มอเตอร์กระแสตรงไร้แปรงถ่านสามเฟส ภาพรวมมอเตอร์ไร้แปรงถ่าน: ทุกสิ่งที่คุณจำเป็นต้องรู้ มีการจัดการอย่างไร

ในบทความนี้ เราอยากจะพูดถึงวิธีที่เราสร้างมอเตอร์ไฟฟ้าตั้งแต่เริ่มต้น ตั้งแต่แนวคิดและต้นแบบแรกไปจนถึงมอเตอร์ที่ผ่านการทดสอบทั้งหมด หากบทความนี้ดูน่าสนใจสำหรับคุณ เราจะแยกรายละเอียดเพิ่มเติมเกี่ยวกับขั้นตอนของงานของเราที่คุณสนใจมากที่สุด

ในภาพจากซ้ายไปขวา: โรเตอร์, สเตเตอร์, ชุดมอเตอร์บางส่วน, ชุดมอเตอร์

บทนำ

มอเตอร์ไฟฟ้าปรากฏขึ้นเมื่อ 150 ปีที่แล้ว แต่ในช่วงเวลานี้การออกแบบของพวกเขาไม่ได้เปลี่ยนแปลงไปมากนัก: โรเตอร์หมุน, ขดลวดทองแดงสเตเตอร์, ตลับลูกปืน ในช่วงหลายปีที่ผ่านมา มีเพียงน้ำหนักของมอเตอร์ไฟฟ้าที่ลดลง ประสิทธิภาพที่เพิ่มขึ้น ตลอดจนความแม่นยำในการควบคุมความเร็ว

ทุกวันนี้ ต้องขอบคุณการพัฒนาอุปกรณ์อิเล็กทรอนิกส์สมัยใหม่และการเกิดขึ้นของแม่เหล็กอันทรงพลังจากโลหะแรร์เอิร์ธ จึงเป็นไปได้ที่จะสร้างมอเตอร์ไฟฟ้า "ไร้แปรงถ่าน" ที่มีขนาดกะทัดรัดและน้ำหนักเบาในเวลาเดียวกัน ในขณะเดียวกัน เนื่องจากความเรียบง่ายของการออกแบบ มอเตอร์เหล่านี้จึงเป็นมอเตอร์ไฟฟ้าที่น่าเชื่อถือที่สุดเท่าที่เคยสร้างมา เกี่ยวกับการสร้างมอเตอร์ดังกล่าวและจะกล่าวถึงในบทความนี้

คำอธิบายมอเตอร์

ใน "มอเตอร์ไร้แปรงถ่าน" ไม่มีองค์ประกอบ "แปรง" ที่ทุกคนคุ้นเคยตั้งแต่การถอดประกอบเครื่องมือไฟฟ้า ซึ่งมีหน้าที่ในการถ่ายโอนกระแสไปยังขดลวดของโรเตอร์ที่หมุนอยู่ ในมอเตอร์แบบไม่มีแปรง กระแสจะถูกส่งไปยังขดลวดของสเตเตอร์ที่ไม่เคลื่อนที่ ซึ่งสร้างสนามแม่เหล็กสลับกันบนเสาแต่ละอัน หมุนโรเตอร์ซึ่งแม่เหล็กถูกยึดไว้

เราพิมพ์มอเตอร์ดังกล่าวตัวแรกบนเครื่องพิมพ์ 3 มิติเพื่อทดลอง แทนที่จะใช้แผ่นพิเศษที่ทำจากเหล็กไฟฟ้า เราใช้พลาสติกธรรมดาสำหรับตัวเรือนโรเตอร์และแกนสเตเตอร์ที่ขดลวดทองแดง แม่เหล็กนีโอไดเมียมของส่วนสี่เหลี่ยมได้รับการแก้ไขบนโรเตอร์ เป็นธรรมดาที่มอเตอร์ดังกล่าวไม่สามารถออกได้ พลังสูงสุด. อย่างไรก็ตาม มันก็เพียงพอแล้วสำหรับมอเตอร์ที่จะหมุนได้ถึง 20k รอบต่อนาที หลังจากนั้นพลาสติกก็ทนไม่ไหว และโรเตอร์ของมอเตอร์ก็ขาดออกจากกัน และแม่เหล็กก็กระจัดกระจายไปทั่ว การทดลองนี้เป็นแรงบันดาลใจให้เราสร้างเครื่องยนต์ที่เต็มเปี่ยม

ต้นแบบหลายต้น





รู้ความคิดเห็นของแฟนๆ รุ่นบังคับวิทยุ, เป็นงาน เราได้เลือกมอเตอร์สำหรับ รถแข่งขนาด “540” ตามคำเรียกร้อง มอเตอร์นี้มีขนาดความยาว 54 มม. และเส้นผ่านศูนย์กลาง 36 มม.

เราสร้างโรเตอร์ของมอเตอร์ใหม่จากแม่เหล็กนีโอไดเมียมรูปทรงกระบอกเดียว แม่เหล็กติดกาวด้วยอีพ็อกซี่กับด้ามกลึงจากเหล็กกล้าเครื่องมือในโรงงานนำร่อง

เราตัดสเตเตอร์ด้วยเลเซอร์จากชุดแผ่นเหล็กหม้อแปลงหนา 0.5 มม. จากนั้นแต่ละจานก็เคลือบเงาอย่างระมัดระวัง จากนั้นจึงทำการติดกาวสเตเตอร์ที่เสร็จแล้วเข้าด้วยกันจากจานประมาณ 50 แผ่น เพลตถูกเคลือบเงาเพื่อหลีกเลี่ยงการลัดวงจรระหว่างแผ่นทั้งสอง และเพื่อแยกการสูญเสียพลังงานเนื่องจากกระแสฟูโกต์ที่อาจเกิดขึ้นในสเตเตอร์

ตัวเรือนมอเตอร์ทำจากชิ้นส่วนอะลูมิเนียมสองชิ้นในรูปของภาชนะ สเตเตอร์แน่น เคสอลูมิเนียมและยึดติดกับผนังได้ดี การออกแบบนี้ให้ ระบายความร้อนได้ดีเครื่องยนต์.

การวัดประสิทธิภาพ

เพื่อความสำเร็จ ประสิทธิภาพสูงสุดของการพัฒนานั้นจำเป็นต้องประเมินอย่างเพียงพอและวัดคุณสมบัติอย่างแม่นยำ ในการทำเช่นนี้ เราได้ออกแบบและประกอบไดโนพิเศษ

องค์ประกอบหลักของขาตั้งเป็นภาระหนักในรูปแบบของเครื่องซักผ้า ในระหว่างการวัด มอเตอร์จะหมุนภาระที่กำหนดและ ความเร็วเชิงมุมและความเร่ง คำนวณกำลังขับและแรงบิดของมอเตอร์

เพื่อวัดความเร็วของการหมุนของโหลด แม่เหล็กคู่หนึ่งบนเพลาและแม่เหล็ก เซ็นเซอร์ดิจิตอล A3144 ขึ้นอยู่กับเอฟเฟกต์ห้องโถง แน่นอน มันเป็นไปได้ที่จะวัดการหมุนรอบด้วยพัลส์โดยตรงจากขดลวดของมอเตอร์ตั้งแต่ มอเตอร์นี้เป็นแบบซิงโครนัส อย่างไรก็ตาม ตัวเลือกที่มีเซ็นเซอร์มีความน่าเชื่อถือมากกว่าและจะทำงานแม้ที่ความเร็วต่ำมาก ซึ่งพัลส์จะไม่สามารถอ่านได้

นอกจากการปฏิวัติ สแตนด์ของเราสามารถวัดพารามิเตอร์ที่สำคัญอีกหลายตัว:

  • จ่ายกระแสไฟ (สูงถึง 30A) โดยใช้เซ็นเซอร์ปัจจุบันตามเอฟเฟกต์ฮอลล์ ACS712;
  • แรงดันไฟฟ้า วัดโดยตรงผ่าน ADC ของไมโครคอนโทรลเลอร์ ผ่านตัวแบ่งแรงดันไฟฟ้า
  • อุณหภูมิภายใน/ภายนอกมอเตอร์ อุณหภูมิวัดโดยใช้ความต้านทานความร้อนของเซมิคอนดักเตอร์
ในการรวบรวมพารามิเตอร์ทั้งหมดจากเซ็นเซอร์และถ่ายโอนไปยังคอมพิวเตอร์จะใช้ไมโครคอนโทรลเลอร์ AVR mega series บนบอร์ด Arduino นาโน. การสื่อสารระหว่างไมโครคอนโทรลเลอร์และคอมพิวเตอร์ดำเนินการผ่านพอร์ต COM ในการประมวลผลการอ่านนั้น โปรแกรมพิเศษถูกเขียนขึ้นเพื่อบันทึก หาค่าเฉลี่ย และแสดงผลการวัด

ด้วยเหตุนี้ ขาตั้งของเราสามารถวัดคุณลักษณะของมอเตอร์ต่อไปนี้ได้ตลอดเวลา:

  • บริโภคในปัจจุบัน;
  • แรงดันไฟฟ้าที่ใช้;
  • การใช้พลังงาน;
  • กำลังขับ;
  • การหมุนเพลา
  • ชั่วขณะบนเพลา
  • พลังงานที่ทิ้งไว้ในความร้อน
  • อุณหภูมิภายในมอเตอร์
วิดีโอแสดงการทำงานของขาตั้ง:

ผลการทดสอบ

เพื่อตรวจสอบประสิทธิภาพของขาตั้ง ก่อนอื่นเราทดสอบกับมอเตอร์สับเปลี่ยนแบบธรรมดา R540-6022 ไม่ค่อยมีใครรู้จักเกี่ยวกับพารามิเตอร์ของมอเตอร์นี้ แต่ก็เพียงพอที่จะประเมินผลการวัด ซึ่งกลายเป็นว่าค่อนข้างใกล้เคียงกับของโรงงาน

จากนั้นมอเตอร์ของเราก็ได้รับการทดสอบแล้ว โดยธรรมชาติแล้ว เขาสามารถแสดงประสิทธิภาพที่ดีขึ้น (65% เทียบกับ 45%) และในขณะเดียวกันก็แสดงประสิทธิภาพได้ดีกว่า (1200 เทียบกับ 250 กรัมต่อซม.) มากกว่า มอเตอร์ธรรมดา. การวัดอุณหภูมิยังให้เพียงพอ ผลลัพธ์ที่ดีในระหว่างการทดสอบ มอเตอร์ไม่ร้อนเกิน 80 องศา

แต่เมื่อ ช่วงเวลานี้การวัดยังไม่สิ้นสุด เราไม่สามารถวัดมอเตอร์ในช่วง RPM ทั้งหมดได้เนื่องจากข้อจำกัดของแหล่งจ่ายไฟ นอกจากนี้เรายังต้องเปรียบเทียบมอเตอร์ของเรากับมอเตอร์ที่คล้ายกันของคู่แข่งและทดสอบ "ในสนามรบ" ในการแข่งรถ รถบังคับวิทยุและแข่งขัน

เครื่องใช้ในครัวเรือนและทางการแพทย์ การสร้างแบบจำลองทางอากาศ ไดรฟ์ปิดท่อสำหรับท่อส่งก๊าซและน้ำมัน - อยู่ไกลจากนี้ รายการทั้งหมดแอปพลิเคชั่น มอเตอร์ไร้แปรงถ่าน(ฐานข้อมูล) กระแสตรง. เรามาดูอุปกรณ์และหลักการทำงานของไดรฟ์ไฟฟ้าเครื่องกลเหล่านี้เพื่อให้เข้าใจข้อดีและข้อเสียของไดรฟ์เหล่านี้มากขึ้น

ข้อมูลทั่วไป อุปกรณ์ ขอบเขต

เหตุผลหนึ่งที่ให้ความสนใจ DB คือความต้องการที่เพิ่มขึ้นสำหรับไมโครมอเตอร์ความเร็วสูงพร้อมการวางตำแหน่งที่แม่นยำ โครงสร้างภายในของไดรฟ์ดังกล่าวแสดงในรูปที่ 2

ข้าว. 2. อุปกรณ์ของมอเตอร์แบบไม่มีแปรง

อย่างที่คุณเห็น การออกแบบคือโรเตอร์ (กระดอง) และสเตเตอร์ อันแรกมีแม่เหล็กถาวร (หรือแม่เหล็กหลายอันเรียงตามลำดับ) และอันที่สองติดตั้งคอยล์ (B) เพื่อสร้างสนามแม่เหล็ก

เป็นที่น่าสังเกตว่ากลไกแม่เหล็กไฟฟ้าเหล่านี้สามารถเป็นได้ทั้งกับสมอภายใน (การก่อสร้างประเภทนี้สามารถดูได้ในรูปที่ 2) หรือภายนอก (ดูรูปที่ 3)


ข้าว. 3. ออกแบบด้วยพุกภายนอก (outrunner)

ดังนั้น การออกแบบแต่ละแบบจึงมีขอบเขตเฉพาะ อุปกรณ์ที่มีกระดองภายในมีความเร็วในการหมุนสูง ดังนั้นจึงใช้ในระบบทำความเย็นเช่น โรงไฟฟ้าโดรน เป็นต้น ไดรฟ์โรเตอร์ภายนอกใช้ในตำแหน่งที่ต้องการความแม่นยำและความทนทานต่อแรงบิด (หุ่นยนต์ อุปกรณ์ทางการแพทย์ เครื่อง CNC ฯลฯ)


หลักการทำงาน

ต่างจากไดรฟ์อื่นๆ เช่น เครื่องอะซิงโครนัส กระแสสลับสำหรับการทำงานของ DB จำเป็นต้องมีตัวควบคุมพิเศษซึ่งเปิดขดลวดในลักษณะที่เวกเตอร์ของสนามแม่เหล็กของกระดองและสเตเตอร์ตั้งฉากกัน อันที่จริงแล้ว อุปกรณ์ไดรเวอร์จะควบคุมแรงบิดที่กระทำต่อเกราะ DB กระบวนการนี้แสดงให้เห็นอย่างชัดเจนในรูปที่ 4


อย่างที่คุณเห็น สำหรับการเคลื่อนที่ของกระดองแต่ละครั้ง จำเป็นต้องทำการเปลี่ยนค่าบางอย่างในขดลวดสเตเตอร์ของมอเตอร์แบบไม่มีแปรง หลักการทำงานนี้ไม่อนุญาตให้ควบคุมการหมุนอย่างราบรื่น แต่ทำให้สามารถรับโมเมนตัมได้อย่างรวดเร็ว

ความแตกต่างระหว่างมอเตอร์แบบมีแปรงและแบบไม่มีแปรง

ไดรฟ์ประเภทตัวรวบรวมแตกต่างจาก DB as คุณสมบัติการออกแบบ(ดูรูปที่ 5.) และหลักการทำงาน


ข้าว. 5. A - มอเตอร์สะสม, B - ไร้แปรง

พิจารณา ความแตกต่างในการออกแบบ. รูปที่ 5 แสดงให้เห็นว่าโรเตอร์ (1 ในรูปที่ 5) ของมอเตอร์ประเภทตัวสะสมซึ่งแตกต่างจากมอเตอร์แบบไม่มีแปรงซึ่งมีขดลวดซึ่ง วงจรง่ายๆขดลวดและแม่เหล็กถาวร (โดยปกติคือสอง) ติดตั้งอยู่บนสเตเตอร์ (2 ในรูปที่ 5) นอกจากนี้ยังมีการติดตั้งตัวสะสมบนเพลาซึ่งมีการเชื่อมต่อแปรงซึ่งจ่ายแรงดันไฟฟ้าให้กับขดลวดกระดอง

อธิบายหลักการทำงานโดยย่อ เครื่องสะสม. เมื่อแรงดันถูกนำไปใช้กับขดลวดตัวใดตัวหนึ่ง มันจะตื่นเต้นและเกิดสนามแม่เหล็กขึ้น มันโต้ตอบกับ แม่เหล็กถาวรซึ่งทำให้สมอและตัวสะสมที่วางอยู่บนนั้นหมุน เป็นผลให้มีการจ่ายพลังงานให้กับขดลวดอีกอันหนึ่งและวงจรจะเกิดซ้ำ

ความถี่ของการหมุนของเกราะของการออกแบบนี้ขึ้นอยู่กับความเข้มของสนามแม่เหล็กโดยตรง ซึ่งในทางกลับกัน จะเป็นสัดส่วนโดยตรงกับแรงดันไฟฟ้า นั่นคือการเพิ่มหรือลดความเร็วก็เพียงพอที่จะเพิ่มหรือลดระดับพลังงาน และการย้อนกลับจำเป็นต้องเปลี่ยนขั้ว วิธีการควบคุมนี้ไม่จำเป็นต้องใช้ตัวควบคุมพิเศษ เนื่องจากตัวควบคุมการเดินทางสามารถสร้างโดยใช้ตัวต้านทานแบบปรับค่าได้ และสวิตช์ทั่วไปจะทำงานเป็นอินเวอร์เตอร์

เราได้พิจารณาคุณสมบัติการออกแบบของมอเตอร์ไร้แปรงถ่านในส่วนที่แล้ว อย่างที่คุณจำได้ การเชื่อมต่อของพวกเขาต้องการตัวควบคุมพิเศษ โดยที่พวกเขาจะไม่ทำงาน ด้วยเหตุผลเดียวกัน มอเตอร์เหล่านี้เป็นเครื่องกำเนิดไฟฟ้าไม่ได้

นอกจากนี้ ยังควรสังเกตด้วยว่าในไดรฟ์ประเภทนี้ สำหรับการควบคุมที่มีประสิทธิภาพมากขึ้น ตำแหน่งของโรเตอร์จะถูกตรวจสอบโดยใช้เซ็นเซอร์ Hall สิ่งนี้ช่วยปรับปรุงคุณสมบัติของมอเตอร์แบบไม่มีแปรงอย่างมีนัยสำคัญ แต่นำไปสู่การเพิ่มขึ้นของต้นทุนของการออกแบบที่มีราคาแพงอยู่แล้ว

จะสตาร์ทมอเตอร์แบบไม่มีแปรงได้อย่างไร?

เพื่อให้ไดรฟ์ประเภทนี้ทำงานได้ จำเป็นต้องมีคอนโทรลเลอร์พิเศษ (ดูรูปที่ 6) หากไม่มีมัน การเปิดตัวก็เป็นไปไม่ได้


ข้าว. 6. ตัวควบคุมมอเตอร์ไร้แปรงถ่านสำหรับการสร้างแบบจำลอง

การประกอบอุปกรณ์ดังกล่าวไม่สมเหตุสมผลเลยการซื้ออุปกรณ์สำเร็จรูปจะถูกกว่าและเชื่อถือได้มากกว่า มารับได้ทาง ลักษณะดังต่อไปนี้, ลักษณะของไดรเวอร์ช่องสัญญาณ PWM:

  • กระแสไฟสูงสุดที่อนุญาต คุณลักษณะนี้มีให้สำหรับการทำงานปกติของอุปกรณ์ บ่อยครั้งที่ผู้ผลิตระบุพารามิเตอร์นี้ในชื่อรุ่น (เช่น Phoenix-18) ในบางกรณี ค่าที่กำหนดสำหรับโหมดพีค ซึ่งคอนโทรลเลอร์สามารถคงไว้เป็นเวลาหลายวินาที
  • แรงดันไฟระบุสูงสุดสำหรับการทำงานต่อเนื่อง
  • ความต้านทานของวงจรภายในของคอนโทรลเลอร์
  • จำนวนรอบที่อนุญาต ระบุเป็นรอบต่อนาที เหนือค่านี้ คอนโทรลเลอร์จะไม่อนุญาตให้เพิ่มการหมุน (ข้อจำกัดถูกนำไปใช้ในระดับซอฟต์แวร์) โปรดทราบว่าความเร็วจะได้รับเสมอสำหรับไดรฟ์ 2 ขั้ว หากมีคู่ขั้วมากกว่า ให้หารค่าด้วยจำนวนของมัน ตัวอย่างเช่น มีการระบุหมายเลข 60000 รอบต่อนาที ดังนั้นสำหรับ 6 มอเตอร์แม่เหล็กความเร็วในการหมุนจะเท่ากับ 60000/3=20000 prm
  • ความถี่ของพัลส์ที่สร้างขึ้นสำหรับคอนโทรลเลอร์ส่วนใหญ่ พารามิเตอร์นี้อยู่ในช่วงตั้งแต่ 7 ถึง 8 kHz ขึ้นไป โมเดลราคาแพงอนุญาตให้คุณตั้งโปรแกรมพารามิเตอร์ใหม่โดยเพิ่มเป็น 16 หรือ 32 kHz

โปรดทราบว่าคุณลักษณะสามประการแรกจะกำหนดความจุของฐานข้อมูล

การควบคุมมอเตอร์ไร้แปรงถ่าน

ดังที่กล่าวไว้ข้างต้น การสับเปลี่ยนของขดลวดของไดรฟ์ถูกควบคุมด้วยระบบอิเล็กทรอนิกส์ เพื่อกำหนดว่าเมื่อใดควรเปลี่ยน คนขับจะตรวจสอบตำแหน่งของเกราะโดยใช้เซ็นเซอร์ Hall หากไดรฟ์ไม่ได้ติดตั้งเครื่องตรวจจับดังกล่าว กลับ EMFซึ่งเกิดขึ้นในขดลวดสเตเตอร์ที่ไม่เชื่อมต่อ ตัวควบคุมซึ่งอันที่จริงเป็นความซับซ้อนของฮาร์ดแวร์และซอฟต์แวร์จะตรวจสอบการเปลี่ยนแปลงเหล่านี้และกำหนดลำดับการสลับ

มอเตอร์กระแสตรงไร้แปรงถ่านสามเฟส

ฐานข้อมูลส่วนใหญ่ดำเนินการในรูปแบบสามเฟส ในการควบคุมไดรฟ์ดังกล่าว คอนโทรลเลอร์จะมีตัวแปลง แรงดันคงที่เป็นพัลส์สามเฟส (ดูรูปที่ 7)


รูปที่ 7 ไดอะแกรมแรงดันไฟฟ้า DB

เพื่ออธิบายวิธีการทำงาน มอเตอร์ไร้แปรงถ่านคุณควรพิจารณารูปที่ 4 ร่วมกับรูปที่ 7 ซึ่งจะแสดงขั้นตอนการทำงานของไดรฟ์ทั้งหมด ลองเขียนลงไป:

  1. แรงกระตุ้นบวกถูกนำไปใช้กับคอยล์ "A" ในขณะที่แรงกระตุ้นเชิงลบถูกนำไปใช้กับ "B" ดังนั้นอาร์เมเจอร์จะเคลื่อนที่ เซ็นเซอร์จะบันทึกการเคลื่อนไหวและส่งสัญญาณสำหรับการเปลี่ยนครั้งต่อไป
  2. คอยล์ "A" ถูกปิด และพัลส์บวกไปที่ "C" ("B" ยังคงไม่เปลี่ยนแปลง) จากนั้นส่งสัญญาณไปยังพัลส์ชุดถัดไป
  3. บน "C" - บวก "A" - ลบ
  4. คู่ของ "B" และ "A" ทำงานซึ่งได้รับแรงกระตุ้นบวกและลบ
  5. พัลส์บวกถูกนำไปใช้กับ "B" อีกครั้ง และพัลส์ลบกับ "C"
  6. คอยล์ "A" เปิดอยู่ (มีให้ +) และพัลส์ลบซ้ำบน "C" จากนั้นวงจรจะทำซ้ำ

ในความเรียบง่ายที่ชัดเจนของการจัดการมีปัญหามากมาย ไม่เพียงแต่จำเป็นต้องติดตามตำแหน่งของสมอเท่านั้นเพื่อผลิต ชุดต่อไปพัลส์และควบคุมความเร็วในการหมุนโดยการปรับกระแสในขดลวด นอกจากนี้ คุณควรเลือกพารามิเตอร์ที่เหมาะสมที่สุดสำหรับการเร่งความเร็วและการชะลอตัว นอกจากนี้ยังเป็นที่น่าสังเกตว่าคอนโทรลเลอร์จะต้องติดตั้งบล็อกที่ให้คุณควบคุมการทำงานของมันได้ รูปร่างอุปกรณ์มัลติฟังก์ชั่นดังกล่าวสามารถเห็นได้ในรูปที่ 8


ข้าว. 8. ตัวควบคุมมอเตอร์แบบไม่มีแปรงมัลติฟังก์ชั่น

ข้อดีข้อเสีย

มอเตอร์ไร้แปรงถ่านมีข้อดีหลายประการ กล่าวคือ:

  • อายุการใช้งานยาวนานกว่าของสะสมทั่วไปมาก
  • ประสิทธิภาพสูง.
  • สายความเร็ว ความเร็วสูงสุดการหมุน
  • มันมีพลังมากกว่าซีดี
  • การไม่มีประกายไฟระหว่างการทำงานช่วยให้สามารถใช้ไดรฟ์ในสภาวะที่เป็นอันตรายจากไฟไหม้ได้
  • ไม่จำเป็นต้องระบายความร้อนเพิ่มเติม
  • ใช้งานง่าย

ทีนี้มาดูข้อเสียกัน ข้อเสียที่สำคัญซึ่งจำกัดการใช้ฐานข้อมูล - ค่อนข้างมาก ราคาสูง(รวมราคาคนขับด้วย) ท่ามกลางความไม่สะดวกคือความเป็นไปไม่ได้ในการใช้ฐานข้อมูลโดยไม่มีไดรเวอร์ แม้แต่การเปิดใช้งานในระยะสั้น เช่น เพื่อตรวจสอบประสิทธิภาพ การซ่อมแซมปัญหาโดยเฉพาะอย่างยิ่งหากจำเป็นต้องกรอกลับ

มอเตอร์ไร้แปรงถ่าน

มอเตอร์ไฟฟ้าไร้แปรงถ่านเข้ามาสร้างแบบจำลองในช่วง 5-7 ปีที่ผ่านมา ต่างจากมอเตอร์คอลเลคเตอร์ตรงที่ขับเคลื่อนด้วยกระแสสลับสามเฟส มอเตอร์ไร้แปรงถ่านทำงานอย่างมีประสิทธิภาพในช่วง RPM ที่กว้างขึ้นและมีมากกว่า ประสิทธิภาพสูง. การออกแบบมอเตอร์นั้นง่ายกว่า ไม่มีชุดแปรง และไม่จำเป็นต้องมี ซ่อมบำรุง. เราสามารถพูดได้ว่ามอเตอร์ไร้แปรงถ่านแทบไม่สึกหรอ ค่าใช้จ่ายของมอเตอร์แบบไม่มีแปรงจะสูงกว่ามอเตอร์แบบมีแปรงเล็กน้อย เนื่องจากมอเตอร์แบบไม่มีแปรงถ่านทั้งหมดมีตลับลูกปืนและโดยทั่วไปแล้วจะมีคุณภาพสูงกว่า แม้ว่าช่องว่างราคาระหว่างดี มอเตอร์สะสมและมอเตอร์ไร้แปรงถ่านในระดับเดียวกันก็ไม่ค่อยดีนัก

ตามการออกแบบ มอเตอร์ไร้แปรงถ่านถูกแบ่งออกเป็นสองกลุ่ม: ผู้บุกรุก (ออกเสียงว่า "ผู้บุกรุก") และกลุ่มผู้วิ่งหนี (ออกเสียงว่า "ผู้วิ่งหนี") มอเตอร์ของกลุ่มแรกมีขดลวดอยู่บนพื้นผิวด้านในของตัวเรือน และโรเตอร์แม่เหล็กหมุนอยู่ภายใน มอเตอร์ของกลุ่มที่สอง - "ผู้แซงหน้า" มีขดลวดคงที่ภายในมอเตอร์ซึ่งตัวเรือนหมุนด้วยแม่เหล็กถาวรที่วางอยู่บนผนังด้านใน จำนวนขั้วแม่เหล็กที่ใช้ในมอเตอร์ไร้แปรงถ่านอาจแตกต่างกันไป จากจำนวนเสา คุณสามารถตัดสินแรงบิดและความเร็วของเครื่องยนต์ได้ มอเตอร์ที่มีโรเตอร์สองขั้วมีความเร็วในการหมุนสูงสุดที่แรงบิดต่ำสุด มอเตอร์เหล่านี้สามารถเป็น "ผู้บุกเบิก" โดยการออกแบบเท่านั้น มอเตอร์ดังกล่าวมักจะขายพร้อมกับเฟืองดาวเคราะห์ที่ติดตั้งอยู่แล้ว เนื่องจากรอบการหมุนของใบพัดนั้นสูงเกินไปสำหรับการหมุนของใบพัดโดยตรง บางครั้งใช้มอเตอร์ดังกล่าวโดยไม่มีกระปุกเกียร์ ตัวอย่างเช่น ใช้กับเครื่องบินจำลองการแข่งรถ มอเตอร์ที่มีเสาจำนวนมากมี ความเร็วต่ำหมุนแต่แรงบิดมากขึ้น มอเตอร์ดังกล่าวอนุญาตให้ใช้ใบพัดขนาดใหญ่โดยไม่ต้องใช้กระปุกเกียร์ โดยทั่วไป ใบพัดที่มีเส้นผ่านศูนย์กลางขนาดใหญ่และระยะพิทช์น้อยที่ความเร็วรอบค่อนข้างต่ำจะให้แรงขับมากกว่า แต่รายงานแบบจำลอง ความเร็วต่ำในขณะที่ใบพัดขนาดเล็กที่มีระยะพิทช์สูงที่ความเร็วสูงให้ ความเร็วสูงด้วยแรงขับที่ค่อนข้างน้อย ดังนั้น มอเตอร์แบบหลายขั้วจึงเหมาะอย่างยิ่งสำหรับรุ่นที่ต้องการอัตราส่วนแรงขับต่อน้ำหนักสูงและมอเตอร์สองขั้วที่ไม่มีกระปุกเกียร์จึงเหมาะอย่างยิ่งสำหรับรุ่นความเร็วสูง สำหรับการเลือกเครื่องยนต์และใบพัดสำหรับรุ่นใดรุ่นหนึ่งที่แม่นยำยิ่งขึ้น คุณสามารถใช้โปรแกรม MotoCalc พิเศษได้

เนื่องจากมอเตอร์ไร้แปรงถ่านขับเคลื่อนโดยกระแสสลับ จึงจำเป็นต้องมีตัวควบคุมพิเศษ (ตัวควบคุม) เพื่อทำงาน ซึ่งจะแปลงกระแสตรงจากแบตเตอรี่เป็นกระแสสลับ ESC สำหรับมอเตอร์ไร้แปรงถ่านเป็นอุปกรณ์ที่ตั้งโปรแกรมได้ซึ่งช่วยให้คุณควบคุมทุกอย่างในชีวิตได้ พารามิเตอร์ที่สำคัญเครื่องยนต์. พวกเขาอนุญาตให้ไม่เพียง แต่เปลี่ยนความเร็วและทิศทางของมอเตอร์ แต่ยังช่วยให้เรียบหรือ .ขึ้นอยู่กับความต้องการ เริ่มกะทันหันการจำกัดกระแสไฟสูงสุด ฟังก์ชัน "เบรก" และการตั้งค่าเครื่องยนต์ละเอียดอื่นๆ อีกจำนวนหนึ่งตามความต้องการของผู้สร้างโมเดล ในการตั้งโปรแกรมคอนโทรลเลอร์ อุปกรณ์จะใช้เชื่อมต่อกับคอมพิวเตอร์หรือใน สภาพสนามสามารถทำได้โดยใช้เครื่องส่งสัญญาณและจัมเปอร์พิเศษ

มีผู้ผลิตมอเตอร์แบบไม่มีแปรงและอุปกรณ์ควบคุมจำนวนมากสำหรับพวกเขา โครงสร้างและขนาด มอเตอร์ไร้แปรงถ่านก็มีความแตกต่างกันอย่างมาก นอกจากนี้, การผลิตอิสระมอเตอร์ไร้แปรงถ่านที่ใช้ชิ้นส่วนจากไดรฟ์ซีดีและมอเตอร์ไร้แปรงถ่านสำหรับอุตสาหกรรมอื่นๆ ได้กลายเป็นสิ่งที่พบเห็นได้ทั่วไปในช่วงไม่กี่ครั้งที่ผ่านมา บางทีอาจเป็นเพราะเหตุนี้เองที่มอเตอร์ไร้แปรงถ่านในปัจจุบันจึงไม่มีการจัดประเภททั่วไปที่ใกล้เคียงกันเช่นเดียวกับตัวสะสม มาสรุปกันสั้นๆ ทุกวันนี้ มอเตอร์แบบมีแปรงถ่านส่วนใหญ่จะใช้กับรุ่นงานอดิเรกราคาประหยัด หรือรุ่นสปอร์ตระดับเริ่มต้น มอเตอร์เหล่านี้มีราคาไม่แพง ใช้งานง่าย และยังคงเป็นมอเตอร์ไฟฟ้ารุ่นยอดนิยม พวกเขากำลังถูกแทนที่ด้วยมอเตอร์แบบไม่มีแปรง ปัจจัยที่ จำกัด เพียงอย่างเดียวคือราคาของพวกเขา ร่วมกับหน่วยงานกำกับดูแล มอเตอร์ไร้แปรงถ่านค่าใช้จ่ายเพิ่มขึ้น 30-70% อย่างไรก็ตาม ราคาสำหรับอุปกรณ์อิเล็กทรอนิกส์และมอเตอร์กำลังลดลง และการเคลื่อนตัวของมอเตอร์ไฟฟ้าแบบสะสมจากการสร้างแบบจำลองอย่างค่อยเป็นค่อยไปนั้นเป็นเพียงเรื่องของเวลาเท่านั้น

AVR492: AT90PWM3 การควบคุมมอเตอร์กระแสตรงไร้แปรงถ่าน

คุณสมบัติที่โดดเด่น:

  • ข้อมูลทั่วไปเกี่ยวกับ BKEPT
  • ใช้ตัวควบคุมเวทีกำลัง
  • การใช้ฮาร์ดแวร์
  • ตัวอย่างรหัสโปรแกรม

บทนำ

บันทึกการใช้งานนี้อธิบายวิธีการใช้การควบคุมมอเตอร์กระแสตรงแบบไม่มีแปรงถ่าน (BCEM) โดยใช้ตัวเข้ารหัสตามไมโครคอนโทรลเลอร์ AT90PWM3 AVR

แกน AVR ประสิทธิภาพสูงของไมโครคอนโทรลเลอร์ซึ่งประกอบด้วยตัวควบคุมระยะกำลัง ช่วยให้คุณติดตั้งอุปกรณ์ควบคุมมอเตอร์กระแสตรงแบบไม่มีแปรงถ่านความเร็วสูงได้

เอกสารนี้ให้คำอธิบายสั้น ๆ เกี่ยวกับหลักการทำงานของมอเตอร์กระแสตรงไร้แปรงถ่าน และอธิบายรายละเอียดเกี่ยวกับการควบคุม BECPT ในโหมดสัมผัส และยังมีคำอธิบาย แผนภูมิวงจรรวมการพัฒนาอ้างอิง ATAVRMC100 ซึ่งใช้บันทึกการใช้งานเหล่านี้

มีการกล่าวถึงการใช้งานซอฟต์แวร์ด้วยลูปควบคุมที่ใช้ซอฟต์แวร์ตามตัวควบคุม PID เพื่อควบคุมกระบวนการเปลี่ยน ส่อให้เห็นถึงการใช้เซ็นเซอร์ตำแหน่งตามเอฟเฟกต์ฮอลล์เท่านั้น

หลักการทำงาน

ขอบเขตของการใช้ BKEPT นั้นเพิ่มขึ้นอย่างต่อเนื่องซึ่งเกิดจากข้อดีหลายประการ:

  1. ไม่มีชุดประกอบที่หลากหลายซึ่งทำให้การบำรุงรักษาง่ายขึ้นหรือลดลง
  2. รุ่นมากกว่า ระดับต่ำเสียงอะคูสติกและไฟฟ้าเมื่อเทียบกับสากล เครื่องยนต์สะสมกระแสตรง.
  3. ความสามารถในการทำงานในสภาพแวดล้อมที่เป็นอันตราย (กับผลิตภัณฑ์ที่ติดไฟได้)
  4. สมดุลที่ดีระหว่างน้ำหนักและกำลัง...

มอเตอร์ประเภทนี้มีความเฉื่อยเล็กน้อยของโรเตอร์ tk ขดลวดตั้งอยู่บนสเตเตอร์ สวิตช์ถูกควบคุมด้วยระบบอิเล็กทรอนิกส์ โมเมนต์สวิตชิ่งถูกกำหนดโดยข้อมูลจากเซ็นเซอร์ตำแหน่ง หรือโดยการวัดแรงเคลื่อนไฟฟ้าด้านหลังที่เกิดจากขดลวด

เมื่อควบคุมโดยใช้เซ็นเซอร์ BKEPT จะประกอบด้วยสามส่วนหลัก: สเตเตอร์ โรเตอร์ และเซ็นเซอร์ฮอลล์

สเตเตอร์ของ BKEPT แบบสามเฟสแบบคลาสสิกประกอบด้วยสามขดลวด ในมอเตอร์จำนวนมาก ขดลวดจะถูกแบ่งออกเป็นหลายส่วนเพื่อลดการกระเพื่อมของแรงบิด

รูปที่ 1 แสดงวงจรไฟฟ้าเทียบเท่าสเตเตอร์ ประกอบด้วยขดลวดสามเส้น แต่ละขดลวดประกอบด้วยสามองค์ประกอบที่เชื่อมต่อเป็นอนุกรม: การเหนี่ยวนำ ความต้านทาน และแรงเคลื่อนไฟฟ้าย้อนกลับ


รูปที่ 1 แผนภาพการเดินสายไฟการเปลี่ยนสเตเตอร์ (สามเฟสสามขดลวด)

โรเตอร์ BKEPT ประกอบด้วยแม่เหล็กถาวรจำนวนเท่ากัน จำนวนขั้วแม่เหล็กในโรเตอร์ยังส่งผลต่อขนาดพิทช์และแรงบิดกระเพื่อม ยิ่งจำนวนเสามาก ขนาดขั้นตอนการหมุนจะเล็กลงและแรงบิดกระเพื่อมน้อยลง สามารถใช้แม่เหล็กถาวรแบบคู่ขั้ว 1..5 ได้ ในบางกรณี จำนวนคู่ขั้วจะเพิ่มขึ้นเป็น 8 (รูปที่ 2)



รูปที่ 2 สเตเตอร์และโรเตอร์ของ BKEPT . สามเฟส สามขดลวด

ขดลวดถูกติดตั้งอย่างถาวรและแม่เหล็กจะหมุน โรเตอร์ BKEPT มีลักษณะเฉพาะด้วยน้ำหนักที่เบากว่าเมื่อเทียบกับโรเตอร์ทั่วไป มอเตอร์สากลกระแสตรงซึ่งขดลวดอยู่บนโรเตอร์

ฮอลล์เซนเซอร์

ในการประเมินตำแหน่งของโรเตอร์ เซ็นเซอร์ Hall สามตัวจะถูกสร้างขึ้นในตัวเรือนมอเตอร์ เซ็นเซอร์ถูกติดตั้งที่มุม 120 องศาซึ่งกันและกัน ด้วยความช่วยเหลือของเซ็นเซอร์เหล่านี้ จึงสามารถดำเนินการสวิตช์ต่างๆ ได้ 6 แบบ

การสลับเฟสขึ้นอยู่กับสถานะของเซ็นเซอร์ Hall

แรงดันไฟฟ้าที่จ่ายให้กับขดลวดจะเปลี่ยนไปหลังจากเปลี่ยนสถานะเอาต์พุตของเซ็นเซอร์ Hall ที่ การดำเนินการที่ถูกต้องสวิตช์ซิงโครไนซ์ แรงบิดยังคงประมาณคงที่และสูง



รูปที่ 3 สัญญาณเซ็นเซอร์ฮอลล์ระหว่างการหมุน

การสลับเฟส

เพื่อจุดประสงค์ในการอธิบายอย่างง่ายของการทำงานของ BKEPT สามเฟส เราจะพิจารณาเฉพาะรุ่นที่มีสามขดลวดเท่านั้น ดังที่แสดงไว้ก่อนหน้านี้ การสลับเฟสขึ้นอยู่กับค่าเอาต์พุตของเซ็นเซอร์ Hall ด้วยแรงดันไฟฟ้าที่ถูกต้องที่ใช้กับขดลวดของมอเตอร์ สนามแม่เหล็กจะถูกสร้างขึ้นและเริ่มการหมุน ที่พบมากที่สุดและ ด้วยวิธีง่ายๆตัวควบคุมสวิตชิ่งที่ใช้ในการควบคุม BKEPT เป็นวงจรเปิด-ปิด โดยที่ขดลวดจะนำกระแสไฟฟ้าหรือไม่ใช้ ในคราวเดียวสามารถจ่ายไฟได้เพียงสองขดลวดและขดลวดที่สามยังคงปิดอยู่ การต่อขดลวดเข้ากับรางไฟฟ้าทำให้เกิดกระแสไฟไหล วิธีนี้เรียกว่าการสลับคีย์สโตนหรือการเปลี่ยนบล็อก

ในการควบคุม BKEPT จะใช้สเตจกำลังซึ่งประกอบด้วยฮาล์ฟบริดจ์ 3 อัน ไดอะแกรมสเตจกำลังแสดงในรูปที่ 4



รูปที่ 4 เวทีพลังงาน

ตามค่าการอ่านของเซ็นเซอร์ Hall จะเป็นตัวกำหนดว่าควรปิดปุ่มใด

ล่าสุดได้รับความนิยมมากขึ้นเรื่อยๆ มอเตอร์ไร้แปรงถ่านกระแสตรง. มีการใช้อย่างแข็งขันในเครื่องมือวัด การแพทย์ทางอุตสาหกรรมและระบบอัตโนมัติในครัวเรือนตลอดจนในเครื่องมือวัด ประเภทนี้มอเตอร์ทำงานโดยไม่ต้องใช้แปรง การสลับทั้งหมดดำเนินการโดยใช้อุปกรณ์อิเล็กทรอนิกส์

ประโยชน์ของมอเตอร์ไร้แปรงถ่าน

มอเตอร์ไร้แปรงถ่านมีข้อดีหลายประการที่กำหนดขอบเขตการใช้งาน พวกเขามีผลงานที่ดีที่สุด แรงบิดของพวกเขาสูงกว่า .มาก เครื่องยนต์ธรรมดา. การออกแบบแบบไร้แปรงถ่านมีคุณลักษณะที่สูงกว่า ลักษณะไดนามิกและปัจจัยด้านประสิทธิภาพ

ประโยชน์อื่นๆ ได้แก่ การทำงานที่เงียบขึ้น อายุการใช้งานที่ยาวนานขึ้น และความเร็วในการหมุนที่สูงขึ้น ขนาดมอเตอร์ต่ออัตราส่วนแรงบิดสูงกว่าชนิดอื่นๆ นี่เป็นสิ่งสำคัญอย่างยิ่งในพื้นที่ที่ขนาดและน้ำหนักเป็นปัจจัยสำคัญ

หลักการทำงานของมอเตอร์ไร้แปรงถ่าน

หลักการทำงานขึ้นอยู่กับสนามแม่เหล็กที่เกิดจากสเตเตอร์และโรเตอร์ซึ่งมีความเร็วในการหมุนเท่ากัน ไม่มีสิ่งที่เรียกว่าลักษณะการเลื่อนของ มอเตอร์เหนี่ยวนำ. การกำหนดค่าของมอเตอร์แบบไม่มีแปรงเป็นแบบเฟสเดียว สองเฟส หรือสามเฟส จำนวนขดลวดในสเตเตอร์ขึ้นอยู่กับสิ่งนี้ แพร่หลายที่สุดในทุกพื้นที่ได้รับมอเตอร์สามเฟส

อุปกรณ์มอเตอร์ไร้แปรงถ่าน

ตัวอย่างเช่น พิจารณามอเตอร์ไร้แปรงถ่านสามเฟสที่ได้รับความนิยมมากที่สุด มีสเตเตอร์ทำจากเหล็กเคลือบในร่องที่วางขดลวด มอเตอร์ประเภทนี้ส่วนใหญ่มีสามขดลวดเชื่อมต่อกันเป็นดาว

โรเตอร์เป็นแม่เหล็กถาวรที่มีขั้ว 2 ถึง 8 คู่ ในเวลาเดียวกัน ขั้วใต้และขั้วเหนือสลับกัน โรเตอร์ทำจากวัสดุแม่เหล็กพิเศษที่ให้ความหนาแน่นของสนามแม่เหล็กที่ต้องการ ตามกฎแล้วสิ่งเหล่านี้คือแม่เหล็กเฟอร์ไรท์ซึ่งทำจากแม่เหล็กถาวร

ไม่เหมือน มอเตอร์ไฟฟ้าทั่วไป, มอเตอร์กระแสตรงไร้แปรงถ่านถูกสับเปลี่ยนทางอิเล็กทรอนิกส์ นี่เป็นเพราะความจำเป็นในการจ่ายแรงดันไฟให้กับขดลวดสเตเตอร์อย่างสม่ำเสมอ ในขณะเดียวกัน ก็จำเป็นต้องรู้ว่าโรเตอร์อยู่ในตำแหน่งใด ตำแหน่งนี้กำหนดโดยเซ็นเซอร์ Hall ซึ่งให้สัญญาณสูงหรือต่ำ ขึ้นอยู่กับว่าขั้วใดเคลื่อนผ่านใกล้องค์ประกอบที่มีความไวสูง

เครื่องกำเนิดไฟฟ้ากระแสตรงไร้แปรงถ่าน

ทันทีที่ฉันเริ่มสร้างแบบจำลองเครื่องบิน ฉันเริ่มสนใจในทันทีว่าทำไมเครื่องยนต์ถึงมีสายไฟสามเส้น ทำไมมันถึงเล็กจังและในขณะเดียวกันก็ทรงพลังเหลือเกิน และทำไมมันถึงต้องการตัวควบคุมความเร็ว ... เวลาผ่านไปและฉันก็คิดออก ออกทั้งหมด จากนั้นเขาก็เริ่มสร้างมอเตอร์ไร้แปรงถ่านด้วยมือของเขาเอง

หลักการทำงานของมอเตอร์ไฟฟ้า:
งานใด ๆ ขึ้นอยู่กับ เครื่องไฟฟ้าปรากฏการณ์ของการเหนี่ยวนำแม่เหล็กไฟฟ้า ดังนั้น ถ้าวงที่มีกระแสวางอยู่ในสนามแม่เหล็ก ก็จะได้รับผลกระทบจาก กำลังแอมป์ซึ่งจะสร้างแรงบิด เฟรมจะเริ่มหมุนและหยุดในตำแหน่งที่ไม่มีโมเมนต์ที่สร้างขึ้นโดยแรงแอมแปร์


อุปกรณ์มอเตอร์ไฟฟ้า:
ใดๆ เครื่องยนต์ไฟฟ้าประกอบด้วยส่วนคงที่ - สเตเตอร์และส่วนที่เคลื่อนไหว โรเตอร์. เพื่อเริ่มการหมุน คุณต้องเปลี่ยนทิศทางของกระแสในทางกลับกัน ทำหน้าที่นี้ นักสะสม(แปรง).

มอเตอร์ไร้แปรงถ่านคือมอเตอร์ กระแสตรงไม่มีตัวสะสมซึ่งทำหน้าที่ของตัวรวบรวมโดยอุปกรณ์อิเล็กทรอนิกส์ (ถ้ามอเตอร์มีสามสายไม่ได้หมายความว่ามันขับเคลื่อนด้วยไฟกระแสสลับสามเฟส! มันขับเคลื่อนโดย "ส่วน" ของพัลส์ DC สั้น ๆ และฉันไม่ต้องการให้คุณตกใจ แต่เป็นมอเตอร์เดียวกันที่ ที่ใช้ในคูลเลอร์นั้นยังไม่มีแปรงแม้ว่าจะมีสายไฟ DC เพียงสองเส้นเท่านั้น)

อุปกรณ์มอเตอร์ไร้แปรงถ่าน:
ผู้บุกเบิก
(ออกเสียงว่า "ผู้บุกรุก") เครื่องยนต์มีขดลวดอยู่บนพื้นผิวด้านในของตัวเรือน และโรเตอร์แม่เหล็กหมุนอยู่ภายใน


รองชนะเลิศ
(ออกเสียงว่า "แซงหน้า") เครื่องยนต์มีขดลวดคงที่ (ด้านใน) ซึ่งร่างกายจะหมุนด้วยแม่เหล็กถาวรที่วางอยู่บนผนังด้านใน

หลักการทำงาน:
เพื่อให้มอเตอร์แบบไม่มีแปรงเริ่มหมุน ต้องใช้แรงดันไฟฟ้ากับขดลวดของมอเตอร์แบบซิงโครนัส การซิงโครไนซ์สามารถจัดระเบียบได้โดยใช้เซ็นเซอร์ภายนอก (เซ็นเซอร์ออปติคัลหรือเซ็นเซอร์ Hall) และบนพื้นฐานของ EMF ด้านหลัง (ไร้เซ็นเซอร์) ซึ่งเกิดขึ้นในมอเตอร์ระหว่างการหมุน

การควบคุมแบบไม่ใช้เซนเซอร์:
มีมอเตอร์แบบไม่มีแปรงไม่มีเซ็นเซอร์ตำแหน่ง ในมอเตอร์ดังกล่าว การกำหนดตำแหน่งของโรเตอร์ทำได้โดยการวัด EMF ในเฟสอิสระ เราจำได้ว่าในแต่ละช่วงเวลา "+" เชื่อมต่อกับเฟสใดเฟสหนึ่ง (A) และไฟ "-" เชื่อมต่อกับอีกเฟสหนึ่ง (B) เฟสใดเฟสหนึ่งยังคงว่างอยู่ มอเตอร์หมุนเหนี่ยวนำให้เกิด EMF (เช่น เป็นผลมาจากกฎของการเหนี่ยวนำแม่เหล็กไฟฟ้า กระแสเหนี่ยวนำจะก่อตัวในขดลวด) ในขดลวดอิสระ เมื่อมันหมุน แรงดันไฟฟ้าบนเฟสอิสระ (C) จะเปลี่ยนไป โดยการวัดแรงดันไฟบนเฟสอิสระ คุณสามารถกำหนดโมเมนต์ของการสลับไปยังตำแหน่งถัดไปของโรเตอร์ได้
ในการวัดแรงดันนี้จะใช้วิธี "จุดเสมือน" สิ่งสำคัญที่สุดคือ เมื่อทราบความต้านทานของขดลวดทั้งหมดและแรงดันเริ่มต้น คุณสามารถ "เปลี่ยนลวด" ไปที่ทางแยกของขดลวดทั้งหมดได้:
ตัวควบคุมความเร็วมอเตอร์ไร้แปรง:
มอเตอร์ไร้แปรงถ่านที่ไม่มีอุปกรณ์อิเล็กทรอนิกส์เป็นเพียงเศษเหล็กเพราะ ในกรณีที่ไม่มีเรกูเลเตอร์ เราไม่สามารถใช้แรงดันไฟฟ้ากับมันได้ง่ายๆ เพื่อให้มันเริ่มหมุนตามปกติ ตัวควบคุมความเร็วเป็นระบบที่ค่อนข้างซับซ้อนของส่วนประกอบวิทยุเพราะ เธอต้อง:
1) กำหนดตำแหน่งเริ่มต้นของโรเตอร์เพื่อสตาร์ทมอเตอร์
2) ขับมอเตอร์ด้วยความเร็วต่ำ
3) เร่งความเร็วมอเตอร์ให้หมุนตามที่กำหนด (ชุด) ความเร็วในการหมุน
4) บำรุงรักษา ช่วงเวลาสูงสุดการหมุน

แผนผังของตัวควบคุมความเร็ว (วาล์ว):


มอเตอร์ไร้แปรงถ่านถูกประดิษฐ์ขึ้นในช่วงรุ่งอรุณของการเกิดกระแสไฟฟ้า แต่ไม่มีใครสามารถสร้างระบบควบคุมสำหรับพวกเขาได้ และด้วยการพัฒนาอุปกรณ์อิเล็กทรอนิกส์เท่านั้น: ด้วยการถือกำเนิดของทรานซิสเตอร์เซมิคอนดักเตอร์และไมโครคอนโทรลเลอร์อันทรงพลัง จึงเริ่มมีการใช้มอเตอร์ไร้แปรงถ่านในชีวิตประจำวัน (การใช้ในอุตสาหกรรมครั้งแรกคือในยุค 60)

ข้อดีและข้อเสียของมอเตอร์แบบไม่มีแปรง:

ข้อดี:
-ความถี่ของการหมุนแตกต่างกันไปในช่วงกว้าง
- ความสามารถในการใช้ในสภาพแวดล้อมที่ระเบิดและก้าวร้าว
- ความจุแรงบิดสูง
- ประสิทธิภาพสูง (ประสิทธิภาพมากกว่า 90%)
-ระยะยาวบริการ, ความน่าเชื่อถือสูงและอายุการใช้งานที่เพิ่มขึ้นเนื่องจากไม่มีหน้าสัมผัสไฟฟ้าเลื่อน

ข้อบกพร่อง:
- ระบบการจัดการเครื่องยนต์ที่ค่อนข้างซับซ้อน
- เครื่องยนต์มีราคาสูงเนื่องจากการใช้วัสดุราคาแพงในการออกแบบโรเตอร์ (แม่เหล็ก แบริ่ง เพลา)
เมื่อจัดการกับทฤษฎีแล้ว ไปปฏิบัติกัน: เราจะออกแบบและสร้างเอ็นจิ้นสำหรับ แบบจำลองแอโรบิกเอ็มเอ็กซ์-2

รายการวัสดุและอุปกรณ์:
1) ลวด (นำมาจากหม้อแปลงเก่า)
2) แม่เหล็ก (ซื้อออนไลน์)
3) สเตเตอร์ (แกะ)
4) เพลา
5) ตลับลูกปืน
6) ดูราลูมิน
7) ความร้อนหดตัว
8) เข้าถึงขยะเทคโนโลยีได้ไม่จำกัด
9) การเข้าถึงเครื่องมือ
10) แขนตรง :)

ความคืบหน้า:
1) จากจุดเริ่มต้นเราตัดสินใจ:

ทำไมเราถึงสร้างเครื่องยนต์?
ควรออกแบบเพื่ออะไร?
เราถูก จำกัด ที่ไหน?

ในกรณีของฉัน: ฉันกำลังสร้างเครื่องยนต์สำหรับเครื่องบิน ปล่อยให้มันเป็นการหมุนภายนอก มันควรจะได้รับการออกแบบสำหรับความจริงที่ว่ามันควรจะให้ 1,400 กรัมของแรงขับกับแบตเตอรี่สามกระป๋อง; ฉันมีน้ำหนักและขนาดจำกัด อย่างไรก็ตามคุณจะเริ่มต้นที่ไหน? คำตอบสำหรับคำถามนี้ง่าย: จากส่วนที่ยากที่สุดคือ ด้วยชิ้นส่วนที่หาได้ง่ายกว่าและทุกอย่างอื่นให้พอดี ฉันทำเช่นนั้น หลังจากพยายามทำสเตเตอร์แผ่นเหล็กอ่อนไม่สำเร็จหลายครั้ง ฉันก็เข้าใจได้ชัดเจนว่าควรหาอันหนึ่งดีกว่า ฉันพบมันในหัววิดีโอเก่าจากเครื่องบันทึกวิดีโอ

2) การพันของมอเตอร์ไร้แปรงถ่านแบบสามเฟสนั้นดำเนินการด้วยลวดทองแดงหุ้มฉนวน ซึ่งส่วนตัดขวางจะเป็นตัวกำหนดค่าของความแรงของกระแสไฟ และด้วยเหตุนี้กำลังของมอเตอร์ โปรดจำไว้ว่ายิ่งลวดหนาเท่าไร รอบเพิ่มเติมแต่แรงบิดอ่อนกว่า การเลือกส่วน:

1A - 0.05 มม.; 15A - 0.33 มม.; 40A - 0.7 มม.

3A - 0.11 มม.; 20A - 0.4 มม.; 50A - 0.8mm

10A - 0.25 มม. 30A - 0.55 มม.; 60A - 0.95 มม.


3) เราเริ่มม้วนลวดบนเสา ยิ่งหมุน (13) รอบฟันมากเท่าใด สนามแม่เหล็กก็จะยิ่งมากขึ้นเท่านั้น ยิ่งสนามแข็งแกร่ง แรงบิดยิ่งมากขึ้น และจำนวนรอบที่น้อยลง เพื่อรับ ความเร็วสูงจำเป็นต้องหมุนจำนวนรอบน้อยลง แต่ด้วยสิ่งนี้ แรงบิดก็ลดลงเช่นกัน เพื่อชดเชยช่วงเวลา มักจะมากกว่า ไฟฟ้าแรงสูง.
4) จากนั้นเลือกวิธีการเชื่อมต่อขดลวด: ดาวหรือสามเหลี่ยม การต่อแบบสตาร์ตให้แรงบิดมากกว่าแต่รอบน้อยกว่าการเชื่อมต่อแบบเดลต้าที่ 1.73 เท่า (จากนั้นจึงเลือกการเชื่อมต่อแบบเดลต้า)

5) เลือกแม่เหล็ก จำนวนเสาบนโรเตอร์ต้องเป็นคู่ (14) รูปร่างของแม่เหล็กที่ใช้มักจะเป็นรูปสี่เหลี่ยมผืนผ้า ขนาดของแม่เหล็กขึ้นอยู่กับรูปทรงของมอเตอร์และลักษณะของมอเตอร์ ยิ่งใช้แม่เหล็กแรงมากเท่าใด โมเมนต์ของแรงที่พัฒนาขึ้นโดยมอเตอร์บนเพลาก็จะยิ่งสูงขึ้น นอกจากนี้ ยิ่งจำนวนขั้วมากเท่าใด ช่วงเวลาก็ยิ่งมากขึ้นเท่านั้น แต่รอบหมุนน้อยลง แม่เหล็กบนโรเตอร์ได้รับการแก้ไขด้วยกาวร้อนละลายพิเศษ

แบบทดสอบ เครื่องยนต์นี้ฉันใช้เวลาไปกับการติดตั้งเครื่องช่วยหายใจที่ฉันสร้างขึ้น ซึ่งช่วยให้คุณวัดแรงฉุดลาก กำลังและความเร็วของเครื่องยนต์ได้

ในการดูความแตกต่างระหว่างการเชื่อมต่อแบบสตาร์และเดลต้า ฉันเชื่อมต่อขดลวดด้วยวิธีต่างๆ:

ผลที่ได้คือเครื่องยนต์ที่สอดคล้องกับลักษณะของเครื่องบินซึ่งมีมวล 1,400 กรัม

ลักษณะของเครื่องยนต์ที่ได้:
การบริโภคในปัจจุบัน: 34.1A
หมุนเวียน ไม่ได้ใช้งาน: 2.1A
ความต้านทานคดเคี้ยว: 0.02 โอห์ม
จำนวนเสา: 14
มูลค่าการซื้อขาย: 8400 รอบต่อนาที

วิดีโอรายงานการทดสอบเครื่องยนต์บนเครื่องบิน ... Soft Landing: D

การคำนวณประสิทธิภาพของเครื่องยนต์:


อย่างสูง ตัวบ่งชี้ที่ดี... แม้ว่าจะสามารถทำได้สูงกว่านี้ ...

สรุป:
1) มอเตอร์ไร้แปรงถ่านมีประสิทธิภาพและประสิทธิผลสูง
2) มอเตอร์ไร้แปรงถ่านมีขนาดกะทัดรัด
3) มอเตอร์ไร้แปรงถ่านสามารถใช้ในสภาพแวดล้อมที่ระเบิดได้
4) การเชื่อมต่อแบบ Star ให้แรงบิดมากกว่า แต่รอบน้อยกว่า 1.73 เท่าเมื่อเทียบกับการเชื่อมต่อแบบเดลต้า

ดังนั้น การสร้างมอเตอร์ไร้แปรงถ่านของคุณเองสำหรับเครื่องบินรุ่นแอโรบิกคือ ภารกิจเป็นไปได้

หากคุณมีคำถามหรือบางอย่างไม่ชัดเจน ถามคำถามในความคิดเห็นของบทความนี้ โชคดีนะทุกคน)