ไดอะแกรมของระบบจุดระเบิดรถยนต์ไฟฟ้า dc cdi HDI, TDI, SDI หรือ CDI ไหนดีกว่ากัน? ตัวย่อเหล่านี้ย่อมาจากอะไร และอะไรคือความแตกต่างระหว่างเครื่องยนต์เหล่านี้ เครื่องยนต์ CDI คืออะไร

เพื่อนร่วมชาติของเรายังคงเชื่อมโยงคำว่า "ดีเซล" กับ รถแทรกเตอร์ MTZและคนขับในแจ็กเก็ตผ้าควิลท์ พยายามอุ่นถังน้ำมันด้วยเครื่องเป่าลมในฤดูหนาว เจ้าของรถที่ก้าวหน้ากว่าเป็นตัวแทนของเครื่องยนต์ของรถยนต์ต่างประเทศของเยอรมันหรือญี่ปุ่น ซึ่งสิ้นเปลืองเชื้อเพลิงเพียงเล็กน้อยเมื่อเทียบกับน้ำมันเบนซิน Zhiguli

แต่เวลาและเทคโนโลยีเคลื่อนไปข้างหน้าอย่างไม่ลดละ และรถยนต์ที่สวยงามและทันสมัยมากขึ้นปรากฏขึ้นบนถนนของเรา ซึ่งมีเพียงเสียงก้องจากใต้ฝากระโปรงเท่านั้นที่บอกถึงประเภทของเครื่องยนต์ที่ติดตั้ง

อันที่จริงในตอนแรกเครื่องยนต์ดีเซลพบกันเฉพาะที่ รถบรรทุก, ศาลและการทหารอุปกรณ์ - นั่นคือที่ต้องการความน่าเชื่อถือและความประหยัด โดยมีขนาด น้ำหนัก และความสะดวกสบายอยู่เบื้องหลัง

วันนี้สถานการณ์เปลี่ยนไป และผู้ผลิตแต่ละรายก็พร้อมที่จะเสนอตัวเลือกต่างๆ สำหรับเครื่องยนต์ดีเซลให้คุณ โดยที่ไม่ต้องปลอมตัวอยู่ใต้ป้ายชื่ออีกต่อไป ตัวเลือกงบประมาณและหน่วยที่ใช้เทคโนโลยีแห่งอนาคต ตัวอักษรเจียมเนื้อเจียมตัว CDI, TDI, HDI, SDI ฯลฯ ซ่อนอยู่เบื้องหลังทางเลือกที่เคลื่อนไหวและให้เสียงที่ดีกว่าเครื่องยนต์เบนซิน หลังจากได้รับข้อมูลของผู้ผลิตแล้ว เราจึงพยายามค้นหาว่าระบบดีเซลที่ซ่อนอยู่หลังป้ายชื่อที่ฝากระโปรงหลังแตกต่างกันอย่างไร

ดังนั้น, ตัวย่อ DI มีอยู่ในระบบที่กล่าวถึงทั้งหมด ย่อมาจากการฉีดเชื้อเพลิงโดยตรงเข้าไปในห้องเผาไหม้ (English Direct Injection) ซึ่งให้ ประสิทธิภาพที่ดี. เทคโนโลยีการฉีดค่อนข้างใหม่

มันขึ้นอยู่กับ ระบบจ่ายน้ำมันเชื้อเพลิง คอมมอนเรล พัฒนาโดย BOSCH ในปี 1993 หลักการทำงานของระบบคือ หัวฉีดเชื่อมต่อกันด้วยช่องสัญญาณทั่วไป ซึ่งเชื้อเพลิงจะถูกฉีดภายใต้แรงดันสูง ส่วนประกอบที่สำคัญที่สุดของเครื่องยนต์ดีเซลซึ่งกำหนดความน่าเชื่อถือและประสิทธิภาพของการทำงานคือระบบจ่ายน้ำมันเชื้อเพลิงอย่างแม่นยำ หน้าที่หลักของมันคือการจัดหาเชื้อเพลิงตามปริมาณที่กำหนดไว้อย่างเคร่งครัดให้กับ ช่วงเวลานี้และด้วยความกดดันที่จำเป็น ทำให้แรงดันน้ำมันเชื้อเพลิงสูงและความต้องการที่แม่นยำ ระบบเชื้อเพลิงดีเซลมีความซับซ้อนและมีราคาแพง องค์ประกอบหลักของมันคือ: ปั๊มน้ำมันเชื้อเพลิงแรงดันสูง หัวฉีด และไส้กรองน้ำมันเชื้อเพลิง ปั๊มถูกออกแบบมาเพื่อจ่ายเชื้อเพลิงให้กับหัวฉีดตามโปรแกรมที่กำหนดไว้อย่างเคร่งครัด ขึ้นอยู่กับโหมดการทำงานของเครื่องยนต์และการควบคุมของผู้ขับขี่

ในดีเซลทั่วไป ปั๊มแรงดันสูงแต่ละส่วนจะฉีดดีเซลเข้าไปในท่อเชื้อเพลิง "แยก" (ไปยังหัวฉีดเฉพาะ) เส้นผ่านศูนย์กลางภายในมักจะไม่เกิน 2 มม. และเส้นผ่านศูนย์กลางภายนอก - 7 - 8 มม. นั่นคือผนังค่อนข้างหนา แต่เมื่อส่วนหนึ่งของเชื้อเพลิงถูก "ขับ" ผ่านเข้าไปภายใต้ความกดอากาศสูงถึง 2,000 บรรยากาศ ท่อจะพองตัวเหมือนงูกำลังกลืนเหยื่อ และทันทีที่น้ำมันดีเซลนี้เข้าไปในหัวฉีด ท่อน้ำมันเชื้อเพลิงจะหดตัวอีกครั้ง ดังนั้น หลังจากเติมเชื้อเพลิงในปริมาณที่กำหนด ปริมาณที่เพิ่มขึ้นเล็กน้อยจะถูก "สูบ" ไปที่หัวฉีดอย่างแน่นอน การเผาไหม้ที่ลดลงนี้ทำให้สิ้นเปลืองเชื้อเพลิงมากขึ้น เพิ่มควันของเครื่องยนต์ และกระบวนการเผาไหม้ยังห่างไกลจากความสมบูรณ์ นอกจากนี้การเต้นของท่อแต่ละท่อเองก็ทำให้เสียงของเครื่องยนต์เพิ่มขึ้น ด้วยมูลค่าการซื้อขายที่เพิ่มขึ้น ดีเซลสมัยใหม่(สูงถึง 4,000 - 5,000 รอบต่อนาที) ก็เริ่มก่อให้เกิดความไม่สะดวกที่จับต้องได้


มีขายหลายพันธุ์ที่ปั๊มน้ำมันยุโรป น้ำมันดีเซล. แต่ข้อได้เปรียบหลักของน้ำมันดีเซลคือคุณภาพ

การควบคุมการจ่ายน้ำมันเชื้อเพลิงด้วยคอมพิวเตอร์ทำให้สามารถฉีดเข้าไปในห้องเผาไหม้ของกระบอกสูบในสองส่วนที่มีการตรวจวัดอย่างแม่นยำ ซึ่งก่อนหน้านี้เป็นไปไม่ได้ อย่างแรกคือปริมาณเล็กน้อยเพียงประมาณหนึ่งมิลลิกรัมซึ่งเมื่อถูกเผาจะทำให้อุณหภูมิในห้องสูงขึ้นและจากนั้น "ประจุ" หลักก็มาถึง สำหรับเครื่องยนต์ดีเซลที่มีการจุดระเบิดด้วยการอัดเชื้อเพลิง นี่เป็นสิ่งสำคัญมาก เนื่องจากในกรณีนี้ ความดันในห้องเผาไหม้จะเพิ่มขึ้นอย่างราบรื่นยิ่งขึ้น โดยไม่มี "การกระตุก" ส่งผลให้มอเตอร์ทำงานนุ่มนวลขึ้นและมีเสียงรบกวนน้อยลง แต่สิ่งสำคัญคือระบบคอมมอนเรลกำจัดการฉีดเชื้อเพลิงส่วนเกินเข้าไปในห้องเผาไหม้อย่างสมบูรณ์ เป็นผลให้การสิ้นเปลืองน้ำมันเชื้อเพลิงของเครื่องยนต์ลดลงประมาณ 20% และแรงบิดที่ความเร็วต่ำเพิ่มขึ้น 25% นอกจากนี้ปริมาณเขม่าในไอเสียจะลดลงและเสียงของเครื่องยนต์จะลดลง การเปลี่ยนแปลงที่ก้าวหน้าในระบบจ่ายเชื้อเพลิงเป็นหัวฉีดดีเซลนั้นเกิดขึ้นได้ด้วยการพัฒนาอุปกรณ์อิเล็กทรอนิกส์เท่านั้น

คนแรกๆ ที่ใช้ระบบนี้คือ Daimler-Benz ที่ออกแบบเครื่องยนต์ให้ อักษรย่อ CDIเริ่มต้นด้วยดีเซลสำหรับ Mercedes-Benz A-class, เครื่องยนต์ที่คล้ายกันติดตั้ง B, C, S, E-class และ ML แบบออฟโรด ข้อเท็จจริงพูดเพื่อตัวเอง Mercedes-Benz C 220 CDI ความจุ 2151 cm3 และกำลัง 125 แรงม้า แรงบิดสูงสุด 300 Nm ที่ 1800-2600 rpm ด้วย กล่องเครื่องกลระบบเกียร์ใช้น้ำมันดีเซลเฉลี่ย 6.1 ลิตรต่อ 100 กม. ดังนั้น การบริโภคต่ำเชื้อเพลิงที่มีความจุถังน้ำมันถึง 62 ลิตร ทำให้รถสามารถเดินทางได้ไกลถึงพันกิโลเมตรโดยไม่ต้องเติมน้ำมัน

มีหน่วยพลังงานที่คล้ายกันทั้งครอบครัวที่มีปริมาตรการทำงาน 1.5 ถึง 2.4 ลิตร โตโยต้า. การแนะนำโซลูชันทางเทคนิคที่สดใหม่ได้ปรับปรุงกำลังและแรงบิดของเครื่องยนต์ใหม่อย่างน้อย 40% ประสิทธิภาพการใช้เชื้อเพลิง - 30% ทั้งหมดนี้ - ด้วยข้อมูลที่ดีในส่วนของนิเวศวิทยา

มาสด้ายังมีเครื่องยนต์ดีเซลแบบไดเร็คอินเจ็คชั่นในคลังแสง ได้รับการพิสูจน์อย่างดีในรุ่น 626 เครื่องยนต์สี่สูบแถวเรียงขนาด 2 ลิตรมีกำลัง 100 แรงม้า ด้วยแรงบิด 220 นิวตันเมตรที่ 2,000 รอบต่อนาที จากการปฏิบัติตามมาตรฐานด้านสิ่งแวดล้อมทั้งหมดรถยนต์ที่มีหน่วยกำลังดังกล่าวใช้เชื้อเพลิง 5.2 ลิตรต่อ 100 กม. ที่ความเร็ว 120 กม. / ชม.

ตัวย่อ TDI เป็นคนแรกที่ใช้ ความกังวลของโฟล์คสวาเกนสำหรับเครื่องยนต์ดีเซลที่มีระบบไดเร็กอินเจ็กชั่นและเทอร์โบชาร์จ TDI 1.2l ของ Volkswagen Lupo ถือสถิติโลกสำหรับ รถยนต์โดยสัมประสิทธิ์ การกระทำที่เป็นประโยชน์. TDI ช่วย รถโฟล์คสวาเก้นและ Audi ให้เป็นยานยนต์ที่ล้ำสมัยที่สุดในกลุ่มยานยนต์ที่ใช้เครื่องยนต์ดีเซล

หลายคนต้องการขี่กระแสความนิยม ดังนั้นคู่แข่งจึงไม่รอช้า ก่อนอื่น เรื่องนี้เกี่ยวข้องกับ Adam Opel AG ซึ่งเปิดตัวตระกูลเครื่องยนต์ECOTEC TDI - คลังนวัตกรรม: การฉีดตรง หัวบล็อกที่มีสี่วาล์วต่อสูบหนึ่ง เพลาลูกเบี้ยว, เทอร์โบชาร์จเจอร์อินเตอร์คูลลิ่ง, ปั๊มเชื้อเพลิงแรงดันสูงควบคุมด้วยระบบอิเล็กทรอนิกส์, หัวฉีดละอองสูงรวมกับลักษณะการหมุนวนของอากาศไอดี ทั้งหมดนี้ช่วยลดการใช้เชื้อเพลิงลง 17% (เทียบกับดีเซลเทอร์โบชาร์จทั่วไป) และลดการปล่อยมลพิษลง 20%

ความสำเร็จมากมายในด้านวิศวกรรมดีเซลทำให้สามารถฟื้นฟูทิศทางที่ถูกลืมไปอย่างไม่สมควร ซึ่งก็คือหน่วยพลังงานดีเซล 8 สูบรูปตัววี ซึ่งรวมกำลัง ความสะดวกสบาย และการสิ้นเปลืองเชื้อเพลิงที่ประหยัด BMW 740d ได้รับการติดตั้งเครื่องยนต์ดีเซล V8 เป็นเวลา 8 ปี ดีเซลบาวาเรียมีการฉีดโดยตรง ซึ่งช่วยปรับปรุงประสิทธิภาพการใช้เชื้อเพลิงของเครื่องยนต์หลายสูบขึ้น 30-40% เมื่อเทียบกับน้ำมันเบนซิน ใช้ 4 วาล์วต่อสูบ คอมมอนเรล และเทอร์โบชาร์จเจอร์ หน่วยกำลัง 3.9 ลิตรพัฒนา 230 แรงม้า ที่ 4000 รอบต่อนาที แรงบิดของมันคือ 500 นิวตันเมตรที่ 1800 รอบต่อนาที

เทอร์โบชาร์จช่วยให้คุณเพิ่มกำลังเครื่องยนต์ได้โดยไม่กระทบต่อความประหยัด เครื่องยนต์ TDIตามกฎแล้วไม่โอ้อวดและเชื่อถือได้ แต่พวกเขามีข้อเสียเปรียบอย่างหนึ่ง ทรัพยากรของกังหันมักจะ 150,000 แม้ว่าทรัพยากรของเครื่องยนต์เองสามารถเข้าถึงได้ถึงหนึ่งล้าน

สำหรับคนที่กลัวค่าซ่อมแพงๆ ก็มีอีกทางเลือกหนึ่ง ตัวย่อ SDI ใช้เพื่ออ้างถึงเครื่องยนต์ดีเซลที่สำลักโดยธรรมชาติ (สำลักโดยธรรมชาติ) ที่มีการฉีดเชื้อเพลิงโดยตรง มอเตอร์เหล่านี้ไม่กลัว ระยะทางยาวและคงตำแหน่งของตนไว้อย่างมั่นคงในการจัดอันดับความน่าเชื่อถือ

ผู้นำระดับโลกด้านการผลิตเครื่องยนต์ดีเซล - ความกังวลของ PSA เปอโยต์ ซีตรองซ่อนเทคโนโลยีคอมมอนเรลไว้ใต้แผ่นป้าย HDI ตัวอักษรสามตัวซ่อนขุมทรัพย์ที่แท้จริงสำหรับคนขับ "ขี้เกียจ" ช่วงเวลาการบริการของเครื่องยนต์ HDI คือ 30,000 กม. และสายพานราวลิ้นและสายพาน หน่วยติดตั้งไม่ต้องเปลี่ยนตลอดอายุรถ เช่นเคย ความสามารถด้านเสียงของชาวฝรั่งเศสนั้นดีที่สุด - ทำงานเงียบเครื่องยนต์มีให้แม้ไม่ได้ใช้งาน ความน่าเชื่อถือของเครื่องยนต์ดีเซลของฝรั่งเศสนั้นพิสูจน์ได้จากข้อเท็จจริงที่ว่ารถยนต์ทุก ๆ วินาทีที่ขายในฝรั่งเศสในปี 2549 ใช้น้ำมันดีเซล

เทคโนโลยี CDI, TDI, HDI, SDI สร้างขึ้นจากระบบคอมมอนเรลรุ่นที่สาม ดังนั้นในสาระสำคัญจึงมีความแตกต่างกันเพียงเล็กน้อย สิ่งที่เราเห็นในตอนนี้เป็นเพียงจุดเด่นของผู้ผลิตเท่านั้น ไม่สามารถระบุผู้นำในการแข่งขันนี้ได้เพราะ มันเกี่ยวกับรสนิยมและความชอบ สิ่งหนึ่งที่แน่นอนคือคนที่เลือกดีเซลวันนี้ชนะแน่นอน

เครื่องยนต์ดีเซล CDI ทุกประการได้รับตำแหน่งผู้นำในตลาดโลกแล้ว

เครื่องยนต์ CDI คืออะไร

เริ่มการผลิตเครื่องยนต์ครั้งแรก ความกังวลของเยอรมัน"เมอร์เซเดส". ตัวย่อ CDI ย่อมาจาก Common Rail Diesel Injection ซึ่งย่อมาจากระบบฉีดเชื้อเพลิงดีเซล

ระบบนี้ได้รับการออกแบบโดยคนงานที่มีคุณสมบัติสูงในปี 2544 ระบบจ่ายเชื้อเพลิงดีเซลคอมมอนเรลถูกนำมาใช้เป็นพื้นฐานสำหรับการพัฒนาเครื่องยนต์ CDI ความต้องการที่เพิ่มขึ้นของเครื่องยนต์ดีเซลกลายเป็นรากฐานสำหรับการเกิดขึ้นของระบบ CR และในอนาคต CDI ระบบคอมมอนเรลที่ติดตั้งในเครื่องยนต์ดีเซลเปิดตัวครั้งแรกในปี 1997 โดย Bosch

การสิ้นเปลืองน้ำมันเชื้อเพลิงลดลง 15% การเพิ่มกำลังเครื่องยนต์ CDI ขึ้น 40% เกี่ยวข้องกับการใช้ระบบคอมมอนเรล แต่ทำให้การซ่อมแซมยากขึ้นมาก เนื่องจาก Mercedes เป็นปัญหาขั้นสูง จึงแนะนำระบบนี้ให้กับรถยนต์ใหม่ทันที

นอกจากนี้ เจ้าของรถยนต์ที่มีเครื่องยนต์เก่ามีโอกาสแทนที่ด้วยเครื่องยนต์ CDI รุ่นใหม่ และรับส่วนประกอบที่มีตราสินค้าสำหรับพวกเขา

Mercedes เป็นบริษัทแรกที่ให้บริการดังกล่าว จึงตอกย้ำสถานะผู้นำตลาดให้แข็งแกร่งยิ่งขึ้น

การใช้งานและบำรุงรักษามอเตอร์

คอมมอนเรลทำงานเนื่องจากแรงดันสูงที่ต่อเนื่องเป็นแนวเดียวและถูกฉีดเข้าไปในกระบอกสูบผ่านท่อที่ควบคุมด้วยระบบอิเล็กทรอนิกส์ บ่อยครั้งที่มีการติดตั้งวาล์ว piezoelectric ซึ่งติดตั้งไว้ในเครื่องยนต์ Mercedes

การบำรุงรักษาตามธรรมชาติและ ซ่อม CDIขึ้นราคาเมื่อเทียบกับแบบดั้งเดิม แต่ประสิทธิภาพเพิ่มขึ้น แรงบิด กำลังเพิ่มขึ้น ระยะเวลาการทำงานของรายละเอียดเพิ่มขึ้น

นอกจากนี้ยังมีคุณสมบัติที่ปฏิเสธไม่ได้ใน CDI เช่น การลดเสียงรบกวน ความเป็นพิษ การสั่นสะเทือน นอกจากนี้ยังมีการนำชุดควบคุมมาใช้ในการออกแบบ ซึ่งช่วยปรับปรุงคุณภาพของระบบไฟฟ้าผ่านโปรแกรมต่างๆ มากมาย

โดยไม่คำนึงถึงความเร็วของเครื่องยนต์และโหลดสำหรับลำดับการฉีดของกระบอกสูบ บล็อคนี้การควบคุมสนับสนุนเสมอ ความดันสูง. ด้วยเหตุนี้แม้ในความเร็วที่น้อยที่สุด เพลาข้อเหวี่ยงส่วนผสมเชื้อเพลิงถูกฉีดเข้าไปในกระบอกสูบ

การฉีด “เบื้องต้น” เป็นความรู้ความชำนาญของบริษัท Mercedes ซึ่งได้รับการแนะนำเพิ่มเติมจาก ระบบทั่วไปรถไฟในปี 2544 หลักการทำงานขึ้นอยู่กับการฉีดเชื้อเพลิงในเสี้ยววินาทีก่อนส่วนหลักของส่วนผสมเชื้อเพลิง ซึ่งช่วยให้ส่วนหลักของเชื้อเพลิงเข้าสู่ห้องเผาไหม้ที่อุ่นไว้แล้ว

ด้วยเหตุนี้การจุดระเบิดของเชื้อเพลิงจึงได้รับการปรับปรุงตามธรรมชาติซึ่งทำให้สามารถลดการบริโภคและ เนื่องจากหลักการทำงานนี้ เครื่องยนต์ดีเซล CDI ได้ชื่อมา รถยนต์ทุกคันที่สองในยุโรปในปัจจุบันมีเครื่องยนต์ดีเซล CDI ในการกำหนดค่า

ในขั้นต้น เครื่องยนต์ดังกล่าวได้รับการติดตั้งตามธรรมชาติในรถยนต์ Mercedes เหล่านี้เป็นรถยนต์ของซีรีย์ ML และ Vito

ในปี 2002 เปอโยต์ ผู้ผลิตรายใหญ่ของฝรั่งเศส และเฟียต ผู้ผลิตในอิตาลี นำระบบที่คล้ายคลึงกันมาใช้ แต่บริษัทชั้นนำในด้านเทคโนโลยี บริการ และการพัฒนายังคงเป็นเมอร์เซเดส บริษัทไม่ยอมแพ้ในทุกกรณี

ดังนั้น หากมีความจำเป็นเร่งด่วนในการซ่อมแซมเครื่องยนต์ CDI การตัดสินใจที่ถูกต้องคือการติดต่อ บริการเฉพาะทางบริษัทที่ผู้เชี่ยวชาญที่มีคุณสมบัติสูงจะทำงาน

ในทางเทคนิค Mercedes มีการพัฒนาอย่างต่อเนื่อง มาตรฐานที่สม่ำเสมอสำหรับการบริการรถยนต์ของพวกเขานั้นเป็นของผู้พัฒนารถยนต์ยักษ์ใหญ่อย่าง Mercedes อย่างแม่นยำ

ตามมาตรฐานที่พัฒนาแล้ว ลูกค้าของข้อกังวลควรใช้ชิ้นส่วนรถยนต์ของแท้และติดต่อตัวแทนจำหน่าย หากรถไม่ได้ติดตั้ง อะไหล่แท้บริษัทจะถือเป็นโมฆะการรับประกันทั้งหมด

การบำรุงรักษามอเตอร์ต้องมีคุณสมบัติสูงและจำเป็นต้องใช้อะไหล่รถยนต์ยี่ห้อเดิม อายุการใช้งานของเครื่องยนต์ CDI มีตัวเลขที่สำคัญ เมื่อเกิดการขัดข้อง สิ่งที่แนบมาหรืออุปกรณ์เสริมจะล้มเหลว

บริการที่ดีเยี่ยม, ไฮเทค, คุณภาพ - การแสดงออกที่คู่ควรในสภาพแวดล้อมยานยนต์เป็นของบริษัทที่พัฒนาเครื่องยนต์แบรนด์ CDI ซึ่งก็คือผู้ผลิตรถยนต์รายใหญ่อย่าง Mercedes-Benz

เป็นครั้งแรกที่การออกแบบเครื่องยนต์ที่ทำงานบนพื้นฐานของหลักการจุดระเบิดเองของเชื้อเพลิงภายใต้การกระทำของอากาศที่ถูกทำให้ร้อนโดยการอัดได้รับการจดสิทธิบัตรโดย Rudolf Diesel ในปี 1892 เครื่องยนต์เปิดตัวได้รับการดัดแปลงให้ทำงานกับน้ำมันพืชและผลิตภัณฑ์ปิโตรเลียมเบา และในปี 1898 เครื่องยนต์เหล่านี้สามารถใช้น้ำมันดิบได้แล้ว ผู้ผลิต รถยนต์นั่งส่วนบุคคลให้ความสนใจกับเครื่องยนต์ดีเซลในยุค 70 ของศตวรรษที่ 20 เท่านั้นเมื่อราคาน้ำมันสูงขึ้นอย่างมาก

ข้อดีของเครื่องยนต์ดีเซล

ตั้งแต่นั้นมา เครื่องยนต์ดีเซลได้รับการปรับปรุงอย่างมากและนำไปใช้ในการกำหนดค่าต่างๆ ของรถยนต์ได้สำเร็จ ผู้ขับขี่รถยนต์หลายคนชอบ "ดีเซล" มากกว่าแบบธรรมดา เครื่องยนต์เบนซินเนื่องจากอดีตประหยัดกว่า (กินเชื้อเพลิงน้อยกว่าถึง 30% ซึ่งถูกกว่าน้ำมันเบนซินหลายเท่าหลายเท่า) และมีแรงบิดสูงกว่า และนี่คือความจริงที่ว่ารถยนต์ที่ติดตั้ง "ดีเซล" จะมีต้นทุนที่สูงกว่ามาก และเครื่องยนต์เองก็มีน้ำหนักและขนาดเพิ่มขึ้นเนื่องจากได้รับการออกแบบให้ทนทานต่อน้ำหนักบรรทุกมหาศาล

ลักษณะของเครื่องยนต์ดีเซล TDI และ CDI

จนถึงปัจจุบันรู้จักเครื่องยนต์ดีเซลหลายประเภท อย่างไรก็ตาม หากคุณตั้งใจจะเลือกระหว่างหน่วยต่างๆ เช่น TDI และ CDI คุณควรเปรียบเทียบคุณลักษณะของหน่วยดังกล่าวล่วงหน้า เพื่อที่จะตัดสินใจได้อย่างถูกต้องและได้สิ่งที่คุณต้องการในที่สุด

เครื่องยนต์ TDI (Turbocharged Direct Injection) ได้รับการพัฒนาโดย Volkswagen บริษัทสัญชาติเยอรมัน หลักของเขา จุดเด่น, นอกจาก ฉีดตรงคือการมีอยู่ของเทอร์โบชาร์จเจอร์ที่มีรูปทรงกังหันแปรผัน ระบบโดยรวมรับประกันการเติมกระบอกสูบที่เหมาะสม การเผาไหม้เชื้อเพลิงที่มีประสิทธิภาพสูง ความประหยัด และ ความปลอดภัยด้านสิ่งแวดล้อม. เทอร์โบชาร์จของเครื่องยนต์ TDI จะประสานพลังงานของการไหลของก๊าซไอเสีย ดังนั้นจึงให้แรงดันอากาศที่จำเป็นในช่วงความเร็วรอบเครื่องยนต์ที่หลากหลาย

มอเตอร์ดังกล่าวถือว่ามีความน่าเชื่อถือเพียงพอและใช้งานไม่ได้ อย่างไรก็ตาม พวกมันมีคุณสมบัติที่ไม่พึงประสงค์อย่างหนึ่ง ความจริงก็คือกังหัน TDI อุณหภูมิสูงการทำงาน (และสูงถึง 1,000 ° C สำหรับการไหลของก๊าซไอเสีย) และความเร็วในการหมุนที่น่าประทับใจ (ประมาณ 200,000 รอบต่อนาที) มีทรัพยากรขนาดเล็กเพียงประมาณ 150,000 กิโลเมตรของรถ แต่ตัวเครื่องยนต์เองก็สามารถทนต่อระยะทางได้ถึง 1 ล้านกม.

"Diesel" CDI (คอมมอนเรลดีเซลฉีด) เป็นผลพวงจากการทำงานของเมอร์เซเดส-เบนซ์ เป็นคนแรกที่ใช้ระบบหัวฉีดคอมมอนเรลที่เป็นนวัตกรรมใหม่ ช่วยลดการสิ้นเปลืองเชื้อเพลิงได้อย่างมาก และกำลังเพิ่มขึ้นเกือบ 40% เป็นที่น่าสังเกตว่ามอเตอร์ CDI ต้องการค่าใช้จ่ายจำนวนมากใน บริการหลังการขายอย่างไรก็ตาม ด้วยระดับการสึกหรอของชิ้นส่วนในระดับต่ำ การซ่อมแซมจึงมีความจำเป็นน้อยลงมาก ดูเหมือนว่าระบบจะสมบูรณ์แบบ แต่เครื่องยนต์นี้สามารถไวต่อเชื้อเพลิงคุณภาพต่ำได้

อย่างไรก็ตาม แท้จริงแล้วเครื่องยนต์ดีเซลสมัยใหม่นั้นไม่แตกต่างกันมากนัก ยกเว้นบางจุดเล็กน้อย ดังนั้นจึงเป็นไปไม่ได้ที่จะตอบคำถามอย่างแจ่มแจ้งว่าเครื่องยนต์ใดดีกว่าจริง คุณต้องได้รับคำแนะนำจากความต้องการ รสนิยม และความชอบของคุณเอง แต่เลือกเอง เครื่องยนต์ดีเซล– นี่เป็นการตัดสินใจที่ถูกต้องอย่างแน่นอน

แหล่งข้อมูลนี้มีไว้สำหรับทุกคน ระบบต่างๆระบบจุดระเบิดและตัวเก็บประจุแบบไทริสเตอร์ ZV1 โดยเฉพาะ หากคุณต้องการระบบจุดระเบิดสำหรับงานหนัก หากคุณตัดสินใจที่จะกำจัดปัญหากับผู้จัดจำหน่ายเครื่องจักรกลอย่างถาวร หรือเพียงแค่เปลี่ยนระบบมาตรฐานที่ล้มเหลวด้วยระบบที่มีประสิทธิภาพและสมบูรณ์แบบยิ่งขึ้น หากคุณเบื่อกับการเปลี่ยนเทียนหลังจากเยี่ยมชมครั้งต่อไป " ซ้าย" ปั๊มน้ำมันและเล่นรูเล็ตในที่เย็น (เริ่มหรือไม่) แหล่งข้อมูลนี้เหมาะสำหรับคุณ!

ผมขอเตือนคุณสั้น ๆ ว่าระบบจุดระเบิดของตัวเก็บประจุแบบไทริสเตอร์ (DC-CDI) มีข้อดีที่ปฏิเสธไม่ได้หลายประการเหนือทรานซิสเตอร์ "คลาสสิก" อยู่แล้ว กล่าวคือ:

  1. อย่างสูง ความเร็วสูงการเจริญเติบโต ไฟฟ้าแรงสูงที่เอาต์พุต (1 - 3 ไมโครวินาทีขึ้นอยู่กับประเภทของคอยล์) เทียบกับ 30-60 ไมโครวินาทีสำหรับระบบทรานซิสเตอร์ ซึ่งช่วยให้คุณควบคุมโมเมนต์ของประกายไฟได้อย่างแม่นยำมากโดยไม่คำนึงถึงแรงดันพังทลาย ช่องว่างประกาย, รัฐ ส่วนผสมของเชื้อเพลิงและอากาศและเงื่อนไขอื่นๆ นอกจากนี้ เนื่องจากด้านหน้าของพัลส์ HV ชันขึ้น สิ่งอื่น ๆ ที่เท่ากัน ช่องว่างอากาศที่ถูกเจาะเพิ่มขึ้นอย่างมาก ซึ่งช่วยให้คุณทำงานกับอัตราส่วนการอัดที่สูงมากได้สำเร็จโดยไม่เพิ่มแรงดันเอาต์พุต HV อย่างมาก
  2. การปล่อยพลังงานจำนวนมากในระยะเวลาอันสั้น ซึ่งช่วยให้เกิดประกายไฟที่เสถียรด้วยแรงแบ่งที่สำคัญ เช่น มีเขม่าบนฉนวนหัวเทียน เขม่าจากสารประกอบที่เป็นโลหะ ความชื้นบนตะกั่วที่ระเบิดได้ และ กรณีซ้ำซากเมื่อพวกเขาพูดว่า "เติมเทียน"
  3. มันค่อนข้างง่ายที่จะได้จุดประกายของกำลังเกือบทุกชนิด ซึ่งยากมากด้วยระบบทรานซิสเตอร์ทั่วไป
จากข้อบกพร่อง "ตามเงื่อนไข" พื้นฐานที่มีอยู่ในระบบ CDI ทั้งหมด ควรสังเกตระยะเวลาการจุดประกายที่สั้นมาก (น้อยกว่า 0.1 ms) ทำไมข้อเสียจึงมีเงื่อนไข? ความจริงก็คือด้วยพลังงานการคายประจุที่สูงเพียงพอ - ระยะเวลาที่ยาวนานของมันจะไม่มีบทบาทสำคัญใด ๆ และเป็นพลังงานการปลดปล่อยที่มาก่อน และโดยทั่วไป ยังไม่มีข้อมูลที่น่าเชื่อถือเกี่ยวกับผลกระทบของระยะเวลาประกายไฟที่มีต่อลักษณะและประสิทธิภาพการจุดระเบิดของส่วนผสมเชื้อเพลิง คำแนะนำทั้งหมดเกี่ยวกับระยะเวลาที่ต้องการ 1 ms เป็นเพียงการเก็งกำไรโดยอิงจากข้อมูลความล่าช้าในการจุดระเบิด ซึ่งเป็นมิลลิวินาทีที่ฉาวโฉ่อย่างแม่นยำ เหล่านั้น. หลังจากช่วงเวลาที่เกิดประกายไฟ จะมีความไม่แน่นอนประมาณ 1 มิลลิวินาทีที่มันอาจจะจุดไฟหรือไม่ก็ได้ ดังนั้นเราจึงตัดสินใจว่าประกายไฟนั้นยาวกว่า 1 มิลลิวินาที ในความเป็นจริง ทฤษฎีและการปฏิบัตินี้อยู่ไกลกันมาก แต่ดูเหมือนว่าข้อเสียเปรียบทางทฤษฎีพื้นฐานได้รับการแก้ไขเรียบร้อยแล้ว! ในการจุดไฟของเราในขณะที่รักษาทุกคนไว้ คุณสมบัติเชิงบวกที่มีอยู่ในระบบ CDI เป็นไปได้ที่จะได้รับประกายไฟในระยะเวลาที่เทียบเท่ากับระบบจุดระเบิดของทรานซิสเตอร์

ดังนั้นระบบจุดระเบิด (CDI) จึงมีความจำเป็นอย่างยิ่งและบางครั้งก็ขาดไม่ได้ในบางกรณีต่อไปนี้:

  1. อัตราส่วนการอัดที่สูงมาก - เพิ่มแรงดันพังทลายของช่องว่างประกายไฟและอิทธิพลของโหลดแบบแบ่งต่างๆ (เขม่าและคราบต่างๆ บนฉนวนหัวเทียน) รวมถึงกระแสไฟรั่วอื่นๆ จะสังเกตเห็นได้ชัดเจนมาก ระบบจุดระเบิดของเราได้รับการติดตั้งและทำงานสำเร็จบนเครื่องยนต์ทดลองของ Ibadullaev ด้วยอัตราส่วนกำลังอัด 22-25 (http://www.iga-motor.ru) ความพยายามเป็นเวลาหลายปีในการทำงานตามปกติกับเครื่องยนต์ดังกล่าว จุดระเบิดทรานซิสเตอร์จบลงด้วยความล้มเหลว
  2. ความเร็วรอบเครื่องยนต์สูง - แม้แต่ความล่าช้าเล็กน้อยในช่วงเวลาที่เกิดประกายไฟก็นำไปสู่การสูญเสียกำลัง นอกจากนี้ ความปั่นป่วนขนาดใหญ่ในห้องเผาไหม้ยังนำไปสู่ผลกระทบของ "การเป่า" ประกายไฟ เมื่อประกายไฟถูกเป่าออกอย่างแท้จริงก็ต่อเมื่อ เกิดขึ้นหรือไม่เกิดขึ้นเลย
  3. การใช้น้ำมันเบนซินกับสารต้านการกระแทกของเฟอร์โรซีนทำให้เกิดคราบสะสมที่เป็นสื่อกระแสไฟฟ้าบนหัวเทียน ทำให้เกิดประกายไฟได้ยากหรือเป็นไปไม่ได้
  4. เครื่องยนต์ที่ใช้ส่วนผสมของแอลกอฮอล์และแอลกอฮอล์ - ตามกฎแล้วจะมีอัตราส่วนการอัดสูงและแอลกอฮอล์จะจุดไฟได้ยากกว่าน้ำมันเบนซิน
  5. เครื่องยนต์ที่ใช้แก๊สต้องใช้ระบบจุดระเบิดที่ทรงพลังกว่าเครื่องยนต์เบนซิน เนื่องจากแก๊สติดไฟได้แย่กว่ามากและเผาไหม้ช้ากว่าน้ำมันเบนซิน ในขณะนี้ ปัญหามากมายเกี่ยวกับการจุดระเบิดในเครื่องยนต์สันดาปภายในแบบลูกสูบแก๊สยังไม่ได้รับการแก้ไขใน อย่างเต็มที่และยังคงรอวิธีแก้ปัญหาอยู่ ซึ่งหนึ่งในนั้นคือระบบจุดระเบิด ZV1 ของเรา
  6. การปฏิบัติได้แสดงให้เห็นว่าผลกระทบในทางปฏิบัติที่ยิ่งใหญ่ที่สุดจากการใช้ระบบจุดระเบิดของเรานั้นแสดงออกมาในเครื่องยนต์ที่มีซูเปอร์ชาร์จ และโดยเฉพาะอย่างยิ่งกับซูเปอร์ชาร์จที่สูง (1-2 บาร์) ความแตกต่างระหว่างสต็อกและการจุดระเบิดของเรานั้นโดดเด่นมาก! ไม่มีความล้มเหลวไม่มีการยิงเข้าไปในตัวเก็บเสียง อย่างที่ลูกค้าบอกว่า

มักมีมากกว่า 2 รายการข้างต้นพร้อมกัน เช่น ใน รถสปอร์ตที่ไหนมี องศาสูงการบีบอัด เรฟสูงใช้น้ำมันเบนซินและแอลกอฮอล์ออกเทนสูง ในเครื่องยนต์ที่ออกแบบให้ทำงานโดยใช้แก๊ส สูงมาก (11 ขึ้นไป) + ก๊าซไวไฟต่ำและเผาไหม้ช้า การสตาร์ทเครื่องยนต์ในสภาพอากาศหนาวเย็นด้วยระบบ CDI ที่ดีจะไม่เหมือนกับรูเล็ตรัสเซีย มันสตาร์ทเสมอสิ่งสำคัญคือแบตเตอรี่เพียงพอที่จะหมุนเครื่องยนต์

เป็นไปไม่ได้ที่จะปรับปรุงคุณสมบัติของระบบจุดระเบิดทั่วไปโดยไม่ต้องใช้คอยล์พิเศษและสวิตช์ที่ทรงพลังเป็นพิเศษ การใช้สวิตช์อันทรงพลังและคอยล์พิเศษช่วยให้คุณเพิ่มพลังของประกายไฟได้ แต่โดยทั่วไปแล้วอัตราการเพิ่มขึ้นของแรงดันไฟฟ้าไม่สามารถเพิ่มขึ้นได้มากนัก ในระบบจุดระเบิด (CDI) คำถามเรื่องความเร็วไม่ได้เกิดขึ้นเลย และกำลังเพิ่มขึ้นอย่างง่ายดายโดยเพียงแค่เพิ่มความจุของตัวเก็บประจุแบบสวิตชิ่ง และถึงแม้จะใช้คอยล์จุดระเบิดแบบเดิม คุณก็สามารถเพิ่มกำลังประกายไฟได้หลายครั้ง และฆ่ากระต่ายทั้งหมดพร้อมกัน เหตุใดคุณจึงค่อนข้างมีเหตุผลว่าระบบดังกล่าวหายากมาก? คำตอบน่าจะง่าย - ระบบ CDI ที่ดีนั้นซับซ้อนเกินไปและมีต้นทุนการผลิตสูงเมื่อเทียบกับสวิตช์ทรานซิสเตอร์ราคาถูก และในแง่ของประสิทธิภาพ การจุดระเบิดของทรานซิสเตอร์แบบคลาสสิก "ตอบสนอง" ผู้บริโภคทั่วไปส่วนใหญ่ เช่นเดียวกับการจุดระเบิดแบบสัมผัสแบบคลาสสิกในยุคนั้น

นอกจากนี้ยังไม่สำคัญที่การสร้างระบบ CDI ที่มีคุณภาพสูงและสมบูรณ์แบบนั้นต้องการความรู้เชิงลึกและประสบการณ์ที่กว้างขวางในด้านอิเล็กทรอนิกส์กำลังและเทคโนโลยีพัลส์ ซึ่งนักวิทยุสมัครเล่นธรรมดาทั่วไปไม่มี ดังนั้น ทั้งหมดเป็นที่รู้จักจาก การออกแบบที่มีอยู่ ยกเว้นงานหัตถกรรมที่ไม่ดี ในหลาย ๆ ด้านทำให้เสียชื่อเสียง แนวคิดเรื่องการจุดไฟดังกล่าวไม่สามารถตั้งชื่อได้ ดังนั้นระบบที่คล้ายกัน (CDI) จึงยังคงใช้โดยทีมแข่งรถและผู้ที่ชื่นชอบเท่านั้น ตอนนี้ระบบดังกล่าว (ดียิ่งขึ้น) ได้ถูกสร้างขึ้นที่นี่ในรัสเซียและทุกคนสามารถใช้ได้! บนฐานองค์ประกอบที่ทันสมัยมีเอกลักษณ์ ข้อกำหนดทางเทคนิคซึ่งไม่มีแอนะล็อกทั้งในรัสเซียหรือต่างประเทศ! นี่คือระบบจุดระเบิดสำหรับงานหนักที่มีช่องสัญญาณอิสระมากถึง 6 ช่องด้วย ขดลวดเดี่ยวสำหรับแต่ละช่อง สามารถติดตั้งได้เกือบทุกอย่างบน 2, 4, 6 และ 8 เครื่องยนต์ทรงกระบอก. อ่านเพิ่มเติมได้ที่นี่ ควรสังเกตว่าขณะนี้มีผู้ผลิตต่างประเทศหลายรายของระบบที่คล้ายกันในตลาด แต่ทั้งหมดนั้นด้อยกว่าระบบของเรามากในแง่ของพารามิเตอร์และมีการใช้งานที่จำกัด วงจรโหนดของเราให้ประกายไฟที่แรงกว่าและยาวนานกว่าคู่แข่ง เช่นเดียวกับการนำพลังงานที่ไม่ได้ใช้กลับคืนสู่แหล่งพลังงาน ทำให้ระบบมีประสิทธิภาพมากขึ้นและช่วยให้สามารถใช้คอยล์จุดระเบิดได้แทบทุกชนิด

ในอนาคต เมื่อไซต์เต็มและโครงการเติบโตขึ้น รายละเอียดข้อมูลเกี่ยวกับการทำงานของระบบ โดยมีการวัด กราฟ รูปคลื่นเปรียบเทียบ วิดีโอ และภาพถ่ายของตัวอย่างการติดตั้ง ติดตามข่าวสาร ถามคำถาม! ข่าวรอบโลกล่าสุดในหัวข้อนี้จะครอบคลุมและข้อมูลเกี่ยวกับระบบจุดระเบิดของรถยนต์ต่างๆ จะถูกโพสต์ ฉันหวังเป็นอย่างยิ่งว่าแหล่งข้อมูลนี้จะเป็นประโยชน์กับคุณ!

ผู้ติดต่อ: อีเมลนี้จะถูกป้องกันจากสแปมบอท คุณต้องเปิดใช้ javascript ก่อนจึงจะดูได้

เราต่อชุดของบทความในส่วน "คลังความรู้" วันนี้เราพูดถึง จุดระเบิดอิเล็กทรอนิกส์ CDI (การจุดระเบิดแบบ Capacitive Discharge)

ฟังก์ชัน - IGNITE
อุปกรณ์ของระบบจุดระเบิดของอุปกรณ์นำเข้า

สั้นและยาว
นอกจากการจุดระเบิด CDI และ DC-CDI แล้ว ยังมีระบบแบตเตอรี่อีกด้วย คำถามเกิดขึ้น: หากวงจรตัวเก็บประจุมีชื่อเสียงในด้านความน่าเชื่อถือแล้วทำไมต้องใช้อย่างอื่น? แต่ทำไม.

ปัจจัยหนึ่งที่พลังงานและตัวบ่งชี้อื่น ๆ ของเครื่องยนต์ขึ้นอยู่กับระยะเวลาของการคายประจุบนเทียน ฉันจะอธิบายว่าทำไม อาร์คไฟฟ้าหรือประกายไฟ ดังที่เราเคยเรียกกันว่า จุดประกายส่วนผสมให้คงที่ ถ้ามีเชื้อเพลิงหนึ่งกิโลกรัมต่ออากาศ 14.5 กิโลกรัม ส่วนผสมดังกล่าวเรียกว่าปกติ แต่ให้คิดเอาเองว่าในส่วนผสมที่เข้าสู่กระบอกสูบมีโซนที่มีเชื้อเพลิงอยู่ในอากาศไม่มากก็น้อย หากองค์ประกอบดังกล่าวอยู่ใกล้เทียนในขณะที่เกิดประกายไฟ ส่วนผสมในกระบอกสูบก็จะลุกไหม้อย่างช้าๆ ผลที่ตามมานั้นชัดเจน: กำลังเครื่องยนต์ในขณะนั้นจะลดลง และอาจเกิดเพลิงไหม้ได้ ดังนั้น CDIs จะสร้างประกายไฟที่มีระยะเวลาสั้นมาก -0.1-0.3 มิลลิวินาที: ในระบบมีตัวเก็บประจุที่ไม่สามารถให้ประกายไฟได้นานขึ้น ในทางกลับกัน การจุดระเบิดด้วยแบตเตอรี่ทำให้เกิดประกายไฟที่มีลำดับความสำคัญ "ยาวกว่า" - สูงถึง 1-1.5 มิลลิวินาที แน่นอนว่าเธอมีแนวโน้มที่จะจุดชนวนส่วนผสมที่เบี่ยงเบนไปจากองค์ประกอบปกติ การจุดไฟดังกล่าวเป็นเหมือนการแข่งขันล่าสัตว์ขนาดใหญ่และหนา: เมื่อเทียบกับปกติ มันจะเผาไหม้เป็นเวลานาน มันจะจุดไฟเร็วขึ้น กล่าวอีกนัยหนึ่ง ระบบแบตเตอรี่ต้องการความแม่นยำของการตั้งค่าคาร์โบไฮเดรตน้อยกว่า CDI
ความลับของประกายไฟ "ยาว" คือมันไม่ได้ถูกสร้างขึ้นโดย "ช็อต" สั้น ๆ ของพลังงานของตัวเก็บประจุ แต่โดย "ส่วน" ที่เป็นของแข็งของการเหนี่ยวนำแม่เหล็กไฟฟ้าที่สะสมโดยคอยล์จุดระเบิด

สมองเป็นเหล็ก...
ฉันจะอธิบายการทำงานของระบบโดยใช้ตัวอย่างวงจรที่มีตัวขัดขวางทางกล - ไม่ซับซ้อน ในวงจรของคอยล์จุดระเบิดที่นำไปสู่ ​​"ลบ" หน้าสัมผัสสองตัว - เคลื่อนย้ายได้และคงที่ เมื่อปิดลง กระแสจะไหลผ่านขดลวดและสนามไฟฟ้าของขดลวดปฐมภูมิจะทำให้แกนแม่เหล็กดูดกลืน มันคุ้มค่าที่จะเปิดหน้าสัมผัสเพลาลูกเบี้ยวกระแสในขดลวดหลักจะถูกขัดจังหวะและแกนกลางจะเริ่มล้างอำนาจแม่เหล็ก ตามกฎของฟิสิกส์ การปรากฏและการหายไปของแม่เหล็กที่วางอยู่ในขดลวดจะสร้าง (กระตุ้น) ชีพจรของแรงดันไฟฟ้าในขดลวด ในวงจรทุติยภูมิ นี่คือโวลต์หลายหมื่นโวลต์ ทำให้เกิดประกายไฟระหว่างขั้วไฟฟ้าของเทียนไข และเนื่องจากการเหนี่ยวนำแม่เหล็กของแกนคอยล์ใช้เวลาหลายมิลลิวินาที เวลาในการจุดประกายไฟจึงเกือบจะเท่ากัน

อย่างไรก็ตามความเรียบง่าย แผนภาพการติดต่อซ่อนข้อบกพร่องมากมาย นักบิดที่ขี่มอเตอร์ไซค์เก่าจำได้ว่า "สมองเหล็ก" จะต้องได้รับการซ่อมแซมเสมอ: เพื่อทำความสะอาดหน้าสัมผัสที่ออกซิไดซ์ ปรับช่องว่างระหว่างพวกมันกับจังหวะเวลาการจุดระเบิดที่ไม่ตรงแนว นี่ไม่ใช่แค่เรื่องน่าเบื่อ แต่ยังต้องใช้จูนเนอร์ที่มีประสบการณ์ด้วย

การจุดระเบิดด้วยแบตเตอรี่พร้อมตัวขัดขวางหน้าสัมผัส (ในเครื่องยนต์ 2 สูบ): P1 - แบตเตอรี่; 2 - สวิตช์กุญแจ; 3 - ปุ่มเพื่อปิดมอเตอร์; 4 - คอยล์จุดระเบิด; 5 - หัวเทียน; 6 - คู่หน้าสัมผัส (เบรกเกอร์); 7 - ตัวเก็บประจุ การเปิดหน้าสัมผัสนั้นมาพร้อมกับประกายไฟระหว่างกัน - กระแสมีแนวโน้มที่จะทะลุผ่านช่องว่างอากาศ ตัวเก็บประจุที่ต่อขนานกับตัวขัดขวางจะดูดซับประกายไฟบางส่วน ทำให้อายุการใช้งานของหน้าสัมผัสเพิ่มขึ้น

ทรานซิสเตอร์ เปรี้ยว
การจุดระเบิดของแบตเตอรี่แบบทรานซิสเตอร์ของ TCI ช่วยคลายความกังวลเหล่านี้แก่นักบิน ชิ้นส่วนที่เคลื่อนไหวได้หายไปจากระบบ "การจุดระเบิดที่ควบคุมด้วยทรานซิสเตอร์" หมายถึงการจุดระเบิดที่ควบคุมโดยทรานซิสเตอร์ สถานที่ของกลไกถูกยึดโดยเซ็นเซอร์แม่เหล็กไฟฟ้า - ขดลวดบนแกนแม่เหล็ก การปรากฏตัวของสัญญาณในนั้นทำให้เกิดการยื่นออกมาบนตัวดัดแปลงแผ่นเหล็กที่หมุนด้วยเพลาข้อเหวี่ยง มันและเซ็นเซอร์ตั้งอยู่เพื่อให้พัลส์ในขดลวดเกิดขึ้นในขณะที่ถึงเวลาที่จะจุดไฟส่วนผสมในกระบอกสูบ
แต่เซ็นเซอร์เป็นเพียง "ผู้บัญชาการ" ของการจุดระเบิดและนักแสดงหลักคือทรานซิสเตอร์ คอยล์จุดระเบิด และแน่นอนเทียน
มันเกิดขึ้นเช่นนี้ เมื่อเปิดสวิตช์กุญแจ กระแสไฟฟ้าที่เกิดจากแบตเตอรี่ (หลังจากสตาร์ทเครื่องยนต์โดยเครื่องกำเนิดไฟฟ้า) ผ่านทรานซิสเตอร์กำลังเปิดจะไหลผ่านขดลวดปฐมภูมิของขดลวดและแกนกลางจะถูกทำให้เป็นแม่เหล็ก เมื่อเซ็นเซอร์ให้ "คำสั่ง" ในการจุดประกาย พัลส์แรงดันไฟฟ้าจะถูกนำไปใช้กับอิเล็กโทรดควบคุม (ฐาน) ของทรานซิสเตอร์ควบคุมและทรานซิสเตอร์จะเปิดขึ้น ตอนนี้กระแสจะไหลลงสู่พื้นและทรานซิสเตอร์กำลังจะปิด - ฐานของมันจะถูกยกเลิกพลังงาน ขดลวดจะสูญเสียพลังงาน แกนกลางจะเริ่มล้างอำนาจแม่เหล็ก และคายประจุออกมาบนเทียน จากนั้นทรานซิสเตอร์ควบคุมจะกลับสู่สถานะปิด (จนกว่าจะได้รับสัญญาณถัดไปจากเซ็นเซอร์) และพลังงาน "เพื่อนร่วมงาน" จะเปิดขึ้นอีกครั้งและเริ่มชาร์จขดลวด แน่นอนว่านี่เป็นคำอธิบายแบบง่าย แต่สะท้อนถึงพื้นฐานของวิธีการทำงานของระบบทรานซิสเตอร์อย่างเต็มที่


1 - โมดูเลเตอร์; 2 - เซ็นเซอร์อุปนัย; 3 - ทรานซิสเตอร์ควบคุม; 4 - ทรานซิสเตอร์กำลัง 5 - คอยล์จุดระเบิด; ข - หัวเทียน สีแดงหมายถึงกระแสไฟเมื่อเปิดทรานซิสเตอร์กำลัง (ขดลวดสะสมสนามแม่เหล็ก), สีน้ำเงิน -
ผ่านทรานซิสเตอร์ควบคุมในสภาวะที่มีสัญญาณเอาท์พุตปรากฏขึ้น ทรานซิสเตอร์จะผ่านกระแสผ่านตัวมันเองเมื่อมีแรงดันที่อิเล็กโทรดควบคุม (ฐาน) เท่านั้น

เซ็นเซอร์ หน่วยความจำโปรเซสเซอร์
การจุดระเบิดควรปล่อยออกในช่วงเวลา "ประสาน" กับโหมดการทำงานของมอเตอร์ ให้ฉันเตือนคุณถึงธรรมชาติของการเปลี่ยนแปลง: มุมที่เล็กที่สุดสอดคล้องกับการสตาร์ทเครื่องยนต์และรอบเดินเบา เมื่อความเร็วเพิ่มขึ้นหรือภาระของเครื่องยนต์ลดลง (ปิดคันเร่งคาร์บูเรเตอร์) มุมจะเพิ่มขึ้น โดยปกติระบบแบตเตอรี่จะมีอุปกรณ์แก้ไขล่วงหน้า นอกจากทรานซิสเตอร์ที่ "จัดการ" คอยส์แล้ว หน่วยความจำ (ROM - หน่วยความจำแบบอ่านอย่างเดียว) และไมโครโปรเซสเซอร์ยังถูกสร้างไว้ในชุดควบคุม ซึ่งคล้ายกับที่ใช้ในคอมพิวเตอร์พกพา หน่วยความจำมีข้อมูลเกี่ยวกับความเร็วและโหลดของมอเตอร์ในขณะที่จำเป็นต้องใช้ประกายไฟ โปรเซสเซอร์ที่ได้รับข้อมูลจากเซ็นเซอร์ในโหมดการทำงานของมอเตอร์จะเปรียบเทียบการอ่านกับรายการใน ROM และเลือกค่าที่ต้องการของมุมล่วงหน้า

ก่อนการติดตั้งแบบอนุกรมกับอุปกรณ์ต่างๆ เครื่องยนต์ได้รับการทดสอบที่ โหมดต่างๆรอบและโหลดค่าที่ดีที่สุดของเวลาจุดระเบิดได้รับการแก้ไขและบันทึกไว้ใน ROM (หรือ RAM) เมื่อรวมเข้าด้วยกัน ข้อมูลนี้จะดูเหมือนแผนภูมิสามมิติ หรือเรียกอีกอย่างว่า "แผนที่"

สามารถอ่านค่าพารามิเตอร์การทำงานของมอเตอร์ได้ วิธีทางที่แตกต่าง. ในบางระบบ จะใช้เฉพาะเซ็นเซอร์อุปนัย ("ตัวควบคุมการจุดระเบิด") เท่านั้น ในกรณีนี้ โมดูเลเตอร์จะยื่นออกมาหลายส่วน ด้วยความเร็วของการเคลื่อนที่ของโปรเซสเซอร์บางตัวโปรเซสเซอร์จะรับรู้ถึงการปฏิวัติของเพลาข้อเหวี่ยงโดยที่ตัวอื่น ๆ จะกำหนดกระบอกสูบซึ่งเป็นเวลาที่จะใช้การคายประจุบนเทียน
ระบบขั้นสูงมีการติดตั้งเซ็นเซอร์ตำแหน่ง วาล์วปีกผีเสื้อ TPS (เซ็นเซอร์ตำแหน่งปีกผีเสื้อ) มันแจ้งโปรเซสเซอร์เกี่ยวกับภาระของมอเตอร์

ตามค่าความต้านทาน โปรเซสเซอร์กำหนดมุมเปิดปีกผีเสื้อ และตามอัตราการเปลี่ยนแปลงแรงดันไฟฟ้าในวงจร ความเข้มของการเปิดวาล์วปีกผีเสื้อ

บางครั้งอ่านความเร็วการเปิดแดมเปอร์ เพื่ออะไร? การเร่งความเร็วและการระเบิดมักจะควบคู่กันไป ตัวอย่างเช่น: เมื่อเปิดแก๊สอย่างกะทันหัน ปรากฎว่าคุณต้องการสิ่งที่เป็นไปไม่ได้จากมอเตอร์ - ไดนามิกที่ก่อให้เกิดการระเบิดอย่างหลีกเลี่ยงไม่ได้ (การเผาไหม้เชื้อเพลิงแบบระเบิด) TPS ส่งข้อมูลนี้ไปยังโปรเซสเซอร์ (ความเร็วในการเปิดคันเร่ง) ซึ่งจะเปรียบเทียบกับรายการใน ROM "เข้าใจ" ว่าสถานการณ์ใกล้จะเกิดเหตุฉุกเฉิน และเปลี่ยนมุมนำไปทางความล่าช้า การระเบิดและความเสียหายของกระบอกสูบ กลุ่มลูกสูบจะไม่เกิดขึ้น
นอกจาก ROM ที่ไม่สามารถแก้ไขข้อมูลที่บันทึกไว้ได้ บริษัทหลายแห่ง (เช่น Ducati และ Harley-Davidson) ยังใช้หน่วยความจำที่ "ยืดหยุ่น" เรียกว่า "Random Access Memory" (เรียกสั้นๆ ว่า RAM) มันถูกตั้งโปรแกรมใหม่ด้วยความพิเศษ บล็อกอิเล็กทรอนิกส์. อย่างไรก็ตาม ในทางปฏิบัติ มีผู้เชี่ยวชาญเพียงไม่กี่คนเท่านั้นที่สามารถปรับปรุงได้ การตั้งค่าโรงงานจุดระเบิด นักบินจำนวนน้อยก็จะรู้สึก ผลในเชิงบวกในระหว่างการเคลื่อนไหวของลูกเรือ แต่การบริโภคน้ำมันเชื้อเพลิงและปริมาณของส่วนประกอบที่เป็นอันตรายใน ไอเสียจะเพิ่มขึ้นอย่างมาก
การจุดระเบิดของโปรเซสเซอร์มักถูกเรียกว่า "ดิจิตอล" เนื่องจากมีหน่วยพิเศษที่แปลงสัญญาณเซ็นเซอร์เป็น แถวตัวเลข. คอมพิวเตอร์ไม่รู้จักข้อมูลอื่น

แสดง วิธีต่างๆการควบคุมประกายไฟ:
เอ - เครื่องกำเนิดดอกป๊อปปี้ใช้กับเซ็นเซอร์สองตัวและส่วนที่ยื่นออกมาหนึ่งอันบนโรเตอร์ (ยังเป็นโมดูเลเตอร์ด้วย) B - เครื่องกำเนิดเหมือนกัน แต่เซ็นเซอร์เป็นหนึ่งตัวใช้โมดูเลเตอร์ที่มีส่วนที่ยื่นออกมาหลายอัน B - โมดูเลเตอร์มีรูปร่างของดาวหลายดวงเซ็นเซอร์เป็นหนึ่ง (รูปแบบที่คล้ายกันมักใช้เป็นส่วนหนึ่งของระบบฉีดเชื้อเพลิงมากกว่ากับคาร์บูเรเตอร์)