บีเอ็ม ความเงียบ. เกี่ยวกับการคำนวณอย่างละเอียดของระยะเบรกและหยุดรถในการวิเคราะห์อุบัติเหตุจราจรและการผลิตการตรวจสอบทางเทคนิคอัตโนมัติ ตัวชี้วัดพลวัตการเบรกของรถ สูตรคำนวณค่าเฉลี่ย

บี.เอ็ม.ทิชิน,

ผู้เชี่ยวชาญด้านนิติเวชที่ไม่ใช่ของรัฐในด้านความเชี่ยวชาญทางรถยนต์

ผู้สมัครของวิทยาศาสตร์เทคนิค

(เซนต์ปีเตอร์สเบิร์ก)

ระยะเบรกและหยุดที่คำนวณโดยวิธีการที่มีอยู่ในการฝึกของผู้เชี่ยวชาญนั้นขึ้นอยู่กับสมมติฐานว่าความเร็วของการเคลื่อนที่เท่ากัน ยานพาหนะตลอดกระบวนการเบรก บทความนี้เสนอวิธีการคำนวณระยะเบรกและระยะเบรกของยานพาหนะอย่างละเอียด โดยคำนึงถึงการลดความเร็วในทุกขั้นตอนของกระบวนการเบรก ระยะทางที่คำนวณโดยวิธีการปรับแต่งให้ผลลัพธ์น้อยกว่าการใช้วิธีการที่มีให้สำหรับผู้เชี่ยวชาญในปัจจุบัน 10-20%

คำสำคัญ:วิธีการคำนวณ ระยะเบรก ทางหยุด; ความเท่าเทียมกันของความเร็ว ลดความเร็ว; ข้อผิดพลาดของผลลัพธ์ ช้าลงหน่อย; เวลาเคลื่อนไหว

T 47

LBC 67.52

UDC 343.983.25

GNRTI 10.85.31

รหัส VAK 12.00.12

สำหรับคำถามของการคำนวณอย่างละเอียดของระยะเบรกและหยุดรถในการวิเคราะห์อุบัติเหตุบนท้องถนนและการผลิตการตรวจสอบทางเทคนิคอัตโนมัติ

บี.เอ็ม.ทิชิน

ผู้เชี่ยวชาญด้านนิติเวชที่ไม่ใช่ของรัฐในด้านความเชี่ยวชาญด้านเทคนิคอัตโนมัติ

(เมืองแซงต์-ปีเตอร์สเบิร์ก)

ระยะทางของการเบรกและการหยุดบนทางวิ่ง ซึ่งคำนวณโดยวิธีการที่มีอยู่ในแนวทางปฏิบัติของผู้เชี่ยวชาญนั้น ขึ้นอยู่กับสมมติฐานที่ว่าความเร็วของรถจะเท่ากันตลอดกระบวนการเบรก ในการทำงาน เทคนิคการคำนวณระยะห่างของเบรกและการหยุดรถอย่างประณีต โดยคำนึงถึงการลดความเร็วในทุกขั้นตอนของกระบวนการเบรก ระยะทางที่คำนวณโดยวิธีปรับแต่งให้ผลลัพธ์น้อยกว่าวิธีที่ผู้เชี่ยวชาญในปัจจุบันมี 10 ÷ 20%

คีย์เวิร์ด: เทคนิคการคำนวณ ระยะเบรก วิธีหยุด; ความเท่าเทียมกันของความเร็ว ลดความเร็ว; ข้อผิดพลาดในผลลัพธ์ ช้าลงหน่อย; เวลาขับรถ.

_____________________________________

ตัวบ่งชี้ที่เป็นกลางที่สุดซึ่งเราสามารถตัดสินความเร็วของการเคลื่อนที่ก่อนเบรกคือรอยที่ยางของรถทิ้งไว้บนพื้นผิวถนน

ความเร็วของรถก่อนเบรกโดยผู้เชี่ยวชาญคำนวณโดยสูตร:

ที่นี่:

การชะลอตัวอย่างต่อเนื่องเมื่อเบรกรถ

เวลาเพิ่มขึ้นการชะลอตัวมาตรฐาน

- ความยาวของรางเบรกที่วัดได้ก่อนที่รถจะหยุด

สูตรนี้คำนึงถึงความจริงที่ว่าเมื่อคุณเหยียบแป้นเบรกจะมีการชะลอตัวเพิ่มขึ้นทีละน้อยดังนั้นสูตรจึงคำนึงถึงการเปลี่ยนแปลงของความเร็วในระหว่างการลดความเร็วที่เพิ่มขึ้นเป็นค่าเฉลี่ยเมื่อลดความเร็วเริ่มต้น "0 " และรอบชิงชนะเลิศ - ""

อย่างไรก็ตาม การเปลี่ยนแปลงความเร็วของการเคลื่อนที่ระหว่างการเบรกไม่ได้เกิดขึ้นเฉพาะในช่วงที่ลดความเร็วลงเท่านั้น แต่ยังเกิดขึ้นในช่วงเวลาตอบสนองด้วย ไดรฟ์เบรคและระหว่างการเคลื่อนตัวของรถ เมื่อผู้ขับขี่ตัดสินใจเบรก ให้หยุดการจ่ายน้ำมันเชื้อเพลิงและขยับเท้าจากแป้นเหยียบน้ำมันเชื้อเพลิงไปยังแป้นเบรก ในเวลานี้ รถเคลื่อนที่ภายใต้การกระทำของแรงเฉื่อย เอาชนะการต้านทานการเคลื่อนที่ของรถโดยขึ้นอยู่กับสภาพการขับขี่และความต้านทานต่อการบังคับเลื่อน เพลาข้อเหวี่ยงเครื่องยนต์จากล้อผ่านชุดเกียร์หากไม่ได้ปิดเกียร์บนกระปุกเกียร์ (กระปุกเกียร์) เนื่องจากความเร็วของเพลาข้อเหวี่ยงลดลงอย่างรวดเร็วหลังจากตัดการจ่ายน้ำมันเชื้อเพลิงและล้อยังคงหมุนต่อไปในระยะเวลาหนึ่งในทางปฏิบัติที่ ความเร็วเท่ากัน

ปัจจุบันการมีอุปกรณ์ป้องกันล้อล็อก (ABS) อยู่ในระบบเบรกไม่อนุญาตให้ล้อปิดกั้นในระหว่างการเบรกแบบเข้มข้น (ฉุกเฉิน) ดังนั้นจึงไม่มีสัญญาณของการเบรกเช่นนี้บนพื้นผิวถนน บทบัญญัตินี้ประดิษฐานอยู่ใน GOST R 51709-2001 ข้อ 4.1.16: “ยานยนต์ที่ติดตั้งระบบเบรกป้องกันล้อล็อก (ABS) เมื่อเบรกตามลำดับการวิ่ง (โดยคำนึงถึงมวลของผู้ขับขี่) โดยมีค่าเริ่มต้น ความเร็วอย่างน้อย 40 กม./ชั่วโมงจะต้องเคลื่อนที่ภายในทางเดินรถโดยไม่มีร่องรอยการดริฟท์และการลื่นไถล และล้อจะต้องไม่ทิ้งร่องรอยการลื่นไถลไว้บนพื้นผิวถนน จนกว่าระบบ ABS จะปิดเมื่อความเร็วถึงเกณฑ์การตัด ABS (ไม่เกิน 15 กม./ชั่วโมง). การทำงานของอุปกรณ์ส่งสัญญาณ ABS ต้องสอดคล้องกับสภาพที่ดี

สถานการณ์เดียวกันนี้ไม่อนุญาตให้ตั้งค่าความเร็วรถก่อนเบรกตามสูตรข้างต้น ซึ่งคำนึงถึงการเปลี่ยนแปลงความเร็วในช่วงเวลาสะสมการชะลอตัว

ดังนั้นการตรวจสอบความเร็วของการเคลื่อนไหวก่อนเบรกจึงถูกกำหนดโดยศาลผู้เชี่ยวชาญโดยวิธีการอื่น ๆ เมื่อไม่ได้คำนึงถึงการเปลี่ยนแปลงความเร็วในระหว่างการเร่งความเร็วที่เพิ่มขึ้นจะไม่ถูกนำมาพิจารณา

ตาม GOST R 51709-2001 ระยะเบรกเป็นที่เข้าใจกันว่าเป็นระยะทางที่รถเดินทางตั้งแต่ต้นจนจบเบรก

แผนภาพเบรกที่ระบุใน GOST R 51709-2001 ในภาคผนวก "B" แสดงในรูปที่ หนึ่ง.

ข้าว. 1. แผนภาพการเบรก: เวลาหน่วง ระบบเบรค; เวลาเพิ่มขึ้นการชะลอตัว เวลาชะลอตัวด้วยการชะลอตัวอย่างต่อเนื่อง เวลาตอบสนองของระบบเบรก ATS ชะลอตัวอย่างต่อเนื่อง H และ K - จุดเริ่มต้นและจุดสิ้นสุดของการเบรกตามลำดับ

การเริ่มเบรกคือจุดที่รถได้รับสัญญาณให้เบรก กำหนดด้วยจุด "H" ในภาคผนวก "B"

จุดสิ้นสุดของการเบรกคือจุดที่ความต้านทานเทียมต่อการเคลื่อนที่ของรถหายไปหรือหยุดลง แสดงโดยจุด "K" ในภาคผนวก "B"

ภาคผนวก "G" (GOST R 51709-2001) ระบุว่าได้รับอนุญาตให้คำนวณ ระยะหยุดหน่วยเป็นเมตร สำหรับความเร็วเบรกเริ่มต้นตามผลการตรวจสอบตัวบ่งชี้การชะลอตัวของรถในระหว่างการเบรกตามสูตร (ภาคผนวก "D"):


ที่ไหน: - ความเร็วเริ่มต้นเบรกเอทีเอส, กม./ชั่วโมง;

เวลาหน่วงของระบบเบรก กับ;

เวลาเพิ่มขึ้นชะลอตัว, กับ;

การชะลอตัวอย่างต่อเนื่อง, /กับ 2 ;

ในภาคผนวก "D" เทอมแรกของการแสดงระยะเบรกจะเท่ากับนิพจน์ที่ "A" เป็นค่าสัมประสิทธิ์ที่กำหนดลักษณะเวลาตอบสนองของระบบเบรก


ในภาคผนวกเดียวกันจะมีตารางค่าสัมประสิทธิ์ "A" และการชะลอตัวของสภาวะคงตัวเชิงบรรทัดฐานสำหรับ หมวดหมู่ต่างๆเอทีเอส.

วิธีการคำนวณนี้ใช้เมื่อคำนวณมาตรฐานระยะเบรกใหม่

ตาราง E. 1

ATS

ข้อมูลเบื้องต้นสำหรับการคำนวณมาตรฐานระยะหยุดPBX ในอุปกรณ์สภาพ:

แต่

/กับ 2

รถยนต์โดยสารและเอนกประสงค์

M1

0,10

5,8

M2, M3

0,10

5,0

รถที่มีรถพ่วง

เอ็ม1

0,10

5,8

รถบรรทุก

นู๋1 , N2, N3

0,15

5,0

รถบรรทุกพร้อมรถพ่วง (กึ่งพ่วง)

นู๋1 , N2, N3

0,18

5,0

ตามค่ามาตรฐานของสัมประสิทธิ์ "A" สำหรับรถยนต์ประเภท M1, M2, M3 ระยะเบรกเพิ่มขึ้น 10% ของความเร็วเริ่มต้น สำหรับรถยนต์ประเภท N1, N2, N3 ที่ไม่มีรถพ่วง - 15% ของความเร็วเริ่มต้น สำหรับการแลกเปลี่ยนโทรศัพท์อัตโนมัติในหมวด N1 N2; N3 พร้อมรถพ่วงหรือกึ่งพ่วง - 18% ของความเร็วเริ่มต้น

ความเร็วเริ่มต้นจะถูกแทนที่เป็น กม./ชั่วโมง.

ในการฝึกฝนการวิเคราะห์อุบัติเหตุหรือในการผลิต ความเชี่ยวชาญด้านเทคนิคยานยนต์เพื่อกำหนดประสิทธิภาพของการเบรก จะใช้ระยะเบรกไม่ได้เนื่องจาก พารามิเตอร์ทางเทคนิคยานยนต์ แต่ระยะหยุดการแลกเปลี่ยนโทรศัพท์อัตโนมัติเนื่องจากทั้งพารามิเตอร์ทางเทคนิคของรถและความสามารถทางจิตสรีรวิทยาของผู้ขับขี่

ตามคำจำกัดความของศาสตราจารย์ S. A. Evtyukov ระยะหยุดคือระยะทางที่จำเป็นสำหรับผู้ขับขี่ในการหยุดรถโดยการเบรกที่ความเร็วเบรกเริ่มต้นเมื่อขับในสภาพถนนที่เฉพาะเจาะจง ระยะหยุดรถคือผลรวมของระยะทางที่รถเดินทางระหว่างปฏิกิริยาของผู้ขับขี่ต่ออันตราย ความล่าช้าในการขับเคลื่อนเบรก และความเร่งที่เพิ่มขึ้นเมื่อ เบรกฉุกเฉินตลอดจนระยะทางที่รถวิ่งด้วยการลดความเร็วคงที่จนถึงจุดจอดจนสุด

ดังที่เห็นได้จากคำจำกัดความของระยะเบรกและการหยุดรถ ทั้งสองคำแตกต่างกันตามระยะทางที่รถเดินทางในช่วงเวลาตอบสนองของผู้ขับขี่โดยเฉลี่ย

ในทางปฏิบัติของผู้เชี่ยวชาญ ระยะเบรกจะคำนวณจากมาตรฐานเวลาตอบสนองของผู้ขับขี่โดยเฉลี่ย ตามประเภทของสถานการณ์การจราจร เวลาหน่วงมาตรฐานของตัวขับเบรก และความเร่งที่เพิ่มขึ้นตามประเภทรถยนต์และประเภทของตัวขับเบรก


โดยที่: - เวลาตอบสนองของคนขับที่เลือกโดยผู้เชี่ยวชาญตาราง คุณค่าที่แตกต่างเวลาปฏิกิริยาของคนขับตามอุตุนิยมวิทยาและ สภาพถนน.

- ค่าเชิงบรรทัดฐานและทางเทคนิคของพารามิเตอร์การเบรกซึ่งถ่ายโดยผู้เชี่ยวชาญตามตารางค่าที่คำนวณโดยการทดลองของพารามิเตอร์การเบรก ยานพาหนะในการปฏิบัติของผู้เชี่ยวชาญ

ทั้งสำหรับการคำนวณระยะหยุดตามสูตรที่กำหนดใน GOST และสำหรับการคำนวณระยะหยุดตามสูตรที่ใช้ในการฝึกการคำนวณโดยผู้เชี่ยวชาญนั้นมีการสันนิษฐาน: ความเร็วเริ่มต้นของรถก่อนเบรกจะเท่ากับความเร็ว เมื่อเหยียบแป้นเบรกและเมื่อการเคลื่อนไหวเริ่มขึ้นในสถานะลดความเร็วด้วยการชะลอตัวอย่างต่อเนื่อง กล่าวคือ มีสมมติฐานตามเงื่อนไขว่าตลอดกระบวนการเบรกทั้งหมดจนกว่าจะมีการชะลอตัวอย่างต่อเนื่อง ความเร็วของรถจะคงที่

อันที่จริง ในระหว่างกระบวนการเบรก ความเร็วจะลดลงอย่างต่อเนื่องทั้งในขณะขับขี่ในช่วงเวลาตอบสนองของผู้ขับขี่ และเมื่อขับขี่ในช่วงเวลาตอบสนองของระบบเบรก เมื่อคำนวณระยะเบรกและหยุดในสูตรข้างต้น จะใช้พารามิเตอร์ที่คำนึงถึงระยะทางที่รถเดินทางระหว่างระยะเบรก แต่ไม่ได้คำนึงถึงว่ารถเดินทางในระยะทางเหล่านี้ด้วยความเร็วที่ลดลงอย่างต่อเนื่อง

เมื่อรถเคลื่อนที่ระหว่างปฏิกิริยาของผู้ขับขี่ รถจะเคลื่อนที่เป็นระยะทางภายใต้การกระทำของแรงเฉื่อย เอาชนะแรงต้านการหมุนไปตามพื้นผิวถนนจริง และหากเกียร์ไม่ปลดเมื่อเหยียบแป้นเบรก แรงต้านการเคลื่อนที่จากการหมุนเพลาข้อเหวี่ยงของเครื่องยนต์ผ่านระบบเกียร์

แรงต้านทานการหมุนของยานพาหนะโดยทั่วไปถูกกำหนดโดยผลคูณของสัมประสิทธิ์ความต้านทานการหมุนบนพื้นผิวถนนจริงและแรงโน้มถ่วงของยานพาหนะ:

เมื่อขับรถในแนวนอนของแทร็กหรือเมื่อความลาดชัน - การเพิ่มขึ้นสามารถละเลยได้

การวิเคราะห์ความต้านทานการเคลื่อนที่ของยานพาหนะที่เกิดจากการหมุนของเพลาข้อเหวี่ยงของเครื่องยนต์นั้นยากต่อการวิเคราะห์ ดังนั้น ในทางปฏิบัติตามทฤษฎีการเคลื่อนที่ของรถ ความต้านทานการเคลื่อนที่ที่เกิดจากการหมุนของเพลาเครื่องยนต์ผ่านระบบส่งกำลังคือ คำนวณโดยใช้สูตรเชิงประจักษ์ของ Yu. A. Kremenets:


ปริมาตรการทำงานของเครื่องยนต์ (การกระจัด) เป็นลิตร

ความเร็วรถก่อนเบรก กม./ชั่วโมง.

แรงโน้มถ่วงของรถ, กิโลกรัม.

หากการเคลื่อนที่ไม่อยู่ในเกียร์ตรง ให้ป้อนตัวเศษ อัตราทดเกียร์ด่านส่ง.

ความซับซ้อนของการพิจารณาพารามิเตอร์เหล่านี้อยู่ในความจริงที่ว่าในแต่ละกรณีจำเป็นต้องคำนวณค่าการชะลอตัวที่เกิดขึ้นเมื่อเอาชนะความต้านทานต่อการเคลื่อนไหว อย่างไรก็ตาม สิ่งนี้ยังช่วยเพิ่มความแม่นยำในการคำนวณระยะหยุดและเบรกอีกด้วย

การชะลอตัวของยานพาหนะเมื่อเอาชนะการต้านทานการเคลื่อนที่ถูกกำหนดโดย สูตรทั่วไปการชะลอตัว:

โดยที่มูลค่ารวมของสัมประสิทธิ์การต้านทานการเคลื่อนที่คือ

โดยเฉพาะอย่างยิ่ง ค่าสัมประสิทธิ์ความต้านทานการหมุนและค่าสัมประสิทธิ์การต้านทานตามเงื่อนไขจากการเลื่อนเพลาเครื่องยนต์ผ่านระบบส่งกำลัง - .

ค่าสัมประสิทธิ์คำนวณโดยสูตรทั่วไป - แรงลากหารด้วยแรงโน้มถ่วงของรถ

การชะลอตัวของรถที่เกิดขึ้นเมื่อขับรถในช่วงเวลาตอบสนองของผู้ขับขี่:

ในช่วงเวลาตอบสนองของผู้ขับขี่ ความเร็วจะลดลง:

นางสาว

ขณะเริ่มตอบสนองต่ออันตราย ความเร็วของรถ และขณะเหยียบแป้นเบรก -

นางสาว

ดังนั้น ตลอดเวลาที่รถเคลื่อนที่ในช่วงเวลาตอบสนองของผู้ขับขี่ ควรพิจารณาว่าเป็นความเร็วเฉลี่ย:


ตามการคำนวณที่นำเสนอ เมื่อถึงเวลาที่ระบบเบรกเริ่มทำงาน ความเร็วของรถจะไม่ทำงาน

/กับ

เมื่อรถเคลื่อนที่ระหว่างการทำงานของระบบเบรก ( สิ้นสุดการเคลื่อนไหวด้วยความเร็ว:

/กับ

การเคลื่อนที่ของยานพาหนะระหว่างการทำงานของระบบเบรกนั้นดำเนินการด้วยความเร็วเฉลี่ย:


ลดความเร็วสำหรับเวลาการทำงานของระบบเบรก

ดังนั้น เมื่อเกิดการชะลอตัวคงที่ ความเร็วของรถจะเท่ากับ

ความเร็วนี้ควรแทนที่ด้วยระยะที่กำหนดระยะทางที่รถเดินทางระหว่างการเคลื่อนที่ด้วยการชะลอความเร็วคงที่เพื่อหยุดหรือตามค่าที่กำหนดไว้ล่วงหน้า

วิธีการที่เสนอโดยคำนึงถึงการลดความเร็วทำให้เราสามารถเสนอทางเลือกอื่นในการคำนวณระยะหยุดและเบรก:


แม้จะมีความยุ่งยากของนิพจน์ที่เสนอ แต่ก็สามารถคำนวณได้ง่ายเนื่องจากที่นี่มีให้ ข้อสรุปทั่วไป. โดยการแก้ค่าความเร็วเฉลี่ยตามลำดับความเร็วเริ่มต้นและความเร็วสุดท้าย กระบวนการคำนวณจึงง่ายขึ้น

ให้เราพิจารณาเหตุการณ์การเบรกเฉพาะของรถยนต์นั่งประเภทหนึ่ง โดยมีเวลาตอบสนองของคนขับต่ออันตรายเท่ากับ 1 กับ, เวลาหน่วงของตัวขับเบรกเท่ากับ 0.1 กับ, เวลาเพิ่มขึ้นของการชะลอตัวที่เกิดขึ้นบนทางเท้าแอสฟัลต์แห้ง 0.35 กับ, ด้วยการชะลอความเร็วคงที่ 6.8 /กับ 2. ความจุเครื่องยนต์2 l, น้ำหนักรถจริง 1500 กิโลกรัม, ความเร็วเริ่มต้นของรถก่อนเบรก 90 กม./ชั่วโมง (25 /กับ). การชะลอตัวในสภาวะคงที่โดยไม่คำนึงถึงอิทธิพลของระบบ ABS

การชะลอตัวในกระบวนการเคลื่อนที่ของยานพาหนะในช่วงเวลาที่เกิดปฏิกิริยาเท่ากับ:

เมตร/วินาที 2

สัมประสิทธิ์ความต้านทานการหมุนของแอสฟัลต์แนวนอนแห้งอยู่ที่ไหน - 0.018

ค่าสัมประสิทธิ์แบบมีเงื่อนไขของความต้านทานต่อเพลาข้อเหวี่ยงของเครื่องยนต์ผ่านระบบเกียร์:


การชะลอตัวของรถในช่วงเวลาตอบสนองของผู้ขับขี่:

เมื่อขับรถ ในช่วงเวลาตอบสนองของคนขับ ความเร็วจะลดลง:

ความเร็วเฉลี่ยในช่วงเวลาตอบสนองของผู้ขับขี่:

ความเร็วเมื่อสิ้นสุดเวลาตอบสนอง:

การชะลอตัวในสภาวะคงที่ระหว่างเวลาตอบสนองของระบบเบรก:

ลดความเร็วสำหรับเวลาการทำงานของระบบเบรก:

ความเร็วเฉลี่ยของการเคลื่อนที่ในขณะทำงานของระบบเบรก

ความเร็วในการเคลื่อนที่เมื่อสิ้นสุดเวลาตอบสนองของเบรก:

ความเร็วนี้ควรเปลี่ยนเป็นคำที่กำหนดระยะทางที่รถเคลื่อนที่ในโหมดเบรกด้วยการชะลอตัวอย่างต่อเนื่อง

คำนวณระยะหยุดตามสูตรที่ใช้ใน GOST และตามวิธีที่เสนอ:

ตามวิธีการของ GOST R 51709-2001 ภาคผนวก "D":

ตามวิธีการที่อนุญาตโดยภาคผนวก "G", GOST R 51709-2001:



ซึ่งตามลำดับคือ 19.8 และ 16.6% ของระยะเบรกซึ่งกำหนดตาม GOST R 51709-2001


ตามวิธีการที่นำมาใช้ในการปฏิบัติของผู้เชี่ยวชาญในการคำนวณระยะหยุด:

ตามวิธีการคำนวณแบบละเอียดที่เสนอ:


ซึ่งคิดเป็น 11.6% ของระยะเบรกคำนวณตามวิธีที่ยอมรับ:


วิธีการที่นำเสนอนี้ทำให้สามารถพิจารณาถึงอิทธิพลของรถรุ่นใดรุ่นหนึ่ง และลดข้อผิดพลาดในการคำนวณในการคำนวณระยะเบรกและการหยุดรถที่แตกต่างกัน สิ่งนี้ทำให้คุณสามารถสรุปอย่างแน่ชัดเกี่ยวกับการมีอยู่หรือไม่มีของ ความเป็นไปได้ทางเทคนิคการป้องกันอุบัติเหตุจราจรด้วยการคำนวณที่สมเหตุสมผลมากกว่า ไม่ใช้พารามิเตอร์มาตรฐานโดยเฉลี่ยและสมมติฐานความเท่าเทียมกันของความเร็วของการเคลื่อนที่ระหว่างกระบวนการเบรกทั้งหมด จนกระทั่งถึงช่วงเวลาการชะลอตัวคงที่

สูตรที่ใช้ในการปฏิบัติงานของผู้เชี่ยวชาญในการคำนวณระยะเบรกและระยะหยุดให้ผลลัพธ์ที่ประเมินค่าสูงไป เกิน 10% เมื่อเปรียบเทียบกับวิธีการคำนวณแบบละเอียดที่เสนอ เมื่อคำนวณระยะเบรกและหยุดของยานพาหนะประเภทต่าง ๆ นู๋1 , นู๋2 , นู๋3 ตามวิธีการที่เสนอ ความแตกต่างในผลลัพธ์เมื่อเทียบกับวิธีที่ใช้จะเพิ่มขึ้น เมื่อค่าสัมประสิทธิ์ "A" เพิ่มขึ้น

วรรณกรรม:

1. Evtyukov S.A. , Vasiliev Ya.V. สอบอุบัติเหตุ: คู่มือ. - เซนต์ปีเตอร์สเบิร์ก: DNA, 2006.

2. การประยุกต์ใช้ค่าความแตกต่างของเวลาตอบสนองของผู้ขับขี่ในการปฏิบัติของผู้เชี่ยวชาญ: แนวปฏิบัติวนิเซ่. - ม., 1987.

3. ใช้ในการปฏิบัติงานของผู้เชี่ยวชาญเกี่ยวกับค่าการออกแบบสุดขีดของพารามิเตอร์การเบรกของยานพาหนะ: แนวทางของ VNIISE - ม., 1986.

4. Borovsky B. E. ความปลอดภัยการจราจรทางถนน - L.: Lenizdat, 1984.

แรงเบรค.เมื่อเบรก แรงเสียดทานพื้นฐานจะกระจายไปทั่วพื้นผิวของวัสดุบุผิวแรงเสียดทาน ทำให้เกิดโมเมนต์ความเสียดทานที่เกิดขึ้น กล่าวคือ แรงบิดเบรก เอ็มพรูชี้ไปในทิศทางตรงกันข้ามกับการหมุนของวงล้อ มีแรงเบรกระหว่างล้อกับถนน Rทอรัส .

แรงเบรกสูงสุด R tor max เท่ากับแรงยึดเกาะของยางกับถนน รถยนต์สมัยใหม่มีเบรคทุกล้อ สำหรับรถยนต์สองเพลา (รูปที่ 2.16) แรงเบรกสูงสุด N,

โดยการฉายแรงทั้งหมดที่กระทำต่อรถในระหว่างการเบรกบนระนาบของถนน เราจะได้สมการการเคลื่อนที่ของรถในระหว่างการเบรกบนเนินเขาโดยทั่วไป:

Rทอร์1 + Rทอร์2 + R k1 + R k2 + R n+ Rใน + R เป็นต้น . + Rจี - Rและ == Rพรู + R d + Rใน + R เป็นต้น . + Rจี - Rน = 0,

ที่ไหน Rทอรัส = Rทอร์1 + Rทอรัส2 ; Rง = R k1 + R k2 + R n คือแรงต้านทานของถนน Rเป็นต้น - แรงเสียดทานในเครื่องยนต์ลดลงถึงล้อขับเคลื่อน

ให้เราพิจารณากรณีรถเบรกเฉพาะระบบเบรกเมื่อออกแรง Rเป็นต้น = 0.

เมื่อพิจารณาว่าความเร็วของรถลดลงระหว่างการเบรก เราสามารถสรุปได้ว่าแรง Rใน 0. เนื่องจากการที่อำนาจ R g มีขนาดเล็กเมื่อเทียบกับแรง Rนอกจากนี้ยังสามารถละเลยได้โดยเฉพาะอย่างยิ่งในระหว่างการเบรกฉุกเฉิน สมมติฐานทำให้สามารถเขียนสมการการเคลื่อนที่ของรถในระหว่างการเบรกได้ในรูปแบบต่อไปนี้:

Rพรู + Rอี - Rน = 0

จากนิพจน์นี้ หลังจากการแปลง เราได้สมการการเคลื่อนที่ของรถเมื่อเบรกบนถนนที่ไม่อยู่ในแนวนอน:



φ x + ψ - δ n เอส / g = 0,

โดยที่ φ x คือสัมประสิทธิ์การยึดเกาะตามยาวของยางกับถนน ψ คือสัมประสิทธิ์ความต้านทานถนน δ n - สัมประสิทธิ์การบัญชีสำหรับมวลที่หมุนได้ในส่วนที่ไม่ใช่แนวนอนของถนน (ระหว่างชายฝั่ง) เอ h – การชะลอตัว (การชะลอตัว) การเร่งความเร็ว

การชะลอตัวจะใช้เป็นตัววัดไดนามิกของการเบรกของรถยนต์ เอ h เมื่อเบรกและระยะเบรก ทอรัส , ม. เวลา t torus, s, ใช้เป็นเครื่องวัดเสริมเมื่อกำหนดระยะหยุด เกี่ยวกับ.

การชะลอตัวเมื่อเบรกรถการชะลอตัวระหว่างการเบรกถูกกำหนดโดยสูตร

เอชม. = (พีทอรัส + พี d + Rใน + Rง)/(δ เวลา ).

หากแรงเบรกทุกล้อถึงค่าแรงยึดเกาะแล้วละเลยแรง Rในและ Rจี

เอชั่วโมง \u003d [(φ x + ψ) / ψ vr] g .

ค่าสัมประสิทธิ์ φ x มักจะมากกว่าค่าสัมประสิทธิ์ ψ มาก ดังนั้น ในกรณีของการเบรกรถจนสุด ค่าของ ψ ในนิพจน์สามารถละเลยได้ แล้ว

เอชั่วโมง \u003d φ x g/δ vr ≈ φ x g .

หากค่าสัมประสิทธิ์ φ x ไม่เปลี่ยนแปลงในระหว่างการเบรก ให้ลดความเร็วลง เอ h ไม่ได้ขึ้นอยู่กับความเร็วของรถ

เวลาชะลอตัวเวลาหยุดรถ (เวลาเบรกทั้งหมด) คือเวลาตั้งแต่วินาทีที่ผู้ขับขี่ตรวจพบอันตรายจนรถจอดสนิท เวลาเบรกทั้งหมดประกอบด้วยหลายส่วน:

1) เวลาตอบสนองของคนขับ t p คือเวลาที่ผู้ขับขี่ตัดสินใจเบรกและเคลื่อนเท้าจากแป้นจ่ายน้ำมันเชื้อเพลิงไปยังแป้นเหยียบของระบบเบรกที่ใช้งานได้ (ขึ้นอยู่กับลักษณะและคุณสมบัติส่วนบุคคลของเขาคือ 0.4 ... 1.5 วินาที)

2) เวลาสั่งงานเบรก t pr - เวลาตั้งแต่เริ่มเหยียบแป้นเบรกจนถึงเริ่มลดความเร็วเช่น เวลาในการเคลื่อนย้ายชิ้นส่วนที่เคลื่อนไหวทั้งหมดของตัวขับเบรก (ขึ้นอยู่กับประเภทของตัวขับเบรกและเงื่อนไขทางเทคนิคคือ 0.2 ... 0.4 วินาทีสำหรับตัวขับไฮดรอลิก 0.6 ... 0.8 วินาทีสำหรับตัวขับลมและ 1 ... 2 วินาทีสำหรับรถไฟบนถนนที่มีระบบเบรกลม)

3) เวลา t y ในระหว่างที่การชะลอตัวเพิ่มขึ้นจากศูนย์ (จุดเริ่มต้นของกลไกการเบรก) เป็นค่าสูงสุด (ขึ้นอยู่กับความเข้มของการเบรก น้ำหนักบรรทุกบนรถ ประเภทและสภาพของพื้นผิวถนนและกลไกการเบรก)

4) เวลาชะลอตัวที่มีความเข้มสูงสุด tทอรัส กำหนดโดยสูตร tพรู = υ/ เอชั่วโมงสูงสุด - 0.5 tย.

ชั่วขณะหนึ่ง t p+ t pr รถเคลื่อนที่อย่างสม่ำเสมอด้วยความเร็ว υ , ในช่วงระยะเวลา t y - ช้า แต่เมื่อเวลาผ่านไป tทอรัส ช้าลงจนหยุดสมบูรณ์

กราฟแสดงเวลาเบรก การเปลี่ยนความเร็ว การชะลอตัว และการหยุดรถแสดงแผนภาพ (รูปที่ 2.17, ก)

เพื่อกำหนดเวลาหยุด tเกี่ยวกับ , จำเป็นต้องหยุดรถจากช่วงเวลาที่เกิดอันตรายคุณต้องสรุปช่วงเวลาทั้งหมดข้างต้น:

t o= t p+ t pr + t y + tทอรัส = t p+ t pr + 0.5 t y + υ/ เอชั่วโมงสูงสุด = tผลรวม + υ/ เอชั่วโมงสูงสุด ,

ที่ไหน tผลรวม = t p+ t pr + 0.5 tย.

หากแรงเบรกของรถทุกล้อถึงค่าแรงยึดเกาะพร้อมกัน ให้ใช้ค่าสัมประสิทธิ์ δ vr = 1 เราได้

t o= tผลรวม + υ/(φ x g).

ระยะเบรกคือระยะทางที่รถเคลื่อนที่ขณะเบรก tทอร์ที่มีประสิทธิภาพสูงสุด พารามิเตอร์นี้ถูกกำหนดโดยใช้เส้นโค้ง tทอรัส = ฉ(υ ) และสมมติว่าในแต่ละช่วงความเร็ว รถจะเคลื่อนที่ช้าเท่ากัน มุมมองโดยประมาณของกราฟการขึ้นต่อกันของเส้นทาง พรูความเร็วโดยคำนึงถึงกองกำลัง Rถึง , พี อิน, พี m และโดยไม่คำนึงถึงแรงเหล่านี้จะแสดงในรูปที่ 2.18, ก.

ระยะทางที่จำเป็นในการหยุดรถจากช่วงเวลาที่อันตรายเกิดขึ้น (ความยาวของระยะที่เรียกว่าระยะหยุด) สามารถกำหนดได้หากเราคิดว่าการชะลอตัวเปลี่ยนแปลงดังแสดงในรูปที่ 2.17 ก.

ระยะการหยุดสามารถแบ่งออกเป็นหลายส่วนตามเงื่อนไขตามส่วนของเวลา tอาร์ tฯลฯ tคุณ tพรู:

o= p+ pr + y + ทอรัส

ระยะทางที่รถยนต์เดินทางตรงเวลา t p+ t pr การเคลื่อนที่ด้วยความเร็วคงที่ υ ถูกกำหนดดังนี้:

p+ pr \u003d υ ( t p+ tเป็นต้น) .

สมมติว่าเมื่อความเร็วลดลงจาก υ เป็น υ "รถจะเคลื่อนที่ด้วยความเร่งคงที่ เอ cp = 0.5 เอ s m ax เราได้เส้นทางที่รถใช้ในช่วงเวลานี้:

∆S y = [ υ 2 – (υ") 2 ] / เอเอส เอ็ม อา

ระยะเบรกเมื่อลดความเร็วจาก υ "เป็นศูนย์ระหว่างการเบรกฉุกเฉิน

พรู = (υ") 2 / (2 เอ s m ah) .

หากแรงเบรกของรถทุกล้อถึงค่าแรงยึดเกาะพร้อมกันแล้วเมื่อ Rเป็นต้น = Rใน = R r = 0 ระยะเบรกของรถ

พรู = υ 2 / (2φ x g).

ระยะเบรกเป็นสัดส่วนโดยตรงกับกำลังสองของความเร็วรถในขณะที่เบรกเริ่มต้น ดังนั้น เมื่อความเร็วเริ่มต้นเพิ่มขึ้น ระยะเบรกจะเพิ่มขึ้นอย่างรวดเร็วเป็นพิเศษ (ดูรูปที่ 2.18 ก)

ดังนั้น ระยะหยุดสามารถกำหนดได้ดังนี้:

o= p+ pr + y + พรู = υ ( t p+ t pr) + [υ 2 - (υ") 2] / เอ s m ax + (υ") 2 / (2 .) เอ s m ah) =

= υ tผลรวม + υ 2 / (2 เอ z m ah) = υ tผลรวม + υ 2 / (2φ x g).

ระยะการหยุด เช่นเดียวกับเวลาหยุด ขึ้นอยู่กับปัจจัยหลายประการ ซึ่งหลักๆ ได้แก่:

ความเร็วของรถในขณะที่เริ่มเบรก

คุณสมบัติและสภาพร่างกายของผู้ขับขี่

ประเภทและสภาพทางเทคนิคของระบบเบรกทำงานของยานพาหนะ

สภาพผิวถนน

โหลดรถ;

สภาพยางรถยนต์

วิธีการเบรก ฯลฯ

ตัวบ่งชี้ความเข้มของการเบรกในการตรวจสอบประสิทธิภาพของระบบเบรก ระยะเบรกที่อนุญาตสูงสุดและการชะลอตัวที่เล็กที่สุดที่อนุญาตจะถูกใช้เป็นตัวบ่งชี้ตาม GOST R 41.13.96 (สำหรับรถยนต์ใหม่) และ GOST R 51709–2001 (สำหรับรถยนต์ที่ใช้งาน) ความเข้มของการเบรกรถยนต์และรถโดยสารตามเงื่อนไขความปลอดภัยการจราจรนั้นได้รับการตรวจสอบโดยไม่มีผู้โดยสาร

ระยะเบรกสูงสุดที่อนุญาต tor, m เมื่อขับด้วยความเร็วเริ่มต้น 40 กม./ชม. บนพื้นที่แนวนอนของถนนที่มีพื้นผิวซีเมนต์หรือแอสฟัลต์คอนกรีตที่เรียบ แห้ง สะอาด หรือแอสฟัลต์คอนกรีต มีค่าดังต่อไปนี้:

รถยนต์และการดัดแปลงสำหรับการขนส่งสินค้า……….14.5

รถโดยสารจาก น้ำหนักรวม:

รวมไม่เกิน 5 ตัน…………….…………………………18.7

มากกว่า 5 ตัน……………………………………………………19.9

รถบรรทุกที่มีน้ำหนักรวม

มากถึง 3.5 ตัน รวม…………….………….………..19

3.5... 12 ตัน รวม………………………………..…18.4

มากกว่า 12 ตัน……………………………………..…17.7

รถไฟท้องถนนพร้อมรถแทรกเตอร์ที่มีน้ำหนักรวม:

รวมสูงสุด 3.5 ตัน…………………….………………22.7

3.5 ...12 ตัน รวม…………………….….22.1

มากกว่า 12 ตัน……………………………………….…………21.9

การกระจายแรงเบรกระหว่างเพลารถเมื่อรถเบรก แรงเฉื่อย Rและ (ดูรูปที่ 2.16) กระทำบนไหล่ ชม. c ทำให้เกิดการกระจายโหลดปกติระหว่างเพลาหน้าและเพลาหลัง ภาระที่ล้อหน้าเพิ่มขึ้นและด้านหลังลดลง ดังนั้น ปฏิกิริยาปกติ R z 1 และ R z2 , ทำหน้าที่ตามลำดับบนเพลาหน้าและหลังของรถในระหว่างการเบรก แตกต่างจากโหลดอย่างมาก จี 1 และ จี 2 , ซึ่งรับรู้สะพานในสถานะคงที่ การเปลี่ยนแปลงเหล่านี้ประเมินโดยสัมประสิทธิ์การเปลี่ยนแปลงในปฏิกิริยาปกติ p1 , และ p2 ซึ่งสำหรับกรณีรถเบรกบนถนนแนวนอนถูกกำหนดโดยสูตร

p1 = 1 + φ X ชม.ค/ l 1 ; p2 = 1 - φ X ชม.ค/ l 2 .

ดังนั้นปฏิกิริยาปกติจึงมีราคาแพง

R z1 = p1 จี 1 ; R z2 = p2 จี 2 .

ในระหว่างการเบรกของรถ ค่าสัมประสิทธิ์การเปลี่ยนแปลงปฏิกิริยาที่ใหญ่ที่สุดอยู่ภายในขอบเขตต่อไปนี้:

p1 = 1.5...2; р2 = 0.5...0.7.

ความเข้มข้นสูงสุดของการเบรกสามารถทำได้ภายใต้เงื่อนไข ใช้งานเต็มที่ยึดเกาะทุกล้อของรถ อย่างไรก็ตาม แรงเบรกระหว่างเพลาสามารถกระจายได้ไม่เท่ากัน ความไม่สม่ำเสมอนี้คือ อัตราส่วนการกระจายแรงเบรกระหว่างเพลาหน้าและเพลาหลัง:

β o = Rทอร์1/ Rพรู = 1 - Rทอร์2 / Rทอรัส

อัตราส่วนนี้ขึ้นอยู่กับ ปัจจัยต่างๆซึ่งหลัก ๆ คือ: การกระจายน้ำหนักของรถระหว่างเพลา; แรงเบรก สัมประสิทธิ์การเปลี่ยนแปลงปฏิกิริยา ประเภทของกลไกเบรกล้อและสภาพทางเทคนิค ฯลฯ

ด้วยการกระจายแรงเบรกที่เหมาะสมที่สุด หน้าและ ล้อหลังสามารถนำรถมาล็อกได้พร้อมกัน สำหรับสิ่งนี้สิ่งนั้นโดยเฉพาะ

β o = ( l 1 + φ o ชม.ค) / ล.

ระบบเบรกส่วนใหญ่มีอัตราส่วนคงที่ระหว่างแรงเบรกของล้อหน้าและล้อหลัง เพลาหลัง (R tor1 และ R tor2 ), ดังนั้นกำลังทั้งหมด Rทอรัสสามารถเข้าถึงค่าสูงสุดได้เฉพาะบนถนนด้วยค่าสัมประสิทธิ์ที่เหมาะสม φ o บนถนนสายอื่น จะใช้น้ำหนักการยึดเกาะถนนอย่างเต็มที่โดยไม่กีดขวางเพลาอย่างน้อยหนึ่งอัน (ด้านหน้าหรือด้านหลัง) อย่างไรก็ตาม เมื่อเร็ว ๆ นี้ ระบบเบรกได้ปรากฏขึ้นพร้อมกับการควบคุมการกระจายแรงเบรก

การกระจายแรงเบรกทั้งหมดระหว่างเพลาไม่สอดคล้องกับปฏิกิริยาปกติที่เปลี่ยนแปลงระหว่างการเบรก ดังนั้นการชะลอตัวที่แท้จริงของรถจึงน้อยลง และระยะเวลาเบรกและระยะเบรกจะนานกว่าค่าทางทฤษฎีของ ตัวชี้วัดเหล่านี้

ในการประมาณผลการคำนวณกับข้อมูลการทดลอง ค่าสัมประสิทธิ์ประสิทธิภาพการเบรกจะถูกนำมาใช้ในสูตร ถึงเอ่อ , ซึ่งคำนึงถึงระดับการใช้งานของประสิทธิภาพที่เป็นไปได้ทางทฤษฎีของระบบเบรก ค่าเฉลี่ยสำหรับรถยนต์ ถึงเอ่อ = 1.1...1.2; สำหรับรถบรรทุกและรถโดยสาร ถึงเอ่อ = 1.4...1.6. ในกรณีนี้ สูตรการคำนวณมีรูปแบบดังต่อไปนี้:

เอชั่วโมง \u003d φ x กรัม / Kอี;

t o= tผลรวม + ถึงอี υ / (φ x g);

ทอรัส = ถึงอี υ 2 / (2φ x g);

o \u003d υ tผลรวม + ถึงอี υ 2 / (2φ x g).

วิธีการเบรกรถยนต์ ระบบเบรกแบบผสมผสานและเครื่องยนต์วิธีการเบรกนี้ใช้เพื่อหลีกเลี่ยงความร้อนสูงเกินไปของกลไกเบรกและการสึกหรอของยางแบบเร่ง แรงบิดในการเบรกบนล้อถูกสร้างขึ้นพร้อมกัน กลไกการเบรกและเครื่องยนต์ เนื่องจากในกรณีนี้ การกดแป้นเบรกนำหน้าด้วยการปล่อยแป้นจ่ายน้ำมันเชื้อเพลิง ความเร็วเชิงมุมของเพลาข้อเหวี่ยงของเครื่องยนต์ควรลดลงเหลือ ความเร็วเชิงมุม ไม่ได้ใช้งาน. อย่างไรก็ตาม ในความเป็นจริง ล้อขับเคลื่อนผ่านเกียร์ถูกบังคับให้หมุน เพลาข้อเหวี่ยง. เป็นผลให้มีแรงเพิ่มเติม R td ของความต้านทานต่อการเคลื่อนไหวปรากฏขึ้นซึ่งเป็นสัดส่วนกับแรงเสียดทานในเครื่องยนต์และทำให้รถช้าลง

ความเฉื่อยของมู่เล่ต่อต้านการเบรกของเครื่องยนต์ บางครั้งแรงต้านของมู่เล่จะมากกว่าผลการเบรกของเครื่องยนต์ อันเป็นผลมาจากการที่ความเข้มข้นในการเบรกลดลงบ้าง

การเบรกร่วมโดยระบบเบรกบริการและเครื่องยนต์มีประสิทธิภาพมากกว่าการเบรกโดยใช้ระบบเบรกเพียงอย่างเดียว หากมีการชะลอตัวระหว่างการเบรกแบบรวม เอชม. กับมากกว่าการชะลอการเบรกเมื่อมอเตอร์ถูกตัดการเชื่อมต่อ เอ h นั่นคือ เอชม. กับ > เอชม.

บนถนนที่มีค่าสัมประสิทธิ์การเสียดสีต่ำ การเบรกร่วมจะเพิ่มความเสถียรด้านข้างของรถในสภาพลื่นไถล เมื่อเบรกในสถานการณ์ฉุกเฉิน การปิดคลัตช์จะเป็นประโยชน์

การเบรกโดยมีการหยุดระบบเบรกเป็นระยะล้อลื่นไถลที่เบรกจะดูดซับแรงเบรกมากกว่าเมื่อขับขี่ด้วยการลื่นไถลบางส่วน ในกรณีของการหมุนอย่างอิสระ ความเร็วเชิงมุมของล้อ ω ถึง รัศมี r k และความเร็วการแปล υ k ของการเคลื่อนที่ของศูนย์ล้อนั้นสัมพันธ์กับการพึ่งพา υ k = ω ถึง rถึง . สำหรับล้อที่เคลื่อนที่ด้วยสลิปบางส่วน (υ* ω ถึง r k) ไม่มีการสังเกตความเท่าเทียมกันนี้ ความแตกต่างของความเร็ว υ ถึง และ υ * กำหนดความเร็วในการเลื่อน υ sk , เช่น υ sk = υ -ω ถึง rถึง.

อัตราการลื่นของล้อกำหนดเป็น λ = แอด / υ ถึง . ล้อขับเคลื่อนถูกโหลดโดยแรงต้านทานต่อการเคลื่อนไหวเท่านั้น ดังนั้นปฏิกิริยาสัมผัสจึงมีน้อย การใช้แรงบิดเบรกกับล้อทำให้เกิดปฏิกิริยาในวงล้อเพิ่มขึ้น รวมถึงการเสียรูปและการลื่นของยางที่เพิ่มขึ้น ค่าสัมประสิทธิ์การยึดเกาะของยางกับพื้นผิวถนนเพิ่มขึ้นตามสัดส่วนของการลื่นไถลและถึงค่าสูงสุดที่การเลื่อนหลุดประมาณ 20 ... 25% (รูปที่ 2.19, ก -จุด ที่).

เวิร์กโฟลว์ในการรักษาการยึดเกาะสูงสุดของยางกับพื้นผิวถนนนั้นแสดงไว้ในกราฟ (รูปที่ 2.19, ). ด้วยแรงบิดเบรกที่เพิ่มขึ้น (ส่วน โอเอ)ความเร็วเชิงมุมของล้อลดลง เพื่อป้องกันไม่ให้ล้อหยุด (ล็อค) แรงบิดในการเบรกจะลดลง (ส่วน ซีดี).ความเฉื่อยของกลไกควบคุมแรงดันในตัวขับเบรกนำไปสู่ความจริงที่ว่ากระบวนการลดแรงดันเกิดขึ้นโดยมีความล่าช้าบ้าง (ส่วน AQ). ตำแหน่งบน EFความดันคงที่ชั่วขณะหนึ่ง การเพิ่มความเร็วเชิงมุมของล้อจำเป็นต้องเพิ่มแรงบิดในการเบรกใหม่ (ส่วน จอร์เจีย)มีค่าเท่ากับ 20...25% ของสลิป

ที่จุดเริ่มต้นของการลื่น การชะลอตัวของล้อจะเพิ่มขึ้นและการละเมิดสัดส่วนเชิงเส้นของการพึ่งพาอาศัยกัน: ω = ฉ(Mทอรัส ). พล็อต DEและ FGโดดเด่นด้วยความเฉื่อย กลไกการบริหาร. ระบบเบรกซึ่งใช้โหมดการควบคุมแรงดันเป็นจังหวะในกระบอกสูบทำงาน (ห้อง) เรียกว่า ป้องกันการล็อคการปรับความลึกของแรงดันในตัวกระตุ้นเบรกถึง 30...37% (รูปที่ 2.19, ใน).

ล้อรถเนื่องจากการโหลดแบบวนรอบ แรงบิดเบรกม้วนด้วยการลื่นบางส่วนโดยประมาณเท่ากับค่าที่เหมาะสมที่สุดและค่าสัมประสิทธิ์การยึดเกาะยังคงสูงในช่วงเบรก การแนะนำอุปกรณ์เบรกป้องกันล้อล็อกช่วยลดการสึกหรอของยางและเพิ่มเสถียรภาพด้านข้างของรถ แม้จะมีความซับซ้อนและ ค่าใช้จ่ายสูง, ระบบเบรกป้องกันล้อล็อกได้รับการรับรองมาตรฐานจากต่างประเทศหลายแห่งแล้ว โดยติดตั้งบนรถยนต์นั่งส่วนบุคคลระดับกลางและระดับสูง ตลอดจนบนรถโดยสารและรถบรรทุกสำหรับการขนส่งระหว่างเมือง

หลังจากเกิดอุบัติเหตุทางจราจรแต่ละครั้ง ความเร็วของรถก่อนและในขณะที่เกิดการชนหรือชนกันจะต้องกำหนด ค่านี้มีความสำคัญด้วยเหตุผลหลายประการ:

  • กฎที่ละเมิดบ่อยที่สุด การจราจรเกินขีดสูงสุด ความเร็วที่อนุญาตการเคลื่อนไหวและดังนั้นจึงเป็นไปได้ที่จะระบุผู้กระทำผิดที่น่าจะเป็นของอุบัติเหตุ
  • นอกจากนี้ ความเร็วยังส่งผลต่อระยะเบรก และด้วยเหตุนี้ความสามารถในการหลีกเลี่ยงการชนหรือการชนกัน

ผู้อ่านที่รัก! บทความของเราพูดถึงวิธีทั่วไปในการแก้ไขปัญหาทางกฎหมาย แต่แต่ละกรณีมีความแตกต่างกัน

ถ้าอยากรู้ วิธีแก้ปัญหาของคุณ - ติดต่อแบบฟอร์มที่ปรึกษาออนไลน์ทางด้านขวาหรือโทรทางโทรศัพท์

รวดเร็วและฟรี!

การหาความเร็วรถโดยระยะเบรก

ระยะเบรกมักจะเข้าใจได้ว่าเป็นระยะทางที่รถเคลื่อนที่ตั้งแต่เริ่มเบรก (หรือให้แม่นยำยิ่งขึ้นตั้งแต่วินาทีที่ระบบเบรกทำงาน) จนถึงการหยุดโดยสมบูรณ์ สูตรทั่วไปที่ไม่มีรายละเอียด ซึ่งเป็นไปได้ที่จะได้รับสูตรสำหรับคำนวณความเร็ว มีลักษณะดังนี้:

Va = 0.5 x t3 x j + √2Sy x j= 0.5 0.3 5 + √2 x 21 x 5 = 0.75 +14.49 = 15.24m/s = 54.9 km/h โดยที่: ในนิพจน์ √2Sy x j โดยที่:

  • วาคือ ความเร็วเริ่มต้นของรถ วัดเป็นเมตรต่อวินาที
  • t3– เวลาการชะลอตัวของรถเพิ่มขึ้นเป็นวินาที
  • เจ– การชะลอตัวของรถคงที่ระหว่างการเบรก m/s2; โปรดทราบว่าสำหรับทางเท้าเปียก - 5 m / s2 ตาม GOST 25478-91 และสำหรับทางเท้าแห้ง j = 6.8 m / s2 ดังนั้นความเร็วเริ่มต้นของรถที่มี "ลื่นไถล" ที่ 21 เมตรคือ 17.92 m / s หรือ 64 .5 กม./ชม
  • ซู- ความยาวของรางเบรก (ลื่นไถล) วัดเป็นเมตรด้วย

กระบวนการกำหนดความเร็วในระหว่างการเกิดอุบัติเหตุมีรายละเอียดเพิ่มเติมในบทความที่ยอดเยี่ยม การบัญชีสำหรับการเปลี่ยนรูปที่อาจเกิดขึ้นเมื่อกำหนดความเร็วของรถในขณะที่เกิดอุบัติเหตุ. คุณสามารถดาวน์โหลดได้ในรูปแบบ PDF ผู้เขียน: เอ.ไอ. เงิน O.V. ยักซานอฟ

จากสมการข้างต้น เราสามารถสรุปได้ว่าระยะการหยุดรถนั้นได้รับผลกระทบจากความเร็วของรถเป็นหลัก ซึ่งคำนวณได้ง่ายด้วยค่าอื่นๆ ที่ทราบแล้ว ส่วนที่ยากที่สุดในการคำนวณสูตรนี้คือการหาค่าสัมประสิทธิ์แรงเสียดทานที่แน่นอน เนื่องจากค่าของมันได้รับผลกระทบจาก ทั้งสายปัจจัย:

  • ประเภทของผิวถนน
  • สภาพอากาศ (เมื่อพื้นผิวเปียกด้วยน้ำค่าสัมประสิทธิ์แรงเสียดทานจะลดลง)
  • ประเภทยาง;
  • สภาพยาง.

เพื่อผลการคำนวณที่แม่นยำ จำเป็นต้องคำนึงถึงคุณลักษณะของระบบเบรกของรถแต่ละคันด้วย เช่น

  • วัสดุรวมถึงฝีมือของผ้าเบรก
  • เส้นผ่านศูนย์กลางของจานเบรก
  • ทำงานหรือทำงานผิดพลาด อุปกรณ์อิเล็กทรอนิกส์การควบคุมระบบเบรก

ทางเบรค

หลังจากเปิดใช้งานระบบเบรกอย่างรวดเร็ว รอยพิมพ์ยังคงอยู่บนพื้นผิวถนน - เครื่องหมายเบรก ในกรณีที่ล้อถูกบล็อกโดยสมบูรณ์ระหว่างการเบรกและไม่หมุน มีร่องรอยต่อเนื่อง (ซึ่งบางครั้งเรียกว่า "การไถลลื่นไถล") ซึ่งผู้เขียนหลายคนแนะนำให้พิจารณาว่าเป็นผลสูงสุด เป็นไปได้กดบนแป้นเบรก ("เบรกกับพื้น") ในกรณีที่เหยียบคันเร่งไม่สุด (หรือมีข้อบกพร่องบางอย่างในระบบเบรก) ราวกับว่ารอยดอกยาง "เบลอ" ยังคงอยู่บนพื้นผิวถนนซึ่งเกิดขึ้นเนื่องจากการปิดกั้นล้อที่ไม่สมบูรณ์ซึ่งคงไว้ ความสามารถในการหมุนระหว่างการเบรกดังกล่าว

ทางหยุด

ระยะการหยุดคือระยะทางที่ยานพาหนะบางคันเดินทางจากเวลาที่ผู้ขับขี่ตรวจพบอันตรายต่อการหยุดรถ นี่คือความแตกต่างที่สำคัญระหว่างระยะเบรกและระยะหยุด - ระยะหลังรวมทั้งระยะทางที่รถครอบคลุมระหว่างเวลาที่ระบบเบรกทำงาน และระยะทางที่ครอบคลุมในช่วงเวลาที่คนขับต้องจดจำ อันตรายและตอบสนองต่อมัน เวลาตอบสนองของคนขับได้รับผลกระทบจากปัจจัยต่อไปนี้:

  • ตำแหน่งของร่างกายคนขับ
  • สภาพจิตใจของผู้ขับขี่
  • ความเหนื่อยล้า;
  • โรคบางชนิด
  • แอลกอฮอล์หรือพิษจากยา

การหาความเร็วตามกฎการอนุรักษ์โมเมนตัม

นอกจากนี้ยังสามารถกำหนดความเร็วของรถได้โดยธรรมชาติของการเคลื่อนที่หลังจากการชน และในกรณีที่เกิดการชนกับรถคันอื่น โดยการเคลื่อนที่ของรถคันที่สองอันเป็นผลมาจากการถ่ายเทพลังงานจลน์ ตั้งแต่ครั้งแรก โดยเฉพาะอย่างยิ่งมักใช้วิธีนี้ในการชนกับยานพาหนะที่จอดอยู่ หรือหากเกิดการชนกันในมุมใกล้กับเส้นตรง

การกำหนดความเร็วรถตามการเสียรูปที่ได้รับ

มีผู้เชี่ยวชาญเพียงไม่กี่คนเท่านั้นที่กำหนดความเร็วของรถด้วยวิธีนี้ แม้ว่าความเสียหายของรถยนต์จะขึ้นอยู่กับความเร็วอย่างเห็นได้ชัด แต่ก็ไม่มีวิธีใดวิธีหนึ่งที่มีประสิทธิภาพ แม่นยำ และสามารถทำซ้ำได้ในการกำหนดความเร็วจากการเสียรูปที่ได้รับ

นี่เป็นเพราะปัจจัยจำนวนมากที่ส่งผลต่อการก่อตัวของความเสียหายรวมถึงข้อเท็จจริงที่ว่าปัจจัยบางอย่างไม่สามารถนำมาพิจารณาได้ สิ่งต่อไปนี้อาจส่งผลต่อการก่อตัวของการเสียรูป:

  • การออกแบบรถยนต์แต่ละคัน
  • คุณสมบัติของการกระจายสินค้า
  • ชีวิตของรถ
  • ปริมาณและคุณภาพของงานตัวถังที่ดำเนินการโดยยานพาหนะ
  • อายุของโลหะ
  • การปรับเปลี่ยนการออกแบบรถยนต์

การกำหนดความเร็ว ณ เวลาที่เกิดการชน (ชน)

ความเร็วในขณะที่เกิดการชนมักจะถูกกำหนดจากการเบรก แต่หากไม่สามารถทำได้ด้วยเหตุผลหลายประการ ตัวเลขความเร็วโดยประมาณสามารถหาได้จากการวิเคราะห์การบาดเจ็บที่คนเดินถนนได้รับและความเสียหายที่เกิดจากการชน กับตัวรถ

ตัวอย่างเช่น ความเร็วของรถสามารถตัดสินได้จากลักษณะของการแตกหักของกันชน- การบาดเจ็บที่จำเพาะต่อการชนของรถยนต์ ซึ่งมีลักษณะเฉพาะจากการแตกหักของเสี้ยนตามขวางโดยมีเศษกระดูกขนาดใหญ่ที่มีรูปร่างเป็นสี่เหลี่ยมขนมเปียกปูนผิดปกติที่ด้านข้างของการกระแทก การแปลเป็นภาษาท้องถิ่นเมื่อชนกับกันชนรถ - บนหรือกลางที่สามของขาส่วนล่าง สำหรับรถบรรทุก - ในบริเวณต้นขา

เป็นที่ยอมรับกันโดยทั่วไปว่าหากความเร็วของยานพาหนะในขณะที่กระแทกเกิน 60 กม. / ชม. ตามกฎแล้วการแตกหักแบบเฉียงหรือตามขวางจะเกิดขึ้น แต่ถ้าความเร็วต่ำกว่า 50 กม. / ชม. จะเกิดการแตกหักตามขวาง การแตกหักเกิดขึ้นบ่อยที่สุด ในการชนกับรถที่จอดนิ่ง ความเร็วในขณะกระแทกจะถูกกำหนดตามกฎการอนุรักษ์โมเมนตัม

การวิเคราะห์วิธีการกำหนดความเร็วของรถเมื่อเกิดอุบัติเหตุ

ตามเบรค

ข้อดี:

  • ความเรียบง่ายสัมพัทธ์ของวิธีการ
  • เอกสารทางวิทยาศาสตร์จำนวนมากและข้อเสนอแนะเกี่ยวกับระเบียบวิธีวิจัยที่รวบรวมไว้
  • ผลลัพธ์ที่แม่นยำเพียงพอ
  • ความเป็นไปได้ ใบเสร็จรับเงินด่วนผลสอบ.

ข้อบกพร่อง:

  • ในกรณีที่ไม่มีรอยยาง (เช่น หากรถไม่ชะลอความเร็วก่อนเกิดการชน หรือลักษณะพื้นผิวถนนไม่อนุญาตให้วัดรอยลื่นไถลที่มีความน่าเชื่อถือเพียงพอ) วิธีนี้เป็นไปไม่ได้
  • ไม่คำนึงถึงผลกระทบของรถคันหนึ่งในระหว่างการชนกับอีกคันหนึ่งซึ่งสามารถทำได้

ตามกฎการอนุรักษ์โมเมนตัม

ข้อดี:

  • ความสามารถในการกำหนดความเร็วของรถแม้ในกรณีที่ไม่มีสัญญาณเบรก
  • ด้วยการพิจารณาปัจจัยทั้งหมดอย่างรอบคอบแล้ววิธีการนี้จึงมีความน่าเชื่อถือสูงในผลลัพธ์
  • ง่ายต่อการใช้วิธีการในการชนกันและการชนกับยานพาหนะที่อยู่กับที่

ข้อบกพร่อง:

  • การขาดข้อมูลเกี่ยวกับโหมดการเคลื่อนที่ของยานพาหนะนำไปสู่ผลลัพธ์ที่ไม่ถูกต้อง
  • การคำนวณที่ซับซ้อนและยุ่งยากกว่าเมื่อเทียบกับวิธีการก่อนหน้านี้
  • วิธีการนี้ไม่คำนึงถึงพลังงานที่ใช้ไปในการก่อตัวของการเสียรูป

ขึ้นอยู่กับความผิดปกติที่เกิดขึ้น

ข้อดี:

  • คำนึงถึงต้นทุนพลังงานสำหรับการก่อตัวของการเสียรูป
  • ไม่ต้องการเครื่องหมายเบรก

ข้อบกพร่อง:

  • ความถูกต้องน่าสงสัยของผลลัพธ์ที่ได้รับ
  • พิจารณาปัจจัยจำนวนมาก
  • มักจะเป็นไปไม่ได้ที่จะกำหนดปัจจัยหลายอย่าง
  • ขาดวิธีการกำหนดแบบทำซ้ำได้มาตรฐาน

ในทางปฏิบัติมักใช้สองวิธี ได้แก่ การกำหนดความเร็วบนเส้นทางเบรกและตามกฎการอนุรักษ์โมเมนตัม เมื่อใช้สองวิธีนี้พร้อมกัน จะได้ผลลัพธ์ที่แม่นยำที่สุด เนื่องจากวิธีการเหล่านี้เป็นส่วนเสริมซึ่งกันและกัน

วิธีที่เหลือในการกำหนดความเร็วของยานพาหนะไม่ได้รับการกระจายอย่างมีนัยสำคัญเนื่องจากความไม่น่าเชื่อถือของผลลัพธ์ที่ได้รับและ/หรือความจำเป็นในการคำนวณที่ยุ่งยากและซับซ้อน นอกจากนี้ เมื่อประเมินความเร็วของรถ พยานหลักฐานของเหตุการณ์จะถูกนำมาพิจารณาด้วย แม้ว่าในกรณีนี้ จำเป็นต้องจดจำความเป็นส่วนตัวของการรับรู้ความเร็วของแต่ละคน

ในระดับหนึ่ง การวิเคราะห์วิดีโอจากกล้องวงจรปิดและเครื่องบันทึกวิดีโอสามารถช่วยให้เข้าใจสถานการณ์ของเหตุการณ์และทำให้ได้ผลลัพธ์ที่แม่นยำยิ่งขึ้น

การคำนวณการเคลื่อนไหวคือคำจำกัดความของพารามิเตอร์หลักของการเคลื่อนที่ของรถยนต์และคนเดินเท้า: ความเร็ว เส้นทาง เวลา และวิถีการเคลื่อนที่

เมื่อคำนวณการเคลื่อนที่ที่สม่ำเสมอของรถจะใช้ความสัมพันธ์เบื้องต้น

ที่ไหน เอ , วี เอและ t à - ตามลำดับ คือ เส้นทาง ความเร็ว และเวลาของรถ

เบรกด้วยค่าสัมประสิทธิ์แรงเสียดทานคงที่

หากผู้ขับขี่เบรกขณะเกิดอุบัติเหตุ ความเร็วเริ่มต้นของรถสามารถกำหนดได้อย่างแม่นยำโดยความยาวของรางเลื่อนยาง (ร่องรอย) บนถนนที่เกิดขึ้นเมื่อล้อถูกปิดกั้นอย่างสมบูรณ์

การศึกษาทดลองของกระบวนการเบรกแสดงให้เห็นว่าเนื่องจากการเปลี่ยนแปลงในสัมประสิทธิ์การยึดเกาะของยางกับถนนและการแกว่งตัวของยางยืดหยุ่นและองค์ประกอบช่วงล่าง การชะลอตัว เจในระหว่างกระบวนการเบรกนั้นซับซ้อน

ข้าว. 5.1. ไดอะแกรมเบรก

เพื่อให้การคำนวณง่ายขึ้น เราคิดว่าในช่วงเวลาtн (เวลาสะสมการชะลอตัว) การชะลอตัวจะเพิ่มขึ้นตามกฎของเส้นตรง (ส่วน AB) และเมื่อเวลาผ่านไป (เวลา tу ของการชะลอตัวของสภาวะคงตัว) ยังคงที่ (ส่วน BC) และเมื่อสิ้นสุดระยะเวลาการชะลอตัวเต็มที่จะลดลงเป็นศูนย์ทันที (จุด C)

การชะลอตัวของรถคำนวณตามเงื่อนไขการใช้งานคลัตช์โดยยางทุกเส้นของรถ

, ม./วินาที 2 (5.2)

ที่ไหนg = 9.81 ม./วินาที 2 ;

ชม. - ค่าสัมประสิทธิ์การยึดเกาะตามยาวของยางกับถนน ซึ่งถือว่าคงที่

เนื่องจากการใช้คลัตช์เต็มรูปแบบและพร้อมกันของยางรถยนต์ทั้งหมดนั้นค่อนข้างหายาก ปัจจัยการแก้ไขสำหรับประสิทธิภาพการเบรกจึงถูกนำเข้ามาในสูตร เกและสูตรจะกลายเป็น:

, ม./วินาที 2 , (5.3)

ค่า ถึง เอ่อคำนึงถึงความสอดคล้องของแรงเบรกกับแรงยึดเกาะและขึ้นอยู่กับสภาวะการเบรก หากล้อทุกล้อล็อกขณะเบรก แสดงว่า ถึง เอ่อเลือกขึ้นอยู่กับ X .

ตาราง 5.1

ค่าของ k เมื่อมีร่องรอยการใช้งาน

วิธีทั่วไปที่สุดในการกำหนดความเร็วของรถก่อนเริ่มเบรกนั้นนำเสนอโดยสูตรที่มีอยู่ในแหล่งวรรณกรรมทั้งหมด

ที่ไหน: เจ เอ - การชะลอตัวของรถซึ่งพัฒนาขึ้นในระหว่างการเบรกขึ้นอยู่กับประเภทของยานพาหนะระดับการบรรทุกสภาพของทางเท้า m / s 2;

t - เวลาที่เพิ่มขึ้นของการชะลอตัวของรถในระหว่างการเบรก ซึ่งขึ้นอยู่กับปัจจัยทั้งหมดข้างต้น เช่นเดียวกับการชะลอตัว และในทางปฏิบัติจะแปรผันตามสัดส่วนการเปลี่ยนแปลงในน้ำหนักบรรทุกของรถและค่าสัมประสิทธิ์การยึดเกาะ s;

- ความยาวของรางเบรกของรถนับถึงแกน ล้อหลัง; หากร่องรอยยังคงอยู่จากล้อของเพลาทั้งสองของรถจากนั้นฐานของรถจะถูกลบออกจากขนาดของราง "ลื่นไถล" หลี่, ม.

ระยะเบรกและหยุดรถ

ระยะเบรก ระยะเบรก เส้นทางเบรก ความเร่งของรถ ฯลฯ - มักต้องอ้างอิงความหมายของคำศัพท์เหล่านี้เพื่อประเมินการกระทำของผู้ขับขี่ในสถานการณ์การจราจรโดยเฉพาะ

ระยะการหยุดรถคือระยะทางที่รถครอบคลุมตั้งแต่วินาทีที่คนขับเริ่มตอบสนองต่ออันตรายจนจอดสนิท:

, ม. (5.5)

ระยะการหยุดรถคือระยะทางที่รถเคลื่อนที่ตั้งแต่วินาทีที่เหยียบเบรกจนถึงจุดที่รถหยุดโดยสมบูรณ์:

, ม. (5.6)

ดังนั้น ระยะการหยุดรถจึงมากกว่าระยะเบรกด้วยระยะทางที่รถเอาชนะในช่วงเวลาตอบสนองของคนขับ เสื้อ 1 .

เวลาตอบสนองของคนขับ t 1 . ค่าของเวลาตอบสนองของผู้ขับขี่ (ในความเชี่ยวชาญด้านเทคโนโลยีอัตโนมัติ) คือช่วงเวลาตั้งแต่วินาทีที่สัญญาณอันตรายปรากฏในทัศนวิสัยของผู้ขับขี่จนถึงการเริ่มกระทบต่อระบบควบคุมรถ (แป้นเบรก พวงมาลัย แป้นคันเร่ง)

เวลาตอบสนองของผู้ขับขี่ได้รับผลกระทบจากองค์ประกอบทั้งหมดของระบบ "ผู้ขับขี่ - รถยนต์ - ถนน - สิ่งแวดล้อม" (VADS) ดังนั้นจึงแนะนำให้แยกความแตกต่างของค่าเวลาตอบสนองขึ้นอยู่กับสถานการณ์การจราจรทั่วไปโดยมีการผสมผสานระหว่างกัน ปัจจัยของระบบ VADS เวลาตอบสนองแตกต่างกันอย่างมาก - จาก 0.3 ถึง 1.4 หรือมากกว่าวินาที

ดังนั้น เมื่อคำนวณความเร็วสูงสุดที่อนุญาตตามสภาพการมองเห็นถนน เวลาต่ำสุดของปฏิกิริยาเซ็นเซอร์อย่างง่ายควรเท่ากับ 0.3 วินาที ควรใช้เวลาตอบสนองเดียวกันเมื่อกำหนดระยะทางต่ำสุดที่อนุญาตระหว่างยานพาหนะที่ผ่าน

ในกรณีที่รถทำงานผิดปกติระหว่างเคลื่อนที่ซึ่งส่งผลต่อความปลอดภัยในการจราจร รวมทั้งในกรณีที่ผู้โดยสารมีการแทรกแซงทางกายภาพในกระบวนการขับรถ เวลาตอบสนองของผู้ขับขี่จะเท่ากับ 1.2 วินาที

ในกรณีที่เกิดอุบัติเหตุบนท้องถนนในตอนกลางคืน เมื่อมองแทบไม่เห็นสิ่งกีดขวาง จะอนุญาตให้เพิ่มเวลาตอบสนองของคนขับได้ 0.6 วินาที

เวลาหน่วงสำหรับการทำงานของตัวกระตุ้นเบรก t 2 . ในช่วงเวลานี้ ระยะฟรีของแป้นเบรกและช่องว่างของระบบขับเคลื่อนเบรกจะถูกเลือก ค่าจะขึ้นอยู่กับประเภทของระบบขับเคลื่อนเบรกและเงื่อนไขทางเทคนิค

เบรกไฮดรอลิกทำงานเร็วกว่าเบรกนิวเมติก ใช้เวลาในการหน่วงเวลาของไดรฟ์ไฮดรอลิก t 2 = 0.2 - 0.4 วิ. รถยนต์นั่งขณะเบรกฉุกเฉิน t 2 = 0.2 วิและสำหรับรถบรรทุก t 2 = 0,4 กับ. เวลาหน่วงสำหรับการทำงานของแอคชูเอเตอร์ไฮดรอลิกที่ผิดพลาด (เมื่อมีอากาศอยู่ในระบบหรือวาล์วในกระบอกเบรกหลักทำงานผิดปกติ) เพิ่มขึ้น หากเบรกทำงานจากการเหยียบคันเร่งครั้งที่สอง เบรกจะเพิ่มขึ้นเป็นเฉลี่ย 0.6 วินาที และกดสามครั้ง - สูงสุด 1.0 วินาที

เวลาล่าช้าของการทำงานของไดรฟ์นิวแมติกของเบรกแตกต่างกันไปภายใน t 2 = 0.4-0.6 sและค่าเฉลี่ย t 2 = 0.4 s. สำหรับรถไฟบนถนนที่มีระบบขับเคลื่อนด้วยลม เวลานี้จะเพิ่มขึ้น: ด้วยรถพ่วงหนึ่งคัน t 2 \u003d 0.6 s และด้วยสอง - t 2 = มากถึง 1 วินาที.

เวลาเพิ่มขึ้นชะลอตัว t n. เวลาของการชะลอตัวที่เพิ่มขึ้นคือเวลาตั้งแต่เริ่มต้นของการชะลอตัวหรือตั้งแต่ช่วงเวลาที่ผ้าบุผิวสัมผัสกับดรัมเบรกจนถึงช่วงเวลาที่รถเริ่มเคลื่อนที่ด้วยอัตราลดความเร็วสูงสุดที่กำหนดไว้หรือจนกว่าผ้าบุผิวจะถูกกดทับกับ ดรัมเบรกและในกรณีที่เกิดรอยเบรก - จนถึงการก่อตัวของหลังบนถนน .

ระหว่างการเบรกฉุกเฉินจนกระทั่งล้อล็อค คราวนี้จะเปลี่ยนไปตามสัดส่วนของการเปลี่ยนแปลงในการบรรทุกของรถและค่าสัมประสิทธิ์การยึดเกาะ

เวลาที่เพิ่มขึ้นของการชะลอตัวขึ้นอยู่กับประเภทของตัวกระตุ้นเบรก ประเภทและสภาพของพื้นผิวถนน และมวลของรถเป็นหลัก

ดังนั้นหากทราบความเร็วเริ่มต้นของรถ วี เอแล้วความเร็ว วี ยู , สอดคล้องกับจุดเริ่มต้นของการชะลอตัวเต็มที่สามารถหาได้โดยสมมติว่าในช่วง t ที่รถกำลังเคลื่อนที่ในอัตราที่สม่ำเสมอด้วยการชะลอตัวอย่างต่อเนื่อง 0,5 เจ.

, นางสาว. (5.7)

ความสามารถทางเทคนิคในการป้องกันอุบัติเหตุ

เมื่อวิเคราะห์สถานการณ์อุบัติเหตุจราจรหลังจากกำหนดระยะหยุดรถแล้ว เกี่ยวกับมีความจำเป็นต้องกำหนด:

การกำจัดรถ ( เอ) จากจุดที่เกิดการชนในขณะที่มีอันตรายจากการจราจร

เวลาที่ต้องหยุดรถ กล่าวคือ ระยะการหยุดรถ ( t o);

เวลาคนเดินถนน ( t พี ), ซึ่งเขาใช้เคลื่อนย้ายจากที่อันตรายไปยังที่ที่ชนกัน

เวลา ( ) ในระหว่างที่รถเบรกเคลื่อนที่ก่อนเกิดการชน

เวลาในการเคลื่อนที่ของคนเดินเท้าไปยังสถานที่ที่มีการชนกันถูกกำหนดโดย:

, s, (5.8)

ที่ไหน: - เส้นทางคนเดินเท้าจากสถานที่เกิดสถานการณ์อันตรายไปยังสถานที่ชน, m;

วี - ความเร็วของคนเดินเท้า พิจารณาจากข้อมูลตารางหรือจากการทดลอง km/h

หากเวลาในการเคลื่อนตัวของคนเดินเท้าไปยังสถานที่กระทบกระเทือนน้อยกว่าหรือเท่ากับเวลาตอบสนองทั้งหมดของผู้ขับขี่และเวลาตอบสนองของตัวกระตุ้นเบรก ( t t 1 + t 2 + 0.5t = ตู่ ) จากนั้นคนเดินเท้าจะอยู่ในเลนของรถในขณะที่ยังไม่เกิดการเบรก ในกรณีนี้ ไม่มีความเป็นไปได้ทางเทคนิคที่จะป้องกันการชนกัน โดยไม่คำนึงถึงค่าของความเร็วของรถ

ถ้า t เอ > ทีจากนั้นการวิเคราะห์จะดำเนินการในลำดับต่อไปนี้:

กำหนดระยะทาง เอระหว่างรถกับจุดที่เกิดการชนในขณะที่อันตรายต่อการจราจร

เปรียบเทียบระยะทาง เอกับ ทางหยุดยานพาหนะ o .

หากระยะการหยุดรถ (ส เกี่ยวกับ ) ระยะทางน้อยกว่า ( เอ) จากนั้นข้อสรุปจะตามมาเกี่ยวกับความเป็นไปได้ทางเทคนิคในการหลีกเลี่ยงอุบัติเหตุ มิฉะนั้นจะไม่มีคนขับ

เพื่อกำหนดระยะทาง เอ VNIISE แนะนำสูตรต่อไปนี้:

กรณีชนก่อนเบรก

, ม., (5.9)

ที่ไหน หลี่ อู๊ด- ระยะห่างจากจุดที่รถชนกับส่วนหน้า m;

กรณีที่รถเบรกหลังชนกันยังคงเคลื่อนที่ไปจอด

, ม. (5.10)

, ม., (5.11)

ที่ไหน - ระยะทางที่รถเคลื่อนที่หลังจากการชนกันจนมาจอดสนิท

  • Turenko A.N. , Klimenko V.I. , Saraev A.V. ความเชี่ยวชาญด้านยานยนต์ (เอกสาร)
  • Kustarev V.P. , Tyulenev L.V. , Prokhorov Yu.K. , Abakumov V.V. เหตุผลและการออกแบบองค์กรสำหรับการผลิตสินค้า (งานบริการ) (เอกสาร)
  • ยาโคฟเลวา อี.วี. โรคไตในการปฏิบัติของนักบำบัดโรคในท้องถิ่น (เอกสาร)
  • Skirkovsky S.V. , Lukyanchuk A.D. , Kapsky D.V. การตรวจสอบอุบัติเหตุ (เอกสาร)
  • พัพโกะ จี.เอ็ม. การตรวจสอบและการตรวจสอบ (เอกสาร)
  • (เอกสาร)
  • อัลกอริทึมสำหรับการถ่ายเลือด แนวปฏิบัติ (เอกสาร)
  • บาลากิน วี.ดี. การตรวจสอบอุบัติเหตุทางถนน (เอกสาร)
  • Puchkov N.P. , Tkach L.I. คณิตศาสตร์ของการสุ่ม แนวปฏิบัติ (เอกสาร)
  • n1.doc

    ค่านิยมทางเทคนิคที่กำหนดโดยผู้เชี่ยวชาญ

    นอกจากข้อมูลเบื้องต้นที่ยอมรับโดยพิจารณาจากการตัดสินใจของผู้วิจัยและวัสดุของเคสแล้ว ผู้เชี่ยวชาญยังใช้ปริมาณทางเทคนิค (พารามิเตอร์) จำนวนหนึ่งที่เขากำหนดตามข้อมูลเริ่มต้นที่กำหนดไว้ ซึ่งรวมถึง: เวลาตอบสนองของผู้ขับขี่ เวลาหน่วงของตัวกระตุ้นเบรก เวลาที่เพิ่มขึ้นของการชะลอตัวระหว่างการเบรกฉุกเฉิน ค่าสัมประสิทธิ์การยึดเกาะของยางกับถนน ค่าสัมประสิทธิ์การต้านทานการเคลื่อนไหวเมื่อล้อหมุนหรือ ร่างกายเลื่อนบนพื้นผิว ฯลฯ ค่าที่ยอมรับของปริมาณทั้งหมดจะต้องได้รับการพิสูจน์ในรายละเอียดในส่วนการวิจัยของความเห็นของผู้เชี่ยวชาญ

    เนื่องจากค่าเหล่านี้ถูกกำหนดตามกฎตามข้อมูลเริ่มต้นที่กำหนดไว้เกี่ยวกับสถานการณ์ของเหตุการณ์ ค่าเหล่านี้จึงไม่สามารถนำมาประกอบกับค่าเริ่มต้น (เช่น ยอมรับโดยไม่มีเหตุผลหรือการวิจัย) ไม่ว่าผู้เชี่ยวชาญจะกำหนดอย่างไร พวกเขา (ตามตารางคำนวณโดยหรือเป็นผลจากการศึกษาทดลอง) ค่าเหล่านี้สามารถใช้เป็นข้อมูลเบื้องต้นได้ก็ต่อเมื่อถูกกำหนดโดยการดำเนินการสืบสวนตามกฎโดยมีส่วนร่วมของผู้เชี่ยวชาญและระบุไว้ในการตัดสินใจของผู้ตรวจสอบ

    1. การชะลอตัวระหว่างการเบรกรถฉุกเฉิน

    การชะลอตัว J - หนึ่งในปริมาณหลักที่จำเป็นในการคำนวณเพื่อสร้างกลไกการเกิดอุบัติเหตุและเพื่อแก้ไขปัญหาความเป็นไปได้ทางเทคนิคเพื่อป้องกันอุบัติเหตุจากการเบรก

    ขนาดของการลดความเร็วสูงสุดที่กำหนดไว้ในระหว่างการเบรกฉุกเฉินนั้นขึ้นอยู่กับหลายปัจจัย ด้วยความแม่นยำสูงสุด สามารถสร้างได้จากการทดลองในที่เกิดเหตุ หากไม่สามารถทำได้ ค่านี้จะถูกกำหนดด้วยการประมาณค่าจากตารางหรือโดยการคำนวณ

    เมื่อเบรกรถที่ไม่ได้บรรทุกด้วยเบรกที่สามารถซ่อมบำรุงได้บนพื้นผิวแนวราบที่แห้งของทางเท้าแอสฟัลต์ ค่าการชะลอตัวขั้นต่ำที่อนุญาตระหว่างการเบรกฉุกเฉินจะถูกกำหนดตามกฎจราจร (มาตรา 124) และเมื่อเบรกรถที่บรรทุกสัมภาระแล้ว สูตรต่อไปนี้:


    ที่ไหน:



    -

    ค่าลดความเร็วต่ำสุดที่อนุญาตของรถที่ไม่ได้บรรทุก m/s




    -

    ค่าสัมประสิทธิ์ประสิทธิภาพการเบรกของรถที่ไม่ได้บรรทุก




    -

    ค่าสัมประสิทธิ์ประสิทธิภาพการเบรกของรถที่บรรทุก

    ค่าการชะลอตัวสำหรับการเบรกฉุกเฉินกับล้อทุกล้อนั้นโดยทั่วไปจะกำหนดโดยสูตร:



    ที่ไหน

    ?

    -

    ค่าสัมประสิทธิ์แรงเสียดทานในบริเวณเบรก



    -

    ค่าสัมประสิทธิ์ประสิทธิภาพการเบรกรถยนต์



    -

    มุมลาดในส่วนการชะลอความเร็ว (ถ้า  ? 6-8°, Cos มีค่าเท่ากับ 1)

    เครื่องหมาย (+) ในสูตรจะใช้เมื่อรถเคลื่อนที่ขึ้นเนิน เครื่องหมาย (-) - เมื่อขับลงเนิน

    2. ค่าสัมประสิทธิ์การยึดเกาะของยาง

    ค่าสัมประสิทธิ์การยึดเกาะ ? คือ อัตราส่วนของค่าแรงยึดเกาะสูงสุดที่เป็นไปได้ระหว่างยางรถยนต์กับพื้นผิวถนนในส่วนที่กำหนดของถนน R scต่อน้ำหนักของรถคันนี้ จี เอ :

    ความจำเป็นในการพิจารณาค่าสัมประสิทธิ์แรงเสียดทานเกิดขึ้นเมื่อคำนวณการชะลอตัวระหว่างการเบรกฉุกเฉินของยานพาหนะ การแก้ปัญหาจำนวนหนึ่งที่เกี่ยวข้องกับการหลบหลีกและการเคลื่อนไหวในพื้นที่ที่มีมุมเอียงกว้าง ค่าของมันขึ้นอยู่กับประเภทและสภาพของพื้นผิวถนนเป็นหลัก ดังนั้นค่าโดยประมาณของสัมประสิทธิ์สำหรับกรณีใดกรณีหนึ่งจึงสามารถหาได้จากตารางที่ 1 3 .

    ตารางที่ 1


    ประเภทของผิวถนน

    สภาพการเคลือบ

    ค่าสัมประสิทธิ์การยึดเกาะ ( ? )

    ยางมะตอย คอนกรีต

    แห้ง

    0,7 - 0,8

    เปียก

    0,5 - 0,6

    สกปรก

    0,25 - 0,45

    ก้อนหินปูถนน

    แห้ง

    0,6 - 0,7

    เปียก

    0,4 - 0,5

    ถนนลูกรัง

    แห้ง

    0,5 - 0,6

    เปียก

    0,2 - 0,4

    สกปรก

    0,15 - 0,3

    ทราย

    เปียก

    0,4 - 0,5

    แห้ง

    0,2 - 0,3

    ยางมะตอย คอนกรีต

    น้ำแข็ง

    0,09 - 0,10

    เต็มไปด้วยหิมะ

    น้ำแข็ง

    0,12 - 0,15

    เต็มไปด้วยหิมะ

    ไม่มีเปลือกน้ำแข็ง

    0,22 - 0,25

    เต็มไปด้วยหิมะ

    น้ำแข็งหลังจากกระจัดกระจายทราย

    0,17 - 0,26

    เต็มไปด้วยหิมะ

    ไม่มีเปลือกน้ำแข็งหลังจากกระเจิงทราย

    0,30 - 0,38

    ความเร็วของรถ สภาพของดอกยาง แรงดันในยาง และปัจจัยอื่นๆ อีกจำนวนหนึ่งที่ไม่สามารถนำมาพิจารณาได้ มีผลกระทบอย่างมีนัยสำคัญต่อค่าสัมประสิทธิ์การยึดเกาะ ดังนั้นเพื่อให้ข้อสรุปของผู้เชี่ยวชาญยังคงยุติธรรมแม้กับค่าที่เป็นไปได้อื่น ๆ ในกรณีนี้เมื่อทำการตรวจสอบโดยผู้เชี่ยวชาญไม่ควรนำค่าเฉลี่ย แต่เป็นค่าสัมประสิทธิ์สูงสุดที่เป็นไปได้ ? .

    หากคุณต้องการกำหนดค่าสัมประสิทธิ์อย่างถูกต้อง ? ควรทำการทดลองในที่เกิดเหตุ

    ค่าสัมประสิทธิ์การเสียดสีที่ใกล้เคียงที่สุดกับค่าจริงมากที่สุด กล่าวคือ ค่าสัมประสิทธิ์การเสียดสีกับค่าที่อยู่ในเวลาที่เกิดเหตุ กำหนดได้โดยการลากจูงรถเบรกที่เกี่ยวข้องกับเหตุการณ์ (ด้วยเงื่อนไขทางเทคนิคที่เหมาะสมของรถคันนี้) ขณะวัดแรงยึดเกาะโดยใช้ไดนาโมมิเตอร์

    การหาค่าสัมประสิทธิ์ความเสียดทานโดยใช้เกวียนไดนาโมมิเตอร์นั้นไม่สามารถทำได้จริง เนื่องจากค่าจริงของสัมประสิทธิ์ความเสียดทานของยานพาหนะบางคันอาจแตกต่างอย่างมากจากค่าสัมประสิทธิ์ความเสียดทานของรถเข็นไดนาโมมิเตอร์

    เมื่อแก้ปัญหาเกี่ยวกับประสิทธิภาพการเบรก ให้ทดลองหาค่าสัมประสิทธิ์? ไม่สามารถทำได้ เนื่องจากการเร่งความเร็วของรถทำได้ง่ายกว่ามาก ซึ่งบ่งบอกถึงประสิทธิภาพการเบรกอย่างเต็มที่ที่สุด

    ความจำเป็นในการกำหนดการทดลองของสัมประสิทธิ์ ? อาจเกิดขึ้นในการศึกษาปัญหาที่เกี่ยวข้องกับการหลบหลีก การเอาชนะทางขึ้นและลงที่สูงชัน ทำให้ยานพาหนะอยู่ในสถานะเบรก

    3. ปัจจัยด้านประสิทธิภาพการเบรก

    ค่าสัมประสิทธิ์ประสิทธิภาพการเบรกคืออัตราส่วนของการชะลอตัวที่คำนวณได้ (กำหนดโดยคำนึงถึงค่าสัมประสิทธิ์แรงเสียดทานในส่วนที่กำหนด) กับการชะลอตัวจริงเมื่อรถเคลื่อนที่ในส่วนนี้:

    ดังนั้นสัมประสิทธิ์ ถึง เอ่อ คำนึงถึงระดับการใช้งานคุณสมบัติการยึดเกาะของยางกับพื้นผิวถนน

    ในการผลิตการตรวจสอบทางเทคนิคจำเป็นต้องทราบค่าสัมประสิทธิ์ประสิทธิภาพการเบรกเพื่อคำนวณการชะลอตัวระหว่างการเบรกฉุกเฉินของยานพาหนะ

    ค่าสัมประสิทธิ์ประสิทธิภาพการเบรกนั้นขึ้นอยู่กับลักษณะของการเบรกเป็นหลัก เมื่อเบรกรถที่ซ่อมบำรุงได้ด้วยระบบล็อคล้อ (เมื่อมีรอยลื่นไถลยังคงอยู่บนถนน) ตามหลักวิชา ถึง เอ่อ = 1.

    อย่างไรก็ตาม ด้วยการบล็อกแบบไม่พร้อมกัน ค่าสัมประสิทธิ์ประสิทธิภาพการเบรกอาจเกินความสามัคคี ในทางปฏิบัติของผู้เชี่ยวชาญ ในกรณีนี้ แนะนำให้ใช้ค่าสัมประสิทธิ์ประสิทธิภาพการเบรกสูงสุดต่อไปนี้:


    K e = 1.2

    ที่? ? 0.7

    K e = 1.1

    ที่? = 0.5-0.6

    K e = 1.0

    ที่? ? 0.4

    หากการเบรกของรถเกิดขึ้นโดยไม่กีดขวางล้อ จะไม่สามารถระบุประสิทธิภาพการเบรกของรถได้หากไม่มีการศึกษาทดลอง เนื่องจากเป็นไปได้ว่าแรงเบรกนั้นจำกัดโดยการออกแบบและสภาพทางเทคนิคของเบรก

    ตารางที่ 2 4

    ประเภทยานพาหนะ

    K e ในกรณีของการเบรกของยานพาหนะที่ไม่ได้บรรทุกและบรรทุกเต็มที่โดยมีค่าสัมประสิทธิ์ความเสียดทานดังต่อไปนี้

    0,7

    0,6

    0,5

    0,4

    รถยนต์และอื่น ๆ ขึ้นอยู่กับพวกเขา









    ค่าระวาง - รับน้ำหนักได้มากถึง 4.5 ตัน และรถโดยสารยาวสูงสุด 7.5 ม.









    ค่าระวาง - ที่มีความจุมากกว่า 4.5 ตันและรถโดยสารที่มีความยาวมากกว่า 7.5 m









    รถจักรยานยนต์และโมเพ็ดที่ไม่มีพ่วงข้าง









    รถจักรยานยนต์และโมเพ็ดพร้อมพ่วงข้าง









    รถจักรยานยนต์และโมเพ็ดที่มีปริมาตรกระบอกสูบ 49.8 ซม. 3

    1.6

    1.4

    1.1

    1.0

    ในกรณีนี้ สำหรับรถยนต์ที่สามารถซ่อมบำรุงได้ จะกำหนดได้เฉพาะประสิทธิภาพการเบรกขั้นต่ำที่อนุญาต (ค่าสูงสุดของสัมประสิทธิ์ประสิทธิภาพ การเบรก) เท่านั้น

    ค่าสูงสุดที่อนุญาตของสัมประสิทธิ์ประสิทธิภาพการเบรกของรถที่เข้ารับบริการได้นั้นขึ้นอยู่กับประเภทของรถ น้ำหนักบรรทุก และค่าสัมประสิทธิ์การเสียดสีในส่วนการเบรกเป็นหลัก ด้วยข้อมูลนี้ คุณสามารถกำหนดค่าสัมประสิทธิ์ประสิทธิภาพการเบรกได้ (ดูตารางที่ 2)

    ค่าประสิทธิภาพการเบรกของรถจักรยานยนต์ที่ระบุในตารางนั้นใช้สำหรับการเบรกพร้อมกันด้วยเบรกมือและเท้า

    หากรถไม่ได้บรรทุกอย่างเต็มที่ ปัจจัยประสิทธิภาพการเบรกสามารถกำหนดได้โดยการแก้ไข

    4. ค่าสัมประสิทธิ์การต้านทานการขับขี่

    ในกรณีทั่วไป ค่าสัมประสิทธิ์การต้านทานการเคลื่อนที่ของวัตถุตามพื้นผิวที่รองรับคืออัตราส่วนของแรงที่ขัดขวางการเคลื่อนไหวนี้ต่อน้ำหนักของร่างกาย ดังนั้นค่าสัมประสิทธิ์การต้านทานการเคลื่อนไหวจึงคำนึงถึงการสูญเสียพลังงานเมื่อร่างกายเคลื่อนไหวในบริเวณนี้

    ขึ้นอยู่กับธรรมชาติ กำลังพลในการปฏิบัติของผู้เชี่ยวชาญพวกเขาใช้แนวคิดที่แตกต่างกันเกี่ยวกับสัมประสิทธิ์การต่อต้านการเคลื่อนไหว

    ค่าสัมประสิทธิ์ความต้านทานการหมุน - ѓ เรียกว่าอัตราส่วนของแรงต้านทานต่อการเคลื่อนที่ขณะเคลื่อนที่อิสระของยานพาหนะในระนาบแนวนอนต่อน้ำหนัก

    โดยค่าสัมประสิทธิ์ ѓ นอกจากประเภทและสภาพของพื้นผิวถนนแล้ว ยังได้รับอิทธิพลจากปัจจัยอื่นๆ อีกหลายประการ (เช่น แรงดันลมยาง รูปแบบดอกยาง การออกแบบระบบกันสะเทือน ความเร็ว ฯลฯ) ค่าสัมประสิทธิ์จึงแม่นยำยิ่งขึ้น ѓ สามารถกำหนดได้ในแต่ละกรณีทดลอง

    การสูญเสียพลังงานเมื่อเคลื่อนที่บนพื้นผิวถนนของวัตถุต่าง ๆ ที่ถูกทิ้งระหว่างการชน (ชน) ถูกกำหนดโดยสัมประสิทธิ์การต้านทานการเคลื่อนไหว ѓ g. เมื่อทราบค่าสัมประสิทธิ์นี้และระยะทางที่ร่างกายเคลื่อนที่ไปตามพื้นผิวถนน คุณสามารถตั้งค่าความเร็วเริ่มต้น หลังจากนั้นในหลายกรณี

    ค่าสัมประสิทธิ์ ѓ สามารถหาได้จากตารางที่ 3 5 โดยประมาณ

    ตารางที่ 3


    ผิวถนน

    ค่าสัมประสิทธิ์ -

    ซีเมนต์และแอสฟัลต์คอนกรีต สภาพดี

    0,014-0,018

    ปูนซีเมนต์และแอสฟัลต์คอนกรีตในสภาพที่น่าพอใจ

    0,018-0,022

    หินบด กรวดเคลือบสารยึดเกาะ สภาพดี

    0,020-0,025

    หินบด กรวดไม่แปรรูป มีหลุมเล็กๆ

    0,030-0,040

    ปูหิน

    0,020-0,025

    ก้อนหินปูถนน

    0,035-0,045

    ดินมีความหนาแน่นแม้แห้ง

    0,030-0,060

    พื้นดินไม่เรียบและเป็นโคลน

    0,050-0,100

    ทรายเปียก

    0,080-0,100

    ทรายแห้ง

    0,150-0,300

    น้ำแข็ง

    0,018-0,020

    ถนนที่เต็มไปด้วยหิมะ

    0,025-0,030

    ตามกฎแล้ว เมื่อวัตถุเคลื่อนที่ถูกโยนทิ้งระหว่างการชน (การชนกัน) การเคลื่อนที่ของวัตถุนั้นจะถูกขัดขวางโดยสิ่งผิดปกติของถนน ขอบคมของวัตถุนั้นจะตัดเข้าสู่พื้นผิวทางเท้า ฯลฯ เป็นไปไม่ได้ที่จะคำนึงถึงอิทธิพลของปัจจัยเหล่านี้ทั้งหมดที่มีต่อขนาดของแรงต้านทานต่อการเคลื่อนที่ของวัตถุใดวัตถุหนึ่ง ดังนั้น ค่าสัมประสิทธิ์การต้านทานการเคลื่อนที่ ѓ gสามารถพบได้ในการทดลองเท่านั้น

    ควรจำไว้ว่าเมื่อร่างกายตกลงมาจากที่สูงในขณะที่เกิดการกระแทก พลังงานจลน์ส่วนหนึ่งของการเคลื่อนที่เชิงแปลจะดับลงเนื่องจากการกดร่างกายลงบนพื้นผิวถนนโดยองค์ประกอบแนวตั้งของแรงเฉื่อย เนื่องจากพลังงานจลน์ที่สูญเสียไปในกรณีนี้ไม่สามารถนำมาพิจารณาได้ จึงเป็นไปไม่ได้ที่จะระบุค่าที่แท้จริงของความเร็วของร่างกายในขณะที่ตก จึงสามารถกำหนดได้เฉพาะขีดจำกัดล่างเท่านั้น

    อัตราส่วนของแรงต้านการเคลื่อนที่ต่อน้ำหนักของรถเมื่อเคลื่อนที่อย่างอิสระบนส่วนที่มีความลาดเอียงตามยาวของถนน เรียกว่า สัมประสิทธิ์ความต้านทานรวมของถนน ? . ค่าของมันสามารถกำหนดโดยสูตร:


    เครื่องหมาย (+) จะถูกใช้เมื่อรถกำลังเคลื่อนที่ขึ้นเนิน เครื่องหมาย (-) จะถูกใช้เมื่อขับลงเนิน

    เมื่อเคลื่อนที่ไปตามส่วนที่ลาดเอียงของถนนของรถเบรก ค่าสัมประสิทธิ์ของแรงต้านทั้งหมดต่อการเคลื่อนไหวจะแสดงโดยสูตรที่คล้ายกัน:


    5. เวลาตอบสนองของผู้ขับขี่

    ในทางปฏิบัติทางจิตวิทยา เวลาตอบสนองของผู้ขับขี่เป็นที่เข้าใจกันว่าเป็นระยะเวลาตั้งแต่วินาทีที่ผู้ขับขี่ได้รับสัญญาณอันตรายที่ส่งผลต่อการควบคุมรถ (แป้นเบรก พวงมาลัย)

    ในทางปฏิบัติของผู้เชี่ยวชาญ คำนี้มักเข้าใจเป็นช่วงเวลาหนึ่ง t 1 เพียงพอเพื่อให้แน่ใจว่าไดรเวอร์ใด ๆ (ซึ่งความสามารถทางจิตตรงตาม ข้อกำหนดระดับมืออาชีพ) หลังจากมีโอกาสในการตรวจจับอันตรายเกิดขึ้น เขาก็สามารถมีอิทธิพลต่อการควบคุมยานพาหนะได้

    เห็นได้ชัดว่ามีความแตกต่างที่สำคัญระหว่างแนวคิดทั้งสองนี้

    ประการแรก สัญญาณอันตรายมักจะไม่ตรงกับช่วงเวลาที่มีโอกาสเกิดขึ้นเพื่อตรวจจับสิ่งกีดขวาง ในขณะที่มีสิ่งกีดขวางปรากฏขึ้น ผู้ขับขี่สามารถทำหน้าที่อื่นๆ ที่เบี่ยงเบนความสนใจของเขาไประยะหนึ่งจากการสังเกตทิศทางของสิ่งกีดขวางที่เกิดขึ้นได้ (เช่น การสังเกตการอ่าน อุปกรณ์ควบคุมพฤติกรรมของผู้โดยสาร สิ่งของที่อยู่ห่างจากทิศทางการเดินทาง ฯลฯ)

    ดังนั้น เวลาตอบสนอง (ในความหมายที่เป็นคำนี้ในการปฏิบัติของผู้เชี่ยวชาญ) หมายความรวมถึงเวลาที่ผ่านไปตั้งแต่ช่วงเวลาที่ผู้ขับขี่มีโอกาสอย่างเป็นกลางในการตรวจจับสิ่งกีดขวางจนถึงช่วงเวลาที่เขาค้นพบจริง ๆ และปฏิกิริยาที่เกิดขึ้นจริง เวลาตั้งแต่ได้รับสัญญาณอันตรายถึงคนขับ

    ประการที่สอง เวลาตอบสนองของคนขับ t 1 , ซึ่งเป็นที่ยอมรับในการคำนวณของผู้เชี่ยวชาญ สำหรับสถานการณ์ถนนที่กำหนด ค่าจะคงที่เหมือนกันสำหรับผู้ขับขี่ทุกคน อาจเกินเวลาตอบสนองจริงของผู้ขับขี่อย่างมากในกรณีที่เกิดอุบัติเหตุทางจราจร อย่างไรก็ตาม เวลาตอบสนองจริงของผู้ขับขี่ไม่ควรเกินค่านี้ เนื่องจากการกระทำของเขาควรได้รับการประเมินว่าไม่เหมาะสม เวลาตอบสนองที่แท้จริงของผู้ขับขี่ในช่วงเวลาสั้น ๆ อาจแตกต่างกันอย่างมากขึ้นอยู่กับสถานการณ์สุ่มจำนวนหนึ่ง

    ดังนั้นเวลาตอบสนองของคนขับ t 1 ซึ่งเป็นที่ยอมรับในการคำนวณโดยผู้เชี่ยวชาญ ถือเป็นบรรทัดฐานโดยพื้นฐาน ราวกับว่ากำหนดระดับความใส่ใจที่จำเป็นของผู้ขับขี่

    หากผู้ขับขี่ตอบสนองต่อสัญญาณช้ากว่าผู้ขับขี่รายอื่น ดังนั้น เขาจึงต้องระมัดระวังในการขับขี่ให้มากขึ้นเพื่อให้เป็นไปตามมาตรฐานนี้

    ในความเห็นของเรา การตั้งชื่อปริมาณจะถูกต้องมากกว่า t 1 ไม่ใช่เวลาตอบสนองของผู้ขับขี่ แต่เวลาหน่วงมาตรฐานของการกระทำของผู้ขับขี่ ชื่อดังกล่าวสะท้อนถึงแก่นแท้ของค่านี้อย่างแม่นยำยิ่งขึ้น อย่างไรก็ตาม เนื่องจากคำว่า "เวลาตอบสนองของคนขับ" มีรากฐานมาจากความเชี่ยวชาญและการสืบสวน เราจึงคงไว้ซึ่งสิ่งนี้ในงานนี้

    เนื่องจากระดับความสนใจของผู้ขับขี่ที่ต้องการและความสามารถในการตรวจจับสิ่งกีดขวางในสภาพการจราจรที่แตกต่างกันนั้นไม่เหมือนกัน เวลามาตรฐานปฏิกิริยาควรแยกความแตกต่าง ในการทำเช่นนี้ จำเป็นต้องมีการทดลองที่ซับซ้อนเพื่อพิจารณาการพึ่งพาเวลาตอบสนองของไดรเวอร์ในสถานการณ์ต่างๆ

    ในทางปฏิบัติของผู้เชี่ยวชาญ ขอแนะนำให้ใช้เวลาตอบสนองของคนขับมาตรฐาน t 1 เท่ากับ 0.8 วินาที กรณีต่อไปนี้เป็นข้อยกเว้น

    หากผู้ขับขี่ได้รับคำเตือนถึงความเป็นไปได้ที่อาจเกิดอันตรายและสถานที่ที่คาดว่าจะมีสิ่งกีดขวาง (เช่น เมื่อเลี่ยงรถบัสที่ผู้โดยสารลงจากรถ หรือเมื่อขับผ่านคนเดินถนนในช่วงเวลาสั้น ๆ) เขาจะทำ ไม่ต้องการเวลาเพิ่มเติมในการตรวจจับสิ่งกีดขวางและตัดสินใจเขาควรเตรียมพร้อมสำหรับการเบรกทันทีในขณะที่เริ่มการกระทำที่เป็นอันตรายของคนเดินเท้า ในกรณีเช่นนี้ เวลาตอบสนองมาตรฐาน t 1 ขอแนะนำให้ใช้ 0.4-0.6 วินาที(คุ้มกว่า - ในสภาพทัศนวิสัยที่จำกัด)

    เมื่อผู้ขับขี่ตรวจพบความผิดปกติของระบบควบคุมเฉพาะในขณะที่เกิดสถานการณ์อันตราย เวลาตอบสนองจะเพิ่มขึ้นตามธรรมชาติ เนื่องจากผู้ขับขี่ต้องใช้เวลาเพิ่มเติมในการตัดสินใจครั้งใหม่ t 1 ในกรณีนี้คือ2 วินาที

    กฎจราจรห้ามมิให้ผู้ขับขี่ขับรถแม้ในสภาวะที่มึนเมาจากแอลกอฮอล์เพียงเล็กน้อย รวมทั้งระดับของความเหนื่อยล้าที่อาจส่งผลต่อความปลอดภัยในการจราจร ดังนั้นผลของการมึนเมาจากแอลกอฮอล์ต่อ t 1 ไม่ได้นำมาพิจารณา และเมื่อประเมินระดับความเหนื่อยล้าของผู้ขับขี่และผลกระทบต่อความปลอดภัยในการจราจร ผู้ตรวจสอบ (ศาล) คำนึงถึงสถานการณ์ที่บังคับให้ผู้ขับขี่ขับรถในสถานะดังกล่าว

    เราเชื่อว่าผู้เชี่ยวชาญในหมายเหตุถึงข้อสรุปสามารถบ่งบอกถึงการเพิ่มขึ้น t 1 อันเป็นผลมาจากการทำงานมากเกินไป (หลังจาก 16 ชั่วโมงขับรถทำงานประมาณ0.4 วินาที).

    6. เวลาหน่วงสำหรับการเปิดใช้งานเบรก

    เวลาหน่วงของตัวกระตุ้นเบรก ( t 2 ) ขึ้นอยู่กับประเภทและการออกแบบของระบบเบรก สภาพทางเทคนิค และในระดับหนึ่ง ขึ้นอยู่กับลักษณะของผู้ขับขี่ที่เหยียบแป้นเบรก ในกรณีเบรกฉุกเฉินของรถที่เข้ารับบริการได้ เวลา t 2 ค่อนข้างเล็ก: 0.1 วินาทีสำหรับไดรฟ์ไฮดรอลิกและกลไกและ 0.3 วินาที -สำหรับนิวเมติก

    หากใช้เบรกที่กระตุ้นด้วยไฮดรอลิกจากการเหยียบคันที่สอง เวลา ( t 2 ) ไม่เกิน 0.6 วินาที,เมื่อถูกกระตุ้นจากการกดครั้งที่สามบนคันเหยียบ t 2 = 1.0 วินาที (ตามการศึกษาทดลองที่ดำเนินการที่ TsNIISE)

    การทดลองหาค่าจริงของเวลาหน่วงการทำงานของระบบขับเคลื่อนเบรกของรถยนต์ที่มีระบบเบรกพร้อมใช้งานนั้นไม่จำเป็นในกรณีส่วนใหญ่ เนื่องจากการเบี่ยงเบนที่เป็นไปได้จากค่าเฉลี่ยไม่สามารถส่งผลกระทบอย่างมีนัยสำคัญต่อผลลัพธ์ของการคำนวณและข้อสรุปจากผู้เชี่ยวชาญ