ชุดควบคุมสำหรับมอเตอร์กระแสตรงไร้แปรงถ่าน มอเตอร์ไร้แปรงถ่าน การเลือกเครื่องยนต์ที่เหมาะสม

ทันทีที่ฉันเริ่มสร้างโมเดลเครื่องบิน ฉันเริ่มสนใจในทันทีว่าทำไมเครื่องยนต์ถึงมีสายไฟสามเส้น ทำไมมันถึงเล็กจังและในขณะเดียวกันก็ทรงพลังเหลือเกิน และทำไมมันถึงต้องการตัวควบคุมความเร็ว ... เวลาผ่านไปและฉันก็คิดออก ออกทั้งหมด จากนั้นเขาก็ตั้งภารกิจสร้างปีศาจด้วยมือของเขาเอง มอเตอร์สับเปลี่ยน.

หลักการทำงานของมอเตอร์ไฟฟ้า:
งานใด ๆ ขึ้นอยู่กับ เครื่องไฟฟ้าปรากฏการณ์ของการเหนี่ยวนำแม่เหล็กไฟฟ้า ดังนั้น ถ้าวงที่มีกระแสวางอยู่ในสนามแม่เหล็ก ก็จะได้รับผลกระทบจาก กำลังแอมป์ซึ่งจะสร้างแรงบิด เฟรมจะเริ่มหมุนและหยุดในตำแหน่งที่ไม่มีโมเมนต์ที่สร้างขึ้นโดยแรงแอมแปร์


อุปกรณ์มอเตอร์ไฟฟ้า:
ใดๆ เครื่องยนต์ไฟฟ้าประกอบด้วยส่วนคงที่ - สเตเตอร์และส่วนที่เคลื่อนไหว โรเตอร์. เพื่อเริ่มการหมุน คุณต้องเปลี่ยนทิศทางของกระแสในทางกลับกัน ทำหน้าที่นี้ นักสะสม(แปรง).

มอเตอร์ไร้แปรงถ่าน- เป็นเครื่องยนต์ กระแสตรงไม่มีตัวสะสมซึ่งทำหน้าที่ของตัวรวบรวมโดยอุปกรณ์อิเล็กทรอนิกส์ (ถ้ามอเตอร์มีสายไฟสามเส้น ไม่ได้หมายความว่ามอเตอร์จะทำงานด้วยกระแสสลับสามเฟส! กระแสตรงและฉันไม่อยากทำให้คุณตกใจ แต่มอเตอร์แบบเดียวกับที่ใช้ในคูลเลอร์ก็ไร้แปรงเช่นกัน แม้ว่าจะมีสายไฟ DC เพียงสองเส้นก็ตาม)

อุปกรณ์มอเตอร์ไร้แปรงถ่าน:
ผู้บุกเบิก
(ออกเสียงว่า "ผู้บุกรุก") เครื่องยนต์มีขดลวดอยู่บนพื้นผิวด้านในของตัวเรือน และโรเตอร์แม่เหล็กหมุนอยู่ภายใน


รองชนะเลิศ
(ออกเสียงว่า "แซงหน้า") เครื่องยนต์มีขดลวดคงที่ (ด้านใน) ซึ่งร่างกายหมุนด้วย a แม่เหล็กถาวร.

หลักการทำงาน:
เพื่อให้มอเตอร์แบบไม่มีแปรงเริ่มหมุน ต้องใช้แรงดันไฟฟ้ากับขดลวดของมอเตอร์แบบซิงโครนัส การซิงโครไนซ์สามารถจัดระเบียบได้โดยใช้เซ็นเซอร์ภายนอก (เซ็นเซอร์ออปติคัลหรือเซ็นเซอร์ Hall) และบนพื้นฐานของ EMF ด้านหลัง (ไร้เซ็นเซอร์) ซึ่งเกิดขึ้นในมอเตอร์ระหว่างการหมุน

การควบคุมแบบไม่ใช้เซนเซอร์:
มีมอเตอร์แบบไม่มีแปรงไม่มีเซ็นเซอร์ตำแหน่ง ในมอเตอร์ดังกล่าว การกำหนดตำแหน่งของโรเตอร์ทำได้โดยการวัด EMF ในเฟสอิสระ เราจำได้ว่าในแต่ละช่วงเวลา "+" เชื่อมต่อกับเฟสใดเฟสหนึ่ง (A) และไฟ "-" เชื่อมต่อกับอีกเฟสหนึ่ง (B) เฟสใดเฟสหนึ่งยังคงว่างอยู่ เมื่อหมุน มอเตอร์จะเหนี่ยวนำให้เกิด EMF (เช่น เป็นผลมาจากกฎของการเหนี่ยวนำแม่เหล็กไฟฟ้า กระแสเหนี่ยวนำจะก่อตัวในขดลวด) ในขดลวดอิสระ เมื่อมันหมุน แรงดันไฟฟ้าบนเฟสอิสระ (C) จะเปลี่ยนไป โดยการวัดแรงดันไฟบนเฟสอิสระ คุณสามารถกำหนดโมเมนต์ของการสลับไปยังตำแหน่งถัดไปของโรเตอร์ได้
ในการวัดแรงดันนี้จะใช้วิธี "จุดเสมือน" สิ่งสำคัญที่สุดคือ เมื่อทราบความต้านทานของขดลวดทั้งหมดและแรงดันเริ่มต้น คุณสามารถ "เปลี่ยนลวด" ไปที่ทางแยกของขดลวดทั้งหมดได้:
ตัวควบคุมความเร็วมอเตอร์ไร้แปรง:
มอเตอร์ไร้แปรงถ่านที่ไม่มีอุปกรณ์อิเล็กทรอนิกส์เป็นเพียงเศษเหล็กเพราะ ในกรณีที่ไม่มีเรกูเลเตอร์ เราไม่สามารถใช้แรงดันไฟฟ้ากับมันได้ง่ายๆ เพื่อให้มันเริ่มหมุนตามปกติ ตัวควบคุมความเร็วเป็นระบบที่ค่อนข้างซับซ้อนของส่วนประกอบวิทยุเพราะ เธอต้อง:
1) กำหนดตำแหน่งเริ่มต้นของโรเตอร์เพื่อสตาร์ทมอเตอร์
2) ขับมอเตอร์ด้วยความเร็วต่ำ
3) เร่งความเร็วมอเตอร์ให้หมุนตามที่กำหนด (ชุด) ความเร็วในการหมุน
4) บำรุงรักษา ช่วงเวลาสูงสุดการหมุน

แผนผังของตัวควบคุมความเร็ว (วาล์ว):


มอเตอร์ไร้แปรงถ่านถูกประดิษฐ์ขึ้นในช่วงรุ่งอรุณของการเกิดกระแสไฟฟ้า แต่ไม่มีใครสามารถสร้างระบบควบคุมสำหรับพวกเขาได้ และด้วยการพัฒนาอุปกรณ์อิเล็กทรอนิกส์เท่านั้น: ด้วยการถือกำเนิดของทรานซิสเตอร์เซมิคอนดักเตอร์และไมโครคอนโทรลเลอร์อันทรงพลัง มอเตอร์ไร้แปรงถ่านเริ่มถูกนำมาใช้ในชีวิตประจำวัน (การใช้ในอุตสาหกรรมครั้งแรกคือในยุค 60)

ข้อดีและข้อเสียของมอเตอร์แบบไม่มีแปรง:

ข้อดี:
-ความถี่ของการหมุนแตกต่างกันไปในช่วงกว้าง
- ความสามารถในการใช้ในสภาพแวดล้อมที่ระเบิดและก้าวร้าว
- ความจุแรงบิดสูง
- ประสิทธิภาพสูง (ประสิทธิภาพมากกว่า 90%)
-ระยะยาวบริการ, ความน่าเชื่อถือสูงและอายุการใช้งานที่เพิ่มขึ้นเนื่องจากไม่มีหน้าสัมผัสไฟฟ้าเลื่อน

ข้อบกพร่อง:
- ระบบการจัดการเครื่องยนต์ที่ค่อนข้างซับซ้อน
- เครื่องยนต์มีราคาสูงเนื่องจากการใช้วัสดุราคาแพงในการออกแบบโรเตอร์ (แม่เหล็ก แบริ่ง เพลา)
เมื่อจัดการกับทฤษฎีแล้ว ไปปฏิบัติกัน: เราจะออกแบบและสร้างเอ็นจิ้นสำหรับ แบบจำลองแอโรบิกเอ็มเอ็กซ์-2

รายการวัสดุและอุปกรณ์:
1) ลวด (นำมาจากหม้อแปลงเก่า)
2) แม่เหล็ก (ซื้อออนไลน์)
3) สเตเตอร์ (แกะ)
4) เพลา
5) ตลับลูกปืน
6) ดูราลูมิน
7) ความร้อนหดตัว
8) เข้าถึงขยะเทคโนโลยีได้ไม่จำกัด
9) การเข้าถึงเครื่องมือ
10) แขนตรง :)

ความคืบหน้า:
1) จากจุดเริ่มต้นเราตัดสินใจ:

ทำไมเราถึงสร้างเครื่องยนต์?
ควรออกแบบเพื่ออะไร?
เราถูก จำกัด ที่ไหน?

ในกรณีของฉัน: ฉันกำลังสร้างเครื่องยนต์สำหรับเครื่องบิน ปล่อยให้มันเป็นการหมุนภายนอก มันควรจะได้รับการออกแบบสำหรับความจริงที่ว่ามันควรจะให้ 1,400 กรัมของแรงขับกับแบตเตอรี่สามกระป๋อง; ฉันมีน้ำหนักและขนาดจำกัด อย่างไรก็ตามคุณจะเริ่มต้นที่ไหน? คำตอบสำหรับคำถามนี้ง่าย: จากส่วนที่ยากที่สุดคือ ด้วยชิ้นส่วนที่หาได้ง่ายกว่าและทุกอย่างอื่นให้พอดี ฉันทำเช่นนั้น หลังจากพยายามทำสเตเตอร์แผ่นเหล็กอ่อนไม่สำเร็จหลายครั้ง ฉันก็เข้าใจได้ชัดเจนว่าควรหาอันหนึ่งดีกว่า ฉันพบมันในหัววิดีโอเก่าจากเครื่องบันทึกวิดีโอ

2) การพันของมอเตอร์แบบไม่มีแปรงถ่านแบบสามเฟสนั้นใช้ลวดทองแดงหุ้มฉนวน ซึ่งส่วนตัดขวางจะเป็นตัวกำหนดค่าของความแรงของกระแสไฟ และด้วยเหตุนี้กำลังของมอเตอร์ โปรดจำไว้ว่ายิ่งลวดหนาเท่าไร รอบเพิ่มเติมแต่แรงบิดอ่อนกว่า การเลือกส่วน:

1A - 0.05 มม.; 15A - 0.33 มม.; 40A - 0.7 มม.

3A - 0.11 มม.; 20A - 0.4 มม.; 50A - 0.8mm

10A - 0.25 มม. 30A - 0.55 มม.; 60A - 0.95 มม.


3) เราเริ่มม้วนลวดบนเสา ยิ่งหมุน (13) รอบฟันมากเท่าใด สนามแม่เหล็กก็จะยิ่งมากขึ้นเท่านั้น ยิ่งสนามแข็งแกร่ง แรงบิดยิ่งมากขึ้น และจำนวนรอบที่น้อยลง เพื่อรับ ความเร็วสูงจำเป็นต้องหมุนจำนวนรอบน้อยลง แต่ด้วยสิ่งนี้ แรงบิดก็ลดลงเช่นกัน เพื่อชดเชยช่วงเวลา มักจะมากกว่า ไฟฟ้าแรงสูง.
4) จากนั้นเลือกวิธีการเชื่อมต่อขดลวด: ดาวหรือสามเหลี่ยม การต่อแบบสตาร์ตให้แรงบิดมากกว่าแต่รอบน้อยกว่าการเชื่อมต่อแบบเดลต้าที่ 1.73 เท่า (จากนั้นจึงเลือกการเชื่อมต่อแบบเดลต้า)

5) เลือกแม่เหล็ก จำนวนเสาบนโรเตอร์ต้องเป็นคู่ (14) รูปร่างของแม่เหล็กที่ใช้มักจะเป็นรูปสี่เหลี่ยมผืนผ้า ขนาดของแม่เหล็กขึ้นอยู่กับรูปทรงของมอเตอร์และลักษณะของมอเตอร์ ยิ่งใช้แม่เหล็กแรงมากเท่าใด โมเมนต์ของแรงที่พัฒนาขึ้นโดยมอเตอร์บนเพลาก็จะยิ่งสูงขึ้น นอกจากนี้ ยิ่งจำนวนขั้วมากเท่าใด ช่วงเวลาก็ยิ่งมากขึ้นเท่านั้น แต่รอบหมุนน้อยลง แม่เหล็กบนโรเตอร์ได้รับการแก้ไขด้วยกาวร้อนละลายพิเศษ

แบบทดสอบ เครื่องยนต์นี้ฉันใช้เวลาไปกับการติดตั้งเครื่องช่วยหายใจที่ฉันสร้างขึ้น ซึ่งช่วยให้คุณวัดแรงฉุดลาก กำลังและความเร็วของเครื่องยนต์ได้

ในการดูความแตกต่างระหว่างการเชื่อมต่อแบบสตาร์และเดลต้า ฉันเชื่อมต่อขดลวดด้วยวิธีต่างๆ:

ผลที่ได้คือเครื่องยนต์ที่สอดคล้องกับลักษณะของเครื่องบินซึ่งมีมวล 1,400 กรัม

ลักษณะของเครื่องยนต์ที่ได้:
การบริโภคในปัจจุบัน: 34.1A
หมุนเวียน ไม่ได้ใช้งาน: 2.1A
ความต้านทานคดเคี้ยว: 0.02 โอห์ม
จำนวนเสา: 14
มูลค่าการซื้อขาย: 8400 รอบต่อนาที

วิดีโอรายงานการทดสอบเครื่องยนต์บนเครื่องบิน ... Soft Landing: D

การคำนวณประสิทธิภาพของเครื่องยนต์:


อย่างสูง ตัวบ่งชี้ที่ดี... แม้ว่าจะสามารถทำได้สูงกว่านี้ ...

สรุป:
1) มอเตอร์ไร้แปรงถ่านมีประสิทธิภาพและประสิทธิผลสูง
2) มอเตอร์ไร้แปรงถ่านมีขนาดกะทัดรัด
3) มอเตอร์ไร้แปรงถ่านสามารถใช้ในสภาพแวดล้อมที่ระเบิดได้
4) การเชื่อมต่อแบบ Star ให้แรงบิดมากกว่า แต่รอบน้อยกว่า 1.73 เท่าเมื่อเทียบกับการเชื่อมต่อแบบเดลต้า

ดังนั้น การสร้างมอเตอร์ไร้แปรงถ่านของคุณเองสำหรับเครื่องบินรุ่นแอโรบิกคือ ภารกิจเป็นไปได้

หากคุณมีคำถามหรือบางอย่างไม่ชัดเจน ถามคำถามในความคิดเห็นของบทความนี้ โชคดีนะทุกคน)

ในบทความนี้ เราอยากจะพูดถึงวิธีที่เราสร้างมอเตอร์ไฟฟ้าตั้งแต่เริ่มต้น ตั้งแต่แนวคิดและต้นแบบแรกไปจนถึงมอเตอร์ที่ผ่านการทดสอบทั้งหมด หากบทความนี้ดูน่าสนใจสำหรับคุณ เราจะแยกรายละเอียดเพิ่มเติมเกี่ยวกับขั้นตอนการทำงานของเราที่คุณสนใจมากที่สุด

ในภาพจากซ้ายไปขวา: โรเตอร์, สเตเตอร์, ชุดมอเตอร์บางส่วน, ชุดมอเตอร์

บทนำ

มอเตอร์ไฟฟ้าปรากฏขึ้นเมื่อ 150 ปีที่แล้ว แต่ในช่วงเวลานี้การออกแบบของพวกเขาไม่ได้เปลี่ยนแปลงมากนัก: โรเตอร์หมุน, ขดลวดสเตเตอร์ทองแดง, ตลับลูกปืน ในช่วงหลายปีที่ผ่านมา น้ำหนักของมอเตอร์ไฟฟ้าลดลง เพิ่มประสิทธิภาพ และความแม่นยำในการควบคุมความเร็วเท่านั้น

ทุกวันนี้ ต้องขอบคุณการพัฒนาอุปกรณ์อิเล็กทรอนิกส์สมัยใหม่และการเกิดขึ้นของแม่เหล็กอันทรงพลังจากโลหะแรร์เอิร์ธ จึงเป็นไปได้ที่จะสร้างมอเตอร์ไฟฟ้า "ไร้แปรงถ่าน" ที่มีขนาดกะทัดรัดและน้ำหนักเบาในเวลาเดียวกัน ในขณะเดียวกัน เนื่องจากความเรียบง่ายของการออกแบบ มอเตอร์เหล่านี้จึงเป็นมอเตอร์ไฟฟ้าที่น่าเชื่อถือที่สุดเท่าที่เคยสร้างมา เกี่ยวกับการสร้างมอเตอร์ดังกล่าวและจะกล่าวถึงในบทความนี้

คำอธิบายมอเตอร์

ที่ " มอเตอร์ไร้แปรงถ่าน” ไม่มีองค์ประกอบ "แปรง" ที่ทุกคนคุ้นเคยจากการถอดประกอบเครื่องมือไฟฟ้า ซึ่งมีหน้าที่ในการถ่ายโอนกระแสไปยังขดลวดของโรเตอร์ที่หมุนอยู่ ในมอเตอร์แบบไม่มีแปรง กระแสจะถูกส่งไปยังขดลวดของสเตเตอร์ที่ไม่เคลื่อนที่ ซึ่งสร้างสนามแม่เหล็กสลับกันบนเสาแต่ละอัน หมุนโรเตอร์ซึ่งแม่เหล็กถูกยึดไว้

เราพิมพ์มอเตอร์ดังกล่าวตัวแรกบนเครื่องพิมพ์ 3 มิติเพื่อทดลอง แทนที่จะใช้แผ่นพิเศษที่ทำจากเหล็กไฟฟ้า เราใช้พลาสติกธรรมดาสำหรับตัวเรือนโรเตอร์และแกนสเตเตอร์ที่ขดลวดทองแดง แม่เหล็กนีโอไดเมียมของส่วนสี่เหลี่ยมได้รับการแก้ไขบนโรเตอร์ เป็นธรรมดาที่มอเตอร์ดังกล่าวไม่สามารถออกได้ พลังสูงสุด. อย่างไรก็ตาม มันก็เพียงพอแล้วสำหรับมอเตอร์ที่จะหมุนได้ถึง 20k รอบต่อนาที หลังจากนั้นพลาสติกก็ทนไม่ไหว และโรเตอร์ของมอเตอร์ก็ขาดออกจากกัน และแม่เหล็กก็กระจัดกระจายไปทั่ว การทดลองนี้เป็นแรงบันดาลใจให้เราสร้างเครื่องยนต์ที่เต็มเปี่ยม

ต้นแบบหลายต้น





เมื่อเรียนรู้ความคิดเห็นของแฟน ๆ ของโมเดลที่ควบคุมด้วยคลื่นวิทยุแล้วเราจึงเลือกมอเตอร์สำหรับ รถแข่งขนาด “540” ตามคำเรียกร้อง มอเตอร์นี้มีขนาดความยาว 54 มม. และเส้นผ่านศูนย์กลาง 36 มม.

เราสร้างโรเตอร์ของมอเตอร์ใหม่จากแม่เหล็กนีโอไดเมียมรูปทรงกระบอกเดียว แม่เหล็กติดกาวด้วยอีพ็อกซี่กับด้ามกลึงจากเหล็กกล้าเครื่องมือในโรงงานนำร่อง

เราตัดสเตเตอร์ด้วยเลเซอร์จากชุดแผ่นเหล็กหม้อแปลงหนา 0.5 มม. จากนั้นแต่ละจานก็เคลือบเงาอย่างระมัดระวัง จากนั้นจึงทำการติดกาวสเตเตอร์ที่เสร็จแล้วเข้าด้วยกันจากจานประมาณ 50 แผ่น เพลตถูกเคลือบเงาเพื่อหลีกเลี่ยงการลัดวงจรระหว่างแผ่นทั้งสอง และเพื่อแยกการสูญเสียพลังงานเนื่องจากกระแสฟูโกต์ที่อาจเกิดขึ้นในสเตเตอร์

ตัวเรือนมอเตอร์ทำจากชิ้นส่วนอะลูมิเนียมสองชิ้นในรูปของภาชนะ สเตเตอร์แน่น เคสอลูมิเนียมและยึดติดกับผนังได้ดี การออกแบบนี้ให้ ระบายความร้อนได้ดีเครื่องยนต์.

การวัดประสิทธิภาพ

เพื่อความสำเร็จ ประสิทธิภาพสูงสุดของการพัฒนานั้นจำเป็นต้องประเมินอย่างเพียงพอและวัดคุณสมบัติอย่างแม่นยำ ในการทำเช่นนี้ เราได้ออกแบบและประกอบไดโนพิเศษ

องค์ประกอบหลักของขาตั้งเป็นภาระหนักในรูปแบบของเครื่องซักผ้า ในระหว่างการวัด มอเตอร์จะหมุนภาระที่กำหนดและ ความเร็วเชิงมุมและความเร่ง คำนวณกำลังขับและแรงบิดของมอเตอร์

เพื่อวัดความเร็วของการหมุนของโหลด แม่เหล็กคู่หนึ่งบนเพลาและแม่เหล็ก เซ็นเซอร์ดิจิตอล A3144 ขึ้นอยู่กับเอฟเฟกต์ห้องโถง แน่นอน มันเป็นไปได้ที่จะวัดการหมุนรอบด้วยพัลส์โดยตรงจากขดลวดของมอเตอร์ตั้งแต่ มอเตอร์นี้เป็นแบบซิงโครนัส อย่างไรก็ตาม ตัวเลือกที่มีเซ็นเซอร์มีความน่าเชื่อถือมากกว่าและจะทำงานแม้ที่ความเร็วต่ำมาก ซึ่งพัลส์จะไม่สามารถอ่านได้

นอกจากการปฏิวัติ สแตนด์ของเราสามารถวัดพารามิเตอร์ที่สำคัญอีกหลายตัว:

  • จ่ายกระแสไฟ (สูงถึง 30A) โดยใช้เซ็นเซอร์ปัจจุบันตามเอฟเฟกต์ฮอลล์ ACS712;
  • แรงดันไฟฟ้า วัดโดยตรงผ่าน ADC ของไมโครคอนโทรลเลอร์ ผ่านตัวแบ่งแรงดันไฟฟ้า
  • อุณหภูมิภายใน/ภายนอกมอเตอร์ อุณหภูมิวัดโดยใช้ความต้านทานความร้อนของเซมิคอนดักเตอร์
ในการรวบรวมพารามิเตอร์ทั้งหมดจากเซ็นเซอร์และถ่ายโอนไปยังคอมพิวเตอร์จะใช้ไมโครคอนโทรลเลอร์ AVR mega series บนบอร์ด Arduino นาโน. การสื่อสารระหว่างไมโครคอนโทรลเลอร์และคอมพิวเตอร์ดำเนินการผ่านพอร์ต COM ในการประมวลผลการอ่านนั้น โปรแกรมพิเศษถูกเขียนขึ้นเพื่อบันทึก หาค่าเฉลี่ย และแสดงผลการวัด

ส่งผลให้จุดยืนของเราสามารถวัดได้ตลอดเวลา ลักษณะดังต่อไปนี้เครื่องยนต์:

  • บริโภคในปัจจุบัน;
  • แรงดันไฟฟ้าที่ใช้;
  • การใช้พลังงาน;
  • กำลังขับ;
  • การหมุนเพลา
  • ชั่วขณะบนเพลา
  • พลังงานที่ทิ้งไว้ในความร้อน
  • อุณหภูมิภายในมอเตอร์
วิดีโอแสดงการทำงานของขาตั้ง:

ผลการทดสอบ

เพื่อตรวจสอบความสามารถในการทำงานของขาตั้ง ก่อนอื่นเราได้ทดสอบกับเครื่องทั่วไป มอเตอร์สะสม R540-6022. ไม่ค่อยมีใครรู้จักเกี่ยวกับพารามิเตอร์ของมอเตอร์นี้ แต่ก็เพียงพอที่จะประเมินผลการวัด ซึ่งกลายเป็นว่าค่อนข้างใกล้เคียงกับของโรงงาน

จากนั้นมอเตอร์ของเราก็ได้รับการทดสอบแล้ว โดยธรรมชาติแล้ว เขาสามารถแสดงประสิทธิภาพที่ดีขึ้น (65% เทียบกับ 45%) และในขณะเดียวกันก็แสดงประสิทธิภาพได้ดีกว่า (1200 เทียบกับ 250 กรัมต่อซม.) มากกว่า มอเตอร์ธรรมดา. การวัดอุณหภูมิยังให้เพียงพอ ผลลัพธ์ที่ดีในระหว่างการทดสอบ มอเตอร์ไม่ร้อนเกิน 80 องศา

แต่เมื่อ ช่วงเวลานี้การวัดยังไม่สิ้นสุด เราไม่สามารถวัดมอเตอร์ในช่วง RPM ทั้งหมดได้เนื่องจากข้อจำกัดของแหล่งจ่ายไฟ นอกจากนี้เรายังต้องเปรียบเทียบมอเตอร์ของเรากับมอเตอร์ที่คล้ายกันของคู่แข่งและทดสอบ "ในสนามรบ" ในการแข่งรถ รถบังคับวิทยุและแข่งขัน

เผยแพร่เมื่อ 19.03.2013

ในบทความนี้ ฉันจะเริ่มสิ่งพิมพ์เกี่ยวกับมอเตอร์กระแสตรงแบบไม่มีแปรงถ่าน ภาษาที่เข้าถึงได้อธิบาย ข้อมูลทั่วไป, อุปกรณ์, อัลกอริธึมการควบคุมสำหรับมอเตอร์แบบไม่มีแปรง จะได้รับการพิจารณา ประเภทต่างๆเครื่องยนต์ตัวอย่างการเลือกพารามิเตอร์ควบคุมจะได้รับ ฉันจะอธิบายอุปกรณ์และอัลกอริทึมของตัวควบคุมวิธีการเลือกสวิตช์ไฟและพารามิเตอร์หลักของตัวควบคุม ข้อสรุปเชิงตรรกะของสิ่งพิมพ์จะเป็นโครงร่างการควบคุม

มอเตอร์ไร้แปรงถ่านเป็นที่แพร่หลายเนื่องจากการพัฒนาอุปกรณ์อิเล็กทรอนิกส์และโดยเฉพาะอย่างยิ่งเนื่องจากลักษณะของสวิตช์ทรานซิสเตอร์กำลังราคาไม่แพง การปรากฏตัวของแม่เหล็กนีโอไดเมียมอันทรงพลังก็มีบทบาทสำคัญเช่นกัน

อย่างไรก็ตามมอเตอร์แบบไม่มีแปรงไม่ถือเป็นสิ่งแปลกใหม่ แนวคิดของมอเตอร์แบบไม่มีแปรงปรากฏขึ้นในช่วงรุ่งอรุณของกระแสไฟฟ้า แต่เนื่องจากเทคโนโลยีไม่พร้อม จึงต้องรอจนถึงปี พ.ศ. 2505 เมื่อมอเตอร์กระแสตรงไร้แปรงถ่านเชิงพาณิชย์ตัวแรกปรากฏขึ้น เหล่านั้น. เป็นเวลากว่าครึ่งศตวรรษแล้วที่ไดรฟ์ไฟฟ้าประเภทนี้มีการใช้งานแบบอนุกรมมากมาย!

คำศัพท์บางคำ

มอเตอร์กระแสตรงไร้แปรงถ่านเรียกอีกอย่างว่ามอเตอร์วาล์วในวรรณคดีต่างประเทศ BLDCM (มอเตอร์กระแสตรง BrushLes) หรือ PMSM (มอเตอร์ซิงโครนัสแม่เหล็กถาวร)

โครงสร้างมอเตอร์แบบไม่มีแปรงประกอบด้วยโรเตอร์ที่มีแม่เหล็กถาวรและสเตเตอร์ที่มีขดลวด ฉันดึงความสนใจของคุณไปที่ความจริงที่ว่าในมอเตอร์สะสมในทางกลับกันขดลวดอยู่บนโรเตอร์ ดังนั้นเพิ่มเติมในข้อความ โรเตอร์คือแม่เหล็ก สเตเตอร์คือขดลวด

ใช้สำหรับควบคุมเครื่องยนต์ ตัวควบคุมอิเล็กทรอนิกส์. ในวรรณคดีต่างประเทศ Speed ​​Controller หรือ ESC (ระบบควบคุมความเร็วแบบอิเล็กทรอนิกส์)

มอเตอร์ไร้แปรงถ่านคืออะไร?

โดยปกติแล้ว ผู้คนที่เผชิญกับสิ่งใหม่ๆ มักจะมองหาความคล้ายคลึงกัน บางครั้งคุณต้องได้ยินวลี "ก็เหมือนกับเครื่องซิงโครไนซ์" หรือแย่กว่านั้นคือ "ดูเหมือน stepper" เนื่องจากมอเตอร์แบบไม่มีแปรงถ่านส่วนใหญ่เป็นแบบ 3 เฟส จึงทำให้เกิดความสับสนมากขึ้น ซึ่งนำไปสู่ความเข้าใจผิดว่าตัวควบคุมกำลัง "ป้อน" มอเตอร์ด้วยกระแสไฟ AC 3 เฟส ทั้งหมดข้างต้นเป็นความจริงเพียงบางส่วนเท่านั้น ความจริงก็คือมอเตอร์ทั้งหมดยกเว้นแบบอะซิงโครนัสสามารถเรียกได้ว่าซิงโครนัสได้ มอเตอร์กระแสตรงทั้งหมดเป็นแบบซิงโครนัสกับการซิงโครไนซ์ตัวเอง แต่หลักการทำงานแตกต่างจาก มอเตอร์ซิงโครนัส AC ซึ่งไม่มีการซิงโครไนซ์ตัวเอง ในฐานะที่เป็นสเต็ปเปอร์มอเตอร์แบบไม่มีแปรง มันอาจใช้งานได้เช่นกัน แต่นี่คือสิ่งที่: อิฐสามารถบินได้ ... อย่างไรก็ตามไม่ไกลเพราะไม่ได้มีไว้สำหรับสิ่งนี้ เนื่องจาก สเต็ปเปอร์มอเตอร์มอเตอร์รีลัคแตนซ์ไร้แปรงถ่านเหมาะกว่า

ลองหาว่ามอเตอร์กระแสตรงไร้แปรงถ่าน (Brushles Direct Current Motor) คืออะไร ในวลีนี้เอง คำตอบถูกซ่อนไว้ - นี่คือมอเตอร์กระแสตรงที่ไม่มีตัวสะสม ฟังก์ชั่นของตัวสะสมดำเนินการโดยอุปกรณ์อิเล็กทรอนิกส์

ข้อดีข้อเสีย

ตัวสะสมซึ่งค่อนข้างซับซ้อน หนัก และเป็นประกายถูกถอดออกจากการออกแบบเครื่องยนต์ การออกแบบเครื่องยนต์นั้นง่ายขึ้นอย่างมาก เครื่องยนต์มีน้ำหนักเบาและกะทัดรัดมากขึ้น การสูญเสียการสลับลดลงอย่างมากเมื่อเปลี่ยนสับเปลี่ยนและหน้าสัมผัสแปรง กุญแจอิเล็กทรอนิกส์. ส่งผลให้เราได้มอเตอร์ไฟฟ้าที่มีประสิทธิภาพและกำลังสูงสุดต่อกิโลกรัม น้ำหนักของตัวเอง, ด้วยช่วงการเปลี่ยนความเร็วรอบที่กว้างที่สุด. ในทางปฏิบัติ มอเตอร์ไร้แปรงถ่านร้อนน้อยกว่าพี่น้องนักสะสม พวกเขาแบกภาระแรงบิดขนาดใหญ่ การใช้แม่เหล็กนีโอไดเมียมอันทรงพลังทำให้มอเตอร์ไร้แปรงถ่านมีขนาดกะทัดรัดยิ่งขึ้น การออกแบบมอเตอร์ไร้แปรงถ่านช่วยให้สามารถทำงานได้ในน้ำและสภาพแวดล้อมที่รุนแรง (แน่นอนว่าเฉพาะมอเตอร์เท่านั้น ตัวควบคุมจะมีราคาแพงมากเมื่อเปียกน้ำ) มอเตอร์ไร้แปรงถ่านแทบไม่มีการรบกวนจากคลื่นวิทยุ

ข้อเสียอย่างเดียวถือว่าแพงซับซ้อน หน่วยอิเล็กทรอนิกส์การควบคุม (ปุ่มหรือ ESC) อย่างไรก็ตาม หากคุณต้องการควบคุมความเร็วของเครื่องยนต์ อุปกรณ์อิเล็กทรอนิกส์เป็นสิ่งที่ขาดไม่ได้ หากคุณไม่ต้องการควบคุมความเร็วของมอเตอร์แบบไม่มีแปรง คุณก็ยังไม่สามารถทำได้หากไม่มีชุดควบคุมอิเล็กทรอนิกส์ มอเตอร์ไร้แปรงถ่านที่ไม่มีอุปกรณ์อิเล็กทรอนิกส์เป็นเพียงเศษเหล็ก ไม่มีทางที่จะใช้แรงดันไฟฟ้ากับมันและบรรลุการหมุนตามปกติเหมือนเครื่องยนต์อื่น ๆ

จะเกิดอะไรขึ้นในตัวควบคุมมอเตอร์แบบไม่มีแปรง

เพื่อให้เข้าใจถึงสิ่งที่เกิดขึ้นในอุปกรณ์อิเล็กทรอนิกส์ของอุปกรณ์ควบคุมที่ควบคุมมอเตอร์แบบไม่มีแปรง ให้ย้อนกลับไปเล็กน้อยและทำความเข้าใจก่อนว่ามอเตอร์แบบไม่มีแปรงทำงานอย่างไร จากหลักสูตรฟิสิกส์ของโรงเรียน เราจำได้ว่าสนามแม่เหล็กกระทำการอย่างไรบนเฟรมที่มีกระแสไหลผ่าน กรอบที่มีกระแสหมุนในสนามแม่เหล็ก อย่างไรก็ตามมันไม่ได้หมุนตลอดเวลา แต่หมุนไปยังตำแหน่งที่แน่นอน เพื่อให้เกิดการหมุนอย่างต่อเนื่อง จำเป็นต้องเปลี่ยนทิศทางของกระแสในลูปขึ้นอยู่กับตำแหน่งของลูป ในกรณีของเรา เฟรมที่มีกระแสคือขดลวดของมอเตอร์ และตัวสับเปลี่ยนกำลังเปลี่ยน - อุปกรณ์ที่มีแปรงและหน้าสัมผัส อุปกรณ์ของเอ็นจิ้นที่ง่ายที่สุดดูรูป

อุปกรณ์อิเล็กทรอนิกส์ที่ควบคุมมอเตอร์แบบไม่มีแปรงทำเช่นเดียวกัน - ในเวลาที่เหมาะสม จะเชื่อมต่อแรงดันไฟฟ้าโดยตรงกับขดลวดสเตเตอร์ที่จำเป็น

ตัวเข้ารหัส มอเตอร์ที่ไม่มีตัวเข้ารหัส

จากที่กล่าวมา สิ่งสำคัญคือต้องเข้าใจว่าจำเป็นต้องใช้แรงดันไฟฟ้ากับขดลวดของมอเตอร์โดยขึ้นอยู่กับตำแหน่งของโรเตอร์ ดังนั้นอุปกรณ์อิเล็กทรอนิกส์จะต้องสามารถกำหนดตำแหน่งของโรเตอร์มอเตอร์ได้ . ด้วยเหตุนี้จึงใช้เซ็นเซอร์ตำแหน่ง พวกเขาสามารถเป็น หลากหลายชนิด, ออปติคัล, แม่เหล็ก ฯลฯ ในปัจจุบัน เซ็นเซอร์แบบแยกตามเอฟเฟกต์ฮอลล์ (เช่น SS41) เป็นเรื่องธรรมดามาก มอเตอร์ไร้แปรงถ่าน 3 เฟสใช้เซ็นเซอร์ 3 ตัว ด้วยเซ็นเซอร์ดังกล่าว หน่วยควบคุมอิเล็กทรอนิกส์จึงรู้อยู่เสมอว่าโรเตอร์อยู่ในตำแหน่งใด และขดลวดใดที่จะใช้แรงดันไฟฟ้าในเวลาใดก็ตาม ต่อมาจะพิจารณาอัลกอริธึมการควบคุมสำหรับมอเตอร์ไร้แปรงถ่านสามเฟส

มีมอเตอร์แบบไม่มีแปรงที่ไม่มีเซ็นเซอร์ ในมอเตอร์ดังกล่าว ตำแหน่งของโรเตอร์ถูกกำหนดโดยการวัดแรงดันบนขดลวดที่ไม่ได้ใช้ในช่วงเวลาที่กำหนด วิธีการเหล่านี้จะกล่าวถึงในภายหลัง คุณควรให้ความสนใจกับจุดสำคัญ: วิธีนี้เกี่ยวข้องเฉพาะเมื่อเครื่องยนต์หมุนเท่านั้น เมื่อมอเตอร์ไม่หมุนหรือหมุนช้ามาก วิธีนี้ใช้ไม่ได้ผล

มอเตอร์ไร้แปรงถ่านที่มีเซ็นเซอร์ใช้ในกรณีใดบ้าง และในกรณีใดบ้างที่ไม่มีเซ็นเซอร์ ความแตกต่างของพวกเขาคืออะไร?

มอเตอร์ที่มีตัวเข้ารหัสเป็นที่ต้องการจากมุมมองทางเทคนิค อัลกอริธึมการควบคุมสำหรับเอ็นจิ้นดังกล่าวง่ายกว่ามาก อย่างไรก็ตาม ยังมีข้อเสียอยู่ด้วย: จำเป็นต้องให้พลังงานแก่เซ็นเซอร์และวางสายไฟจากเซ็นเซอร์ในเครื่องยนต์ไปยังอุปกรณ์อิเล็กทรอนิกส์ควบคุม ในกรณีที่เซ็นเซอร์ตัวใดตัวหนึ่งล้มเหลวเครื่องยนต์จะหยุดทำงานและการเปลี่ยนเซ็นเซอร์ตามกฎแล้วจำเป็นต้องถอดชิ้นส่วนของเครื่องยนต์

ในกรณีที่ไม่สามารถวางเซ็นเซอร์ในโครงสร้างมอเตอร์ได้ จะใช้มอเตอร์ที่ไม่มีเซ็นเซอร์ โครงสร้างมอเตอร์ดังกล่าวแทบไม่แตกต่างจากมอเตอร์ที่มีเซ็นเซอร์ แต่หน่วยอิเล็กทรอนิกส์ต้องสามารถควบคุมเครื่องยนต์ได้โดยไม่ต้องใช้เซ็นเซอร์ ในกรณีนี้ ชุดควบคุมจะต้องสอดคล้องกับลักษณะของเครื่องยนต์รุ่นใดรุ่นหนึ่ง

หากเครื่องยนต์ต้องสตาร์ทด้วยภาระที่มากบนเพลามอเตอร์ (การขนส่งด้วยไฟฟ้า กลไกการยก ฯลฯ) จะใช้มอเตอร์ที่มีเซ็นเซอร์
หากเครื่องยนต์สตาร์ทโดยไม่มีภาระบนเพลา (ใช้การระบายอากาศ ใบพัด คลัตช์แบบแรงเหวี่ยง ฯลฯ) สามารถใช้เครื่องยนต์ที่ไม่มีเซ็นเซอร์ได้ ข้อควรจำ: มอเตอร์ที่ไม่มีตัวเข้ารหัสต้องสตาร์ทโดยไม่มีโหลดบนเพลา หากไม่เป็นไปตามเงื่อนไขนี้ ควรใช้มอเตอร์ที่มีตัวเข้ารหัส นอกจากนี้ในขณะที่สตาร์ทเครื่องยนต์โดยไม่มีเซ็นเซอร์อาจเกิดการสั่นของแกนเครื่องยนต์ในทิศทางต่างๆ หากสิ่งนี้สำคัญต่อระบบของคุณ ให้ใช้มอเตอร์ที่มีเซ็นเซอร์

สามเฟส

ซื้อมอเตอร์ไร้แปรงถ่านสามเฟส แพร่หลายที่สุด. แต่อาจเป็นระยะหนึ่ง สอง สามหรือมากกว่าก็ได้ ยิ่งเฟสมากเท่าไหร่การหมุนของสนามแม่เหล็กก็จะยิ่งราบรื่นขึ้น แต่ระบบควบคุมมอเตอร์ยิ่งซับซ้อนมากขึ้นเท่านั้น ระบบ 3 เฟสเหมาะสมที่สุดในแง่ของอัตราส่วนประสิทธิภาพ/ความซับซ้อน ซึ่งเป็นสาเหตุที่ทำให้ระบบดังกล่าวแพร่หลายอย่างมาก นอกจากนี้จะพิจารณาเฉพาะวงจรสามเฟสเท่านั้นซึ่งเป็นวงจรทั่วไป อันที่จริง เฟสคือขดลวดของมอเตอร์ ดังนั้นถ้าคุณพูดว่า "สามกริ่ง" ฉันคิดว่านี่จะถูกต้องเช่นกัน ขดลวดสามเส้นเชื่อมต่อกันตามรูปแบบ "ดาว" หรือ "สามเหลี่ยม" มอเตอร์ไร้แปรงถ่านสามเฟสมีสายไฟสามเส้น - ขดลวด ดูรูป

มอเตอร์ที่มีตัวเข้ารหัสมีสายไฟเพิ่มอีก 5 เส้น (2 สำหรับกำลังของตัวเข้ารหัสตำแหน่ง และสัญญาณตัวเข้ารหัส 3 ตัว)

ในระบบสามเฟส แรงดันไฟฟ้าจะถูกนำไปใช้กับสองในสามขดลวดในเวลาใดก็ตาม ดังนั้นจึงมีตัวเลือกการส่ง 6 แบบ แรงดันคงที่บนขดลวดของมอเตอร์ดังแสดงในรูปด้านล่าง

หลักการทำงานซึ่งขึ้นอยู่กับการควบคุมความถี่และการซิงโครไนซ์ตัวเองเรียกว่ามอเตอร์แบบไม่มีแปรง ในการออกแบบนี้ เวกเตอร์สนามแม่เหล็กของสเตเตอร์จะถูกควบคุมโดยสัมพันธ์กับตำแหน่งของโรเตอร์ มอเตอร์ไร้แปรงถ่านได้รับการออกแบบมาเพื่อปรับปรุงประสิทธิภาพของมอเตอร์ DC แบบมีแปรงถ่านมาตรฐาน

เขาผสมผสานกันมากที่สุด คุณสมบัติที่ดีที่สุดมอเตอร์กระแสตรงและมอเตอร์ไฟฟ้าแบบไม่สัมผัส

ความแตกต่างหลักจากเครื่องยนต์ทั่วไป

มอเตอร์ไร้แปรงถ่านมักใช้ใน รุ่นบังคับวิทยุอากาศยาน. ประสิทธิภาพที่โดดเด่นและความทนทานของพวกเขาได้รับความนิยมอย่างกว้างขวางเนื่องจากไม่มีชิ้นส่วนที่ถูในรูปแบบของแปรงที่ส่งกระแสไฟ

เพื่อแสดงถึงความแตกต่างอย่างเต็มที่มากขึ้น คุณต้องจำไว้ว่าในมาตรฐาน มอเตอร์ไฟฟ้าสะสมโรเตอร์หมุนด้วยขดลวดภายในสเตเตอร์ซึ่งใช้แม่เหล็กถาวร ขดลวดจะเปลี่ยนโดยใช้ตัวสะสม ขึ้นอยู่กับตำแหน่งของโรเตอร์ ในมอเตอร์ไฟฟ้ากระแสสลับ โรเตอร์ที่มีแม่เหล็กจะหมุนภายในสเตเตอร์ที่มีขดลวด ประมาณการออกแบบเดียวกันมีเครื่องยนต์

สเตเตอร์ทำหน้าที่เป็นชิ้นส่วนเคลื่อนที่ ซึ่งแตกต่างจากมอเตอร์มาตรฐานทั่วไป โดยในมอเตอร์แบบไม่มีแปรงถ่านจะวางแม่เหล็กถาวร และโรเตอร์ที่มีขดลวดสามเฟสจะทำหน้าที่เป็นชิ้นส่วนคงที่

มอเตอร์ไร้แปรงถ่านทำงานอย่างไร

การหมุนของมอเตอร์ทำได้โดยการเปลี่ยนทิศทางของสนามแม่เหล็กในขดลวดของโรเตอร์ในลำดับที่แน่นอน ในกรณีนี้ แม่เหล็กถาวรจะโต้ตอบกับสนามแม่เหล็กของโรเตอร์และทำให้สเตเตอร์เคลื่อนที่เคลื่อนที่ การเคลื่อนไหวนี้ขึ้นอยู่กับคุณสมบัติหลักของแม่เหล็ก เมื่อเหมือนขั้วผลักและ ไม่เหมือนกัน - ถูกดึงดูด

สนามแม่เหล็กในขดลวดของโรเตอร์และการเปลี่ยนแปลงจะถูกควบคุมโดยตัวควบคุม เป็นอุปกรณ์ที่ค่อนข้างซับซ้อนที่สามารถสลับกระแสสูงด้วยความเร็วสูงได้ ตัวควบคุมจำเป็นต้องมีมอเตอร์ไฟฟ้าแบบไม่มีแปรงในวงจร ซึ่งทำให้ต้นทุนในการใช้งานเพิ่มขึ้นอย่างมาก

ที่ มอเตอร์ไร้แปรงถ่านไม่มีผู้ติดต่อที่หมุนได้และไม่มีผู้ติดต่อที่สามารถสลับได้ นี่คือข้อได้เปรียบหลักของพวกเขามากกว่า มอเตอร์ไฟฟ้าทั่วไปเนื่องจากการสูญเสียแรงเสียดทานทั้งหมดจะลดลง

การทำงานของมอเตอร์ไร้แปรงถ่านขึ้นอยู่กับ ไดรฟ์ไฟฟ้าทำให้เกิดสนามแม่เหล็กหมุน ปัจจุบันมีอุปกรณ์หลายประเภทที่มี ลักษณะต่างๆ. ด้วยการพัฒนาเทคโนโลยีและการใช้วัสดุใหม่ที่มีแรงบีบบังคับสูงและความอิ่มตัวของแม่เหล็กในระดับที่เพียงพอจึงกลายเป็น สามารถรับได้สนามแม่เหล็กแรงสูงและเป็นผลให้โครงสร้างวาล์วชนิดใหม่ซึ่งไม่มีการพันบนองค์ประกอบโรเตอร์หรือสตาร์ทเตอร์ การใช้สวิตช์ประเภทเซมิคอนดักเตอร์อย่างแพร่หลายซึ่งมีกำลังสูงและต้นทุนที่สมเหตุสมผลช่วยเร่งการสร้างการออกแบบดังกล่าว อำนวยความสะดวกในการดำเนินการ และขจัดปัญหาในการเปลี่ยนหลายๆ อย่าง

หลักการทำงาน

ความน่าเชื่อถือที่เพิ่มขึ้น ลดต้นทุน และการผลิตที่ง่ายกว่านั้นทำให้มั่นใจได้ว่าไม่มีส่วนประกอบสวิตช์เชิงกล ขดลวดโรเตอร์ และแม่เหล็กถาวร ในเวลาเดียวกัน ประสิทธิภาพที่เพิ่มขึ้นก็เป็นไปได้เนื่องจากการสูญเสียความเสียดทานในระบบสะสมลดลง มอเตอร์ไร้แปรงถ่านสามารถทำงานบนไฟฟ้ากระแสสลับหรือกระแสไฟต่อเนื่องได้ รุ่นหลังมีความคล้ายคลึงกับHis ลักษณะเฉพาะคือการก่อตัวของสนามแม่เหล็กหมุนและการประยุกต์ใช้กระแสพัลซิ่ง มันขึ้นอยู่กับสวิตช์อิเล็กทรอนิกส์ซึ่งเพิ่มความซับซ้อนของการออกแบบ

การคำนวณตำแหน่ง

การสร้างพัลส์เกิดขึ้นในระบบควบคุมหลังจากสัญญาณที่สะท้อนถึงตำแหน่งของโรเตอร์ ระดับของแรงดันและการจ่ายโดยตรงขึ้นอยู่กับความเร็วของการหมุนของมอเตอร์ เซ็นเซอร์ในสตาร์ทเตอร์จะตรวจจับตำแหน่งของโรเตอร์และส่งสัญญาณไฟฟ้า แอมพลิจูดของสัญญาณจะเปลี่ยนแปลงไปพร้อมกับขั้วแม่เหล็กที่เคลื่อนเข้าใกล้เซ็นเซอร์ เทคนิคการจัดตำแหน่งแบบไร้เซนเซอร์ยังมีอยู่ รวมถึงเส้นทางปัจจุบันและทรานสดิวเซอร์ PWM บนขั้วอินพุตให้การบำรุงรักษาระดับแรงดันไฟฟ้าแบบแปรผันและการควบคุมพลังงาน

สำหรับโรเตอร์ที่มีแม่เหล็กถาวร ไม่จำเป็นต้องใช้กระแสไฟ เนื่องจากขดลวดโรเตอร์ไม่มีการสูญเสีย มอเตอร์ไขควงไร้แปรงนั้นแตกต่างกัน ระดับต่ำความเฉื่อยเกิดจากการไม่มีขดลวดและตัวสะสมยานยนต์ จึงสามารถนำไปใช้ได้ ความเร็วสูงไม่มีประกายไฟและสัญญาณรบกวนแม่เหล็กไฟฟ้า กระแสสูงและกระจายความร้อนได้ง่ายขึ้นโดยการวางวงจรความร้อนบนสเตเตอร์ นอกจากนี้ยังควรสังเกตว่ามีหน่วยอิเล็กทรอนิกส์ในตัวในบางรุ่น

องค์ประกอบแม่เหล็ก

ตำแหน่งของแม่เหล็กอาจแตกต่างกันไปตามขนาดของมอเตอร์ เช่น บนเสาหรือรอบๆ โรเตอร์ทั้งหมด การสร้างแม่เหล็กคุณภาพสูงที่มีกำลังมากกว่าสามารถทำได้โดยใช้นีโอไดเมียมร่วมกับโบรอนและเหล็ก ทั้งๆที่มี ประสิทธิภาพสูงการดำเนินการ, มอเตอร์ไร้แปรงถ่านสำหรับไขควงที่มีแม่เหล็กถาวรก็มีข้อเสียอยู่บ้าง ได้แก่ การสูญเสีย ลักษณะแม่เหล็กที่อุณหภูมิสูง แต่มีประสิทธิภาพมากกว่าและไม่มีการสูญเสียเมื่อเทียบกับเครื่องจักรที่มีขดลวดในการออกแบบ

พัลส์ของอินเวอร์เตอร์กำหนดกลไก ด้วยความถี่ในการจ่ายคงที่ มอเตอร์จะทำงานที่ความเร็วคงที่ในวงจรเปิด ดังนั้นความเร็วในการหมุนจึงแตกต่างกันไปตามระดับของความถี่ในการจ่าย

ลักษณะเฉพาะ

ทำงานในโหมดตั้งค่าและมีฟังก์ชันการทำงานของแปรงอะนาล็อก ความเร็วขึ้นอยู่กับแรงดันไฟฟ้าที่ใช้ กลไกนี้มีข้อดีหลายประการ:

  • ไม่มีการเปลี่ยนแปลงในการสะกดจิตและการรั่วไหลของกระแส
  • สอดคล้องกับความเร็วของการหมุนและแรงบิดเอง
  • ความเร็วไม่ จำกัด เฉพาะการส่งผลกระทบต่อตัวสะสมและขดลวดไฟฟ้าแบบหมุน
  • ไม่จำเป็นต้องใช้สวิตช์และขดลวดกระตุ้น
  • แม่เหล็กที่ใช้มีน้ำหนักเบาและขนาดกะทัดรัด
  • โมเมนต์แรงสูง
  • ความอิ่มตัวของพลังงานและประสิทธิภาพ

การใช้งาน

DC ที่มีแม่เหล็กถาวรส่วนใหญ่จะพบในอุปกรณ์ที่มีกำลังไฟไม่เกิน 5 กิโลวัตต์ ในอุปกรณ์ที่ทรงพลังกว่านั้น การใช้งานนั้นไร้เหตุผล เป็นที่น่าสังเกตว่าแม่เหล็กในมอเตอร์ ประเภทนี้มีความอ่อนไหวเป็นพิเศษต่อ อุณหภูมิสูงและสนามที่แข็งแกร่ง ตัวเลือกการเหนี่ยวนำและแปรงไม่มีข้อเสียดังกล่าว เครื่องยนต์ถูกใช้อย่างแข็งขันในการขับเคลื่อนยานยนต์เนื่องจากไม่มีแรงเสียดทานในท่อร่วม ในบรรดาคุณสมบัติต่างๆ จำเป็นต้องเน้นย้ำถึงความสม่ำเสมอของแรงบิดและกระแสไฟ ซึ่งทำให้เสียงอะคูสติกลดลง