที่ไม่มีเซ็นเซอร์นั้นแตกต่างจากเครื่องยนต์ที่มีเซ็นเซอร์เฉพาะในกรณีที่ไม่มีตัวหลัง อื่น ความแตกต่างพื้นฐานไม่. เซ็นเซอร์ตำแหน่งที่พบบ่อยที่สุดตามเอฟเฟกต์ฮอลล์ เซ็นเซอร์ตอบสนองต่อสนามแม่เหล็ก โดยปกติแล้วจะอยู่บนสเตเตอร์ในลักษณะที่ได้รับผลกระทบจากแม่เหล็กโรเตอร์ มุมระหว่างเซ็นเซอร์ต้องเป็น 120 องศา

ความหมาย "ไฟฟ้า" องศา เหล่านั้น. สำหรับมอเตอร์แบบหลายขั้ว การจัดเรียงทางกายภาพของเซ็นเซอร์อาจเป็นดังนี้:


บางครั้งเซ็นเซอร์อยู่นอกเครื่องยนต์ นี่คือตัวอย่างหนึ่งของตำแหน่งของเซ็นเซอร์ อันที่จริงมันเป็นเครื่องยนต์ที่ไม่มีเซ็นเซอร์ ด้วยวิธีง่ายๆ ดังกล่าว จึงมีการติดตั้งเซ็นเซอร์ในห้องโถง

ในเครื่องยนต์บางตัว มีการติดตั้งเซ็นเซอร์บน อุปกรณ์พิเศษซึ่งทำให้คุณสามารถเคลื่อนย้ายเซ็นเซอร์ได้ภายในขอบเขตที่กำหนด ด้วยความช่วยเหลือของอุปกรณ์ดังกล่าว เวลาจะถูกตั้งค่า อย่างไรก็ตาม หากมอเตอร์ต้องการการย้อนกลับ (การหมุนใน ด้านหลัง) จะต้องตั้งค่าเซ็นเซอร์ชุดที่สองให้ถอยหลัง เนื่องจากจังหวะเวลาไม่สำคัญในตอนเริ่มต้นและ รอบต่ำคุณสามารถตั้งค่าเซ็นเซอร์ไปที่จุดศูนย์ และปรับมุมนำโดยทางโปรแกรมเมื่อเครื่องยนต์เริ่มหมุน

ลักษณะสำคัญของเครื่องยนต์

แต่ละเครื่องยนต์ถูกคำนวณสำหรับความต้องการเฉพาะและมีลักษณะสำคัญดังต่อไปนี้:

  • โหมดการทำงานที่เครื่องยนต์ได้รับการออกแบบ: ระยะยาวหรือระยะสั้น ยาวโหมดการทำงานบ่งบอกว่าเครื่องยนต์สามารถทำงานได้นานหลายชั่วโมง เครื่องยนต์ดังกล่าวคำนวณในลักษณะที่การถ่ายเทความร้อนสู่สิ่งแวดล้อมสูงกว่าการปลดปล่อยความร้อนของเครื่องยนต์เอง ในกรณีนี้จะไม่อุ่นเครื่อง ตัวอย่าง: การระบายอากาศ บันไดเลื่อน หรือตัวขับสายพานลำเลียง ในระยะสั้น -หมายความว่าเครื่องยนต์จะเปิดขึ้นในช่วงเวลาสั้น ๆ ในระหว่างนั้นจะไม่มีเวลาอุ่นเครื่องจนถึงอุณหภูมิสูงสุดหลังจากนั้น เป็นเวลานานเวลาที่เครื่องยนต์จะเย็นลง ตัวอย่าง: ไดรฟ์ลิฟต์ เครื่องโกนหนวดไฟฟ้า เครื่องเป่าผม
  • ความต้านทานของขดลวดมอเตอร์. ความต้านทานของขดลวดมอเตอร์ส่งผลกระทบ ประสิทธิภาพของเครื่องยนต์. ยิ่งความต้านทานต่ำเท่าไรก็ยิ่งมีประสิทธิภาพมากขึ้นเท่านั้น โดยการวัดความต้านทาน คุณสามารถค้นหาการมีอยู่ วงจรอินเตอร์ในการม้วน ความต้านทานของขดลวดมอเตอร์คือหนึ่งในพันของโอห์ม ในการวัดคุณต้อง อุปกรณ์พิเศษหรือเทคนิคการวัดพิเศษ
  • ขีดสุด แรงดันใช้งาน . แรงดันไฟฟ้าสูงสุดที่ขดลวดสเตเตอร์สามารถทนได้ แรงดันไฟฟ้าสูงสุดสัมพันธ์กับพารามิเตอร์ต่อไปนี้
  • RPM สูงสุด. บางครั้งก็บ่งบอกว่า ความเร็วสูงสุด, แ kv-จำนวนรอบของมอเตอร์ต่อโวลต์ที่ไม่มีโหลดบนเพลา เมื่อคูณตัวเลขนี้ด้วยแรงดันไฟฟ้าสูงสุด เราจะได้ความเร็วสูงสุดของเครื่องยนต์โดยไม่ต้องโหลดบนเพลา
  • กระแสสูงสุด. กระแสไฟที่คดเคี้ยวสูงสุดที่อนุญาต ตามกฎแล้วจะมีการระบุเวลาที่มอเตอร์สามารถทนต่อกระแสที่ระบุได้ ขีด จำกัด กระแสสูงสุดเกี่ยวข้องกับความร้อนสูงเกินไปของขดลวด ดังนั้น เมื่อ อุณหภูมิต่ำ สิ่งแวดล้อมเวลาจริงของการทำงานที่มีกระแสสูงสุดจะนานขึ้นและในความร้อนมอเตอร์จะไหม้เร็วขึ้น
  • กำลังเครื่องยนต์สูงสุดเกี่ยวข้องโดยตรงกับพารามิเตอร์ก่อนหน้า นี่คือกำลังสูงสุดที่เครื่องยนต์สามารถพัฒนาได้ในช่วงเวลาสั้นๆ โดยปกติจะใช้เวลาไม่กี่วินาที ที่ งานยาวบน พลังสูงสุดเครื่องยนต์ร้อนจัดและความล้มเหลวอย่างหลีกเลี่ยงไม่ได้
  • กำลังไฟพิกัด. กำลังที่เครื่องยนต์สามารถพัฒนาได้ตลอดระยะเวลาเปิดเครื่อง
  • มุมล่วงหน้าของเฟส (เวลา). ขดลวดสเตเตอร์มีการเหนี่ยวนำซึ่งชะลอการเติบโตของกระแสในขดลวด กระแสจะถึงสูงสุดหลังจากนั้นครู่หนึ่ง เพื่อชดเชยความล่าช้านี้ การสลับเฟสจะดำเนินการล่วงหน้าบางส่วน คล้ายกับการจุดระเบิดของเครื่องยนต์ สันดาปภายในโดยที่มุมการจุดระเบิดถูกตั้งไว้ โดยคำนึงถึงเวลาการจุดระเบิดของน้ำมันเชื้อเพลิง

คุณควรให้ความสนใจกับความจริงที่ว่าเมื่อโหลดพิกัดคุณจะไม่ได้รับความเร็วสูงสุดบนเพลามอเตอร์ kvระบุไว้สำหรับเครื่องยนต์ที่ไม่ได้บรรจุ เมื่อเปิดเครื่องจากแบตเตอรี่ควรคำนึงถึง "การจม" ของแรงดันไฟฟ้าที่จ่ายภายใต้ภาระซึ่งจะลดความเร็วของเครื่องยนต์สูงสุดด้วย

มีมอเตอร์สองประเภทในอุปกรณ์หลายโรเตอร์: ตัวสะสมและแบบไม่มีแปรง ความแตกต่างหลักของพวกเขาคือสำหรับมอเตอร์สะสม ขดลวดจะอยู่ที่โรเตอร์ (ส่วนที่หมุนได้) และสำหรับมอเตอร์แบบไม่มีแปรง บนสเตเตอร์ โดยไม่ต้องลงรายละเอียด เราจะบอกว่ามอเตอร์แบบไม่มีแปรงจะดีกว่ามอเตอร์ตัวรวบรวม เนื่องจากส่วนใหญ่เป็นไปตามข้อกำหนดที่กำหนดไว้ก่อนหน้านี้ ดังนั้นในบทความนี้เราจะเน้นที่มอเตอร์ประเภทนี้ คุณสามารถอ่านเพิ่มเติมเกี่ยวกับความแตกต่างระหว่างมอเตอร์ไร้แปรงถ่านและมอเตอร์แบบมีแปรงถ่านได้ใน

แม้ว่าที่จริงแล้วการใช้มอเตอร์ BC จะเริ่มขึ้นค่อนข้างเร็ว แต่แนวคิดเกี่ยวกับอุปกรณ์ของพวกเขาก็ปรากฏขึ้นเมื่อนานมาแล้ว อย่างไรก็ตาม การกำเนิดของสวิตช์ทรานซิสเตอร์และแม่เหล็กนีโอไดเมียมอันทรงพลังทำให้การใช้งานเชิงพาณิชย์เป็นไปได้

อุปกรณ์ BC - มอเตอร์

การออกแบบมอเตอร์แบบไม่มีแปรงประกอบด้วยโรเตอร์ซึ่งมีแม่เหล็กติดอยู่กับที่และสเตเตอร์ที่มีขดลวดอยู่ ตามตำแหน่งสัมพัทธ์ของส่วนประกอบเหล่านี้ เครื่องยนต์ BC แบ่งออกเป็น inrunner และ outrunner

ในระบบหลายโรเตอร์ มีการใช้โครงร่าง Outrunner บ่อยกว่า เนื่องจากช่วยให้คุณได้รับแรงบิดสูงสุด

ข้อดีและข้อเสียของเครื่องยนต์ BC

ข้อดี:

  • การออกแบบมอเตอร์ที่เรียบง่ายขึ้นเนื่องจากการยกเว้นตัวสะสมจากมัน
  • ประสิทธิภาพสูงขึ้น
  • ระบายความร้อนได้ดี
  • เครื่องยนต์ BC ทำงานในน้ำได้! อย่างไรก็ตามอย่าลืมว่าเพราะน้ำบน ชิ้นส่วนเครื่องจักรกลเครื่องยนต์สามารถขึ้นสนิมและพังได้ชั่วขณะหนึ่ง หลีกเลี่ยง สถานการณ์ที่คล้ายคลึงกันขอแนะนำให้รักษาเครื่องยนต์ด้วยสารหล่อลื่นกันน้ำ
  • การรบกวนทางวิทยุน้อยที่สุด

ข้อเสีย:

จาก minuses สามารถสังเกตได้เฉพาะความเป็นไปไม่ได้ของการใช้เครื่องยนต์เหล่านี้โดยไม่มี ESC (ตัวควบคุมความเร็วในการหมุน) สิ่งนี้ค่อนข้างซับซ้อนในการออกแบบและทำให้มอเตอร์ BK มีราคาแพงกว่าตัวสะสม อย่างไรก็ตาม หากความซับซ้อนของการออกแบบเป็นปัจจัยสำคัญ แสดงว่ามีมอเตอร์ BC ที่มีตัวควบคุมความเร็วในตัว

วิธีการเลือกมอเตอร์สำหรับคอปเตอร์?

เมื่อเลือกมอเตอร์แบบไม่มีแปรง อันดับแรก คุณควรคำนึงถึงลักษณะดังต่อไปนี้:

  • กระแสไฟสูงสุด - ลักษณะนี้แสดงให้เห็นว่ากระแสไฟสูงสุดที่ขดลวดของมอเตอร์สามารถทนได้ในช่วงเวลาสั้นๆ หากเกินเวลานี้ ความล้มเหลวของเครื่องยนต์ย่อมหลีกเลี่ยงไม่ได้ พารามิเตอร์นี้ยังส่งผลต่อการเลือก ESC
  • แรงดันไฟสูงสุด - เช่นเดียวกับกระแสสูงสุด แสดงว่าแรงดันไฟฟ้าที่ขดลวดสามารถใช้ได้ในช่วงเวลาสั้นๆ
  • KV คือจำนวนรอบของเครื่องยนต์ต่อโวลต์ เนื่องจากตัวบ่งชี้นี้ขึ้นอยู่กับโหลดบนเพลามอเตอร์โดยตรง จึงมีการระบุไว้สำหรับกรณีเมื่อไม่มีโหลด
  • ความต้านทาน - ประสิทธิภาพของเครื่องยนต์ขึ้นอยู่กับความต้านทาน ดังนั้นยิ่งแนวต้านยิ่งต่ำยิ่งดี

ล่าสุดได้รับความนิยมมากขึ้นเรื่อยๆ มอเตอร์ไร้แปรงถ่านกระแสตรง. มีการใช้อย่างแข็งขันในเครื่องมือวัด การแพทย์ทางอุตสาหกรรมและระบบอัตโนมัติในครัวเรือนตลอดจนในเครื่องมือวัด ประเภทนี้มอเตอร์ทำงานโดยไม่ต้องใช้แปรง การสลับทั้งหมดดำเนินการโดยใช้อุปกรณ์อิเล็กทรอนิกส์

ประโยชน์ของมอเตอร์ไร้แปรงถ่าน

มอเตอร์ไร้แปรงถ่านมีข้อดีหลายประการที่กำหนดขอบเขตการใช้งาน พวกเขามีผลงานที่ดีที่สุด แรงบิดของพวกเขาสูงกว่า .มาก เครื่องยนต์ธรรมดา. การออกแบบแบบไร้แปรงถ่านมีคุณลักษณะที่สูงกว่า ลักษณะไดนามิกและปัจจัยด้านประสิทธิภาพ

ประโยชน์อื่นๆ ได้แก่ การทำงานที่เงียบขึ้น อายุการใช้งานที่ยาวนานขึ้น และความเร็วในการหมุนที่สูงขึ้น ขนาดมอเตอร์ต่ออัตราส่วนแรงบิดสูงกว่าชนิดอื่นๆ นี่เป็นสิ่งสำคัญอย่างยิ่งในพื้นที่ที่ขนาดและน้ำหนักเป็นปัจจัยสำคัญ

หลักการทำงานของมอเตอร์ไร้แปรงถ่าน

หลักการทำงานขึ้นอยู่กับสนามแม่เหล็กที่เกิดจากสเตเตอร์และโรเตอร์ซึ่งมีความเร็วในการหมุนเท่ากัน ไม่มีลักษณะการลื่นที่เรียกว่ามอเตอร์แบบอะซิงโครนัส การกำหนดค่าของมอเตอร์แบบไม่มีแปรงเป็นแบบเฟสเดียว สองเฟส หรือสามเฟส จำนวนขดลวดในสเตเตอร์ขึ้นอยู่กับสิ่งนี้ แพร่หลายที่สุดในทุกพื้นที่ได้รับมอเตอร์สามเฟส

อุปกรณ์มอเตอร์ไร้แปรงถ่าน

ตัวอย่างเช่น พิจารณามอเตอร์ไร้แปรงถ่านสามเฟสที่ได้รับความนิยมมากที่สุด มีสเตเตอร์ทำจากเหล็กเคลือบในร่องที่วางขดลวด มอเตอร์ประเภทนี้ส่วนใหญ่มีสามขดลวดเชื่อมต่อกันเป็นดาว

โรเตอร์เป็นแม่เหล็กถาวรที่มีขั้ว 2 ถึง 8 คู่ ในเวลาเดียวกัน ขั้วใต้และขั้วเหนือสลับกัน โรเตอร์ทำจากวัสดุแม่เหล็กพิเศษที่ให้ความหนาแน่นของสนามแม่เหล็กที่ต้องการ ตามกฎแล้วสิ่งเหล่านี้คือแม่เหล็กเฟอร์ไรท์ซึ่งทำจากแม่เหล็กถาวร

ไม่เหมือน มอเตอร์ไฟฟ้าทั่วไป, มอเตอร์กระแสตรงไร้แปรงถ่านถูกสับเปลี่ยนทางอิเล็กทรอนิกส์ นี่เป็นเพราะความจำเป็นในการจ่ายแรงดันไฟให้กับขดลวดสเตเตอร์อย่างสม่ำเสมอ ในขณะเดียวกัน ก็จำเป็นต้องรู้ว่าโรเตอร์อยู่ในตำแหน่งใด ตำแหน่งนี้กำหนดโดยเซ็นเซอร์ Hall ซึ่งให้สัญญาณสูงหรือต่ำ ขึ้นอยู่กับว่าขั้วใดเคลื่อนผ่านใกล้องค์ประกอบที่มีความไวสูง

เครื่องกำเนิดไฟฟ้ากระแสตรงไร้แปรงถ่าน

เหตุผลหนึ่งที่นักออกแบบสนใจมอเตอร์ไฟฟ้าแบบไม่มีแปรงคือความต้องการมอเตอร์ความเร็วสูงที่มีขนาดเล็ก นอกจากนี้ เครื่องยนต์เหล่านี้ยังมีตำแหน่งที่แม่นยำมาก การออกแบบมีโรเตอร์แบบเคลื่อนย้ายได้และสเตเตอร์แบบตายตัว บนโรเตอร์มีแม่เหล็กถาวรหนึ่งอันหรือหลายอันเรียงตามลำดับ บนสเตเตอร์มีขดลวดที่สร้างสนามแม่เหล็ก

ควรสังเกตคุณลักษณะอื่นอีกประการหนึ่ง - มอเตอร์ไฟฟ้าแบบไม่มีแปรงสามารถมีจุดยึดได้ทั้งภายในและภายนอก ดังนั้นการก่อสร้างทั้งสองประเภทจึงอาจมีการใช้งานเฉพาะในด้านต่างๆ เมื่อสมอตั้งอยู่ภายใน ปรากฏว่าบรรลุมาก ความเร็วสูงการหมุน ดังนั้นมอเตอร์ดังกล่าวจึงทำงานได้ดีมากในการออกแบบระบบระบายความร้อน หากติดตั้งไดรฟ์โรเตอร์ภายนอก การวางตำแหน่งที่แม่นยำมากก็สามารถทำได้ รวมทั้งมีความทนทานต่อการโอเวอร์โหลดสูง บ่อยครั้ง มอเตอร์ดังกล่าวถูกใช้ในหุ่นยนต์ อุปกรณ์ทางการแพทย์ ในเครื่องมือกลที่มีการควบคุมโปรแกรมความถี่

มอเตอร์ทำงานอย่างไร

ในการตั้งค่าโรเตอร์ของมอเตอร์กระแสตรงแบบไม่มีแปรงถ่านให้เคลื่อนที่ได้ จำเป็นต้องใช้ไมโครคอนโทรลเลอร์พิเศษ ไม่สามารถเปิดในลักษณะเดียวกับซิงโครนัสหรือ เครื่องอะซิงโครนัส. ด้วยความช่วยเหลือของไมโครคอนโทรลเลอร์ การเปิดมอเตอร์ขดลวดเพื่อให้ทิศทางของเวกเตอร์สนามแม่เหล็กบนสเตเตอร์และกระดองเป็นมุมฉาก

กล่าวอีกนัยหนึ่ง ด้วยความช่วยเหลือของผู้ขับขี่ การควบคุมสิ่งที่กระทำบนโรเตอร์ของมอเตอร์แบบไม่มีแปรง ในการเคลื่อนย้ายเกราะจำเป็นต้องทำการสลับที่ถูกต้องในขดลวดสเตเตอร์ ขออภัย ไม่สามารถให้การควบคุมการหมุนที่ราบรื่นได้ แต่คุณสามารถเพิ่มโรเตอร์ของมอเตอร์ไฟฟ้าได้อย่างรวดเร็ว

ความแตกต่างระหว่างมอเตอร์แบบมีแปรงและแบบไม่มีแปรง

ข้อแตกต่างที่สำคัญคือ มอเตอร์ไร้แปรงถ่านสำหรับรุ่นไม่มีโรเตอร์ ในกรณีของมอเตอร์ไฟฟ้าแบบสะสมจะมีขดลวดอยู่บนโรเตอร์ แต่มีการติดตั้งแม่เหล็กถาวรไว้ที่ส่วนที่อยู่กับที่ของเครื่องยนต์ นอกจากนี้ยังมีการติดตั้งตัวสะสมของการออกแบบพิเศษบนโรเตอร์ซึ่งเชื่อมต่อแปรงกราไฟท์ ด้วยความช่วยเหลือของพวกเขา แรงดันไฟฟ้าจะถูกนำไปใช้กับขดลวดของโรเตอร์ หลักการทำงานของมอเตอร์ไฟฟ้าแบบไม่มีแปรงก็แตกต่างกันอย่างมากเช่นกัน

เครื่องรวบรวมทำงานอย่างไร

ในการสตาร์ทมอเตอร์คอลเลคเตอร์ คุณจะต้องใช้แรงดันไฟฟ้ากับขดลวดของสนาม ซึ่งตั้งอยู่บนอาร์มาเจอร์โดยตรง ในกรณีนี้จะเกิดสนามแม่เหล็กคงที่ซึ่งโต้ตอบกับแม่เหล็กบนสเตเตอร์ซึ่งเป็นผลมาจากการที่กระดองและตัวสะสมจับจ้องอยู่ที่มันหมุน ในกรณีนี้ พลังงานจะถูกส่งไปยังขดลวดถัดไป วงจรจะทำซ้ำ

ความเร็วของการหมุนของโรเตอร์ขึ้นอยู่กับความเข้มของสนามแม่เหล็กโดยตรง และลักษณะสุดท้ายจะขึ้นอยู่กับขนาดของแรงดันไฟฟ้าโดยตรง ดังนั้นเพื่อเพิ่มหรือลดความเร็วจึงจำเป็นต้องเปลี่ยนแรงดันไฟฟ้า

หากต้องการใช้การย้อนกลับ คุณจะต้องเปลี่ยนขั้วของการเชื่อมต่อมอเตอร์เท่านั้น สำหรับการควบคุมดังกล่าว คุณไม่จำเป็นต้องใช้ไมโครคอนโทรลเลอร์พิเศษ คุณสามารถเปลี่ยนความเร็วในการหมุนได้โดยใช้ตัวต้านทานตัวแปรแบบธรรมดา

คุณสมบัติของเครื่องไร้แปรงถ่าน

แต่การควบคุมมอเตอร์ไฟฟ้าแบบไม่มีแปรงเป็นไปไม่ได้หากไม่มีตัวควบคุมพิเศษ จากข้อมูลนี้ เราสามารถสรุปได้ว่ามอเตอร์ประเภทนี้ไม่สามารถใช้เป็นเครื่องกำเนิดไฟฟ้าได้ เพื่อการควบคุมที่มีประสิทธิภาพ สามารถตรวจสอบตำแหน่งของโรเตอร์ได้โดยใช้เซ็นเซอร์ Hall หลายตัว ด้วยความช่วยเหลือของอุปกรณ์ง่าย ๆ ดังกล่าว คุณสามารถปรับปรุงประสิทธิภาพได้อย่างมาก แต่ค่าใช้จ่ายของมอเตอร์ไฟฟ้าจะเพิ่มขึ้นหลายเท่า

การสตาร์ทมอเตอร์ไร้แปรงถ่าน

มันไม่สมเหตุสมผลเลยที่จะสร้างไมโครคอนโทรลเลอร์ด้วยตัวคุณเอง ทางเลือกที่ดีที่สุดโดยจะมีการจัดซื้อเครื่องสําเร็จรูปแบบจีน แต่คุณต้องปฏิบัติตามคำแนะนำต่อไปนี้เมื่อเลือก:

  1. สังเกตกระแสสูงสุดที่อนุญาต ตัวเลือกนี้จำเป็นสำหรับ ประเภทต่างๆการทำงานของไดรฟ์ ผู้ผลิตมักระบุคุณลักษณะนี้โดยตรงในชื่อรุ่น ไม่ค่อยมีการระบุค่าซึ่งเป็นเรื่องปกติสำหรับโหมดพีคซึ่งไมโครคอนโทรลเลอร์ไม่สามารถทำงานได้เป็นเวลานาน
  2. สำหรับการทำงานอย่างต่อเนื่องต้องคำนึงถึงแรงดันไฟฟ้าสูงสุดด้วย
  3. อย่าลืมพิจารณาความต้านทานของวงจรไมโครคอนโทรลเลอร์ภายในทั้งหมด
  4. อย่าลืมคำนึงถึงจำนวนรอบสูงสุดที่เป็นปกติสำหรับการทำงานของไมโครคอนโทรลเลอร์นี้ โปรดทราบว่าจะไม่สามารถเพิ่มความเร็วสูงสุดได้ เนื่องจากมีการจำกัดไว้ที่ระดับซอฟต์แวร์
  5. อุปกรณ์ไมโครคอนโทรลเลอร์รุ่นราคาถูกมีพัลส์ในช่วง 7...8 kHz สำเนาราคาแพงสามารถตั้งโปรแกรมใหม่ได้และพารามิเตอร์นี้เพิ่มขึ้น 2-4 เท่า

พยายามเลือกไมโครคอนโทรลเลอร์ทุกประการเนื่องจากส่งผลต่อกำลังที่มอเตอร์ไฟฟ้าสามารถพัฒนาได้

มีการจัดการอย่างไร

ชุดควบคุมอิเล็กทรอนิกส์ช่วยให้สามารถสลับขดลวดของไดรฟ์ได้ ในการกำหนดช่วงเวลาของการเปลี่ยนโดยใช้ไดรเวอร์ ตำแหน่งของโรเตอร์จะถูกตรวจสอบโดยเซ็นเซอร์ Hall ที่ติดตั้งบนไดรฟ์

ในกรณีที่ไม่มีอุปกรณ์ดังกล่าว จำเป็นต้องอ่านแรงดันย้อนกลับ มันถูกสร้างขึ้นในขดลวดสเตเตอร์ที่ไม่ได้เชื่อมต่อกับ ช่วงเวลานี้เวลา. คอนโทรลเลอร์เป็นฮาร์ดแวร์-ซอฟต์แวร์ที่ซับซ้อน ซึ่งช่วยให้คุณติดตามการเปลี่ยนแปลงทั้งหมดและตั้งค่าลำดับการสลับได้อย่างแม่นยำที่สุด

มอเตอร์ไร้แปรงถ่านสามเฟส

มอเตอร์ไฟฟ้าไร้แปรงถ่านจำนวนมากสำหรับเครื่องบินรุ่นนั้นขับเคลื่อนด้วยกระแสตรง แต่ยังมีอินสแตนซ์สามเฟสที่ติดตั้งตัวแปลง พวกมันปล่อย แรงดันคงที่สร้างแรงกระตุ้นสามเฟส

งานมีดังนี้:

  1. คอยล์ "A" รับพัลส์ด้วยค่าบวก บนขดลวด "B" - มีค่าลบ ด้วยเหตุนี้สมอจะเริ่มเคลื่อนที่ เซ็นเซอร์แก้ไขการกระจัดและสัญญาณจะถูกส่งไปยังตัวควบคุมสำหรับการสลับครั้งต่อไป
  2. คอยล์ "A" ถูกปิด ขณะที่พัลส์บวกจ่ายให้กับขดลวด "C" การสลับขดลวด "B" จะไม่เปลี่ยนแปลง
  3. คอยล์ "C" ได้รับพัลส์บวกและค่าลบไปที่ "A"
  4. จากนั้นให้จับคู่ "A" และ "B" เข้าด้วยกัน ค่าพัลส์บวกและลบจะถูกป้อนตามลำดับ
  5. จากนั้นแรงกระตุ้นบวกจะเข้าสู่ขดลวด "B" อีกครั้งและค่าลบจะไปที่ "C"
  6. ในขั้นตอนสุดท้าย คอยล์ "A" ถูกเปิดซึ่งได้รับพัลส์บวกและขั้วลบไปที่ C

จากนั้นวนซ้ำทั้งหมด

ประโยชน์ของการใช้

DIY มอเตอร์ไร้แปรงถ่านยากและแทบจะเป็นไปไม่ได้เลยที่จะใช้การควบคุมไมโครคอนโทรลเลอร์ ดังนั้นจึงเป็นการดีที่สุดที่จะใช้การออกแบบอุตสาหกรรมสำเร็จรูป แต่อย่าลืมคำนึงถึงข้อดีที่ไดรฟ์ได้รับเมื่อใช้มอเตอร์แบบไม่มีแปรงถ่าน:

  1. อย่างมีนัยสำคัญ ทรัพยากรมากขึ้นกว่าเครื่องสะสม
  2. ประสิทธิภาพสูง
  3. กำลังสูงกว่ามอเตอร์ตัวสะสม
  4. ความเร็วในการหมุนเร็วขึ้นมาก
  5. ไม่มีการเกิดประกายไฟระหว่างการทำงาน ดังนั้นสามารถใช้ในสภาพแวดล้อมที่มีอันตรายจากไฟไหม้สูง
  6. การทำงานของไดรฟ์ที่ง่ายมาก
  7. ไม่จำเป็นต้องใช้ส่วนประกอบเพิ่มเติมในการทำความเย็นระหว่างการทำงาน

ท่ามกลางข้อเสียเป็นอย่างมาก ค่าใช้จ่ายสูง, หากเราคำนึงถึงราคาของคอนโทรลเลอร์ แม้จะเป็นเวลาสั้นๆ ก็ไม่สามารถเปิดมอเตอร์ไฟฟ้าดังกล่าวเพื่อตรวจสอบประสิทธิภาพได้ นอกจากนี้การซ่อมมอเตอร์ดังกล่าวทำได้ยากกว่ามากเนื่องจากคุณสมบัติการออกแบบ